Investigation of crystal field, magnetic frustration and magnetization reversal effects in 4 f and 3d oxides

Authors

Keywords:

single-ion excitations, magnetic frustration, magnetization reversal phenomena

Synopsis

This thesis deals with the investigation of single-ion excitations, magnetic frustration, and magnetization reversal phenomena. We have employed neutron scattering, µ+SR, and computational methods for these studies.

Inverse spinel oxide Co2VO4 belongs to the family of spinel vanadates where cobalt and vanadium ions occupy the spinel B-site equally. This system exhibits magnetization reversal for temperatures below 65 K. Magnetization studies reveal three anomalies involving collinear and non-collinear ferrimagnetism phase and magnetization reversal crossover. Neutron diffraction analysis of Co2VO4 unveils that the evolution of relative balance between the two sublattice moments leads to ferrimagnetic phase and magnetization reversal. DFT calculation and µ+SR results suggest delocalization -localization crossover as the underlying microscopic mechanism for magnetization reversal.

Rare earth oxide SrTm2O4 belongs to the family of SrLn2O4 where two inequivalent Tm3+ s form two zig-zag chains along the orthorhombic c-axis. An earlier study on SrTm2O4 reports the absence of long- or short-range order down to 65 mK. The crystal fields and exchange interactions in SrTm2O4 were studied to examine the absence of order. The crystal fields in SrTm2O4 were modeled using DFT and the effective charge (EC) model. The EC model describes the system well and suggests |l, ml) = |6, 0) dominates the ground state of both Tm + s. The exchange interactions extracted from low-energy dispersing excitations using random phase approximation suggest that Tm2 chains are frustrated and Tm1 chains could form dimers. The critical ratio calculated from exchange interaction indicates SrTm2O4 cannot undergo a thermal second-order phase transition confirming the absence of order. µ+SR results show oscillations in polarization evolution spectra;  these are typically associated with muon precession due to the system’s long-range order. Modeling precession frequency vs. temperature reveals that these oscillations originate due to nuclear hyperfine enhancement. Additionally, the magnetic field application induces long-range order, with Tm2 function as polarized paramagnet whereas Tm1 above 4 T transitions into XY -AFM phase.

Author Biography

Abhijit Bhat Kademane

Phd fellow
Faculty of Science and Technology
Department of Mathematics and Physics
University in Stavanger
abhijit.bhatkademane@uis.no

References

P. W. Anderson. More is different. Science, 177(4047):393- 396, August 1972.

https://doi.org/10.1126/science.177.4047.393

N. Menyuk, K. Dwight, and D. G. Wickham. Magnetiza- tion reversal and asymmetry in cobalt vanadate (IV). Phys. Rev. Lett., 4:119-120, Feb 1960.

https://doi.org/10.1103/PhysRevLett.4.119

H. Karunadasa, Q. Huang, B. G. Ueland, J. W. Lynn, P. Schiffer, K. A. Regan, and R. J. Cava. Honeycombs of triangles and magnetic frustration in SrL2O4 (L = Gd, Dy, Ho, Er, Tm, and Yb). Phys. Rev. B, 71:144414, Apr 2005.

https://doi.org/10.1103/PhysRevB.71.144414

H-F. Li, A. Senyshyn, O. Fabelo, J. Persson, B. Hou, M. Boehm, K. Schmalzl, W. Schmidt, J-P. Vassalli, P. Thakuria, X. Sun, L. Wang, G. Khazaradze, B. Schmitz, C. Zhang, G. Roth, J. G. Roca, and A. Wildes. Absence of magnetic ordering in the ground state of a SrTm2O4 single crystal. Journal of Materials Chemistry C, 3(29):7658-7668, 2015.

https://doi.org/10.1039/C5TC01607J

E U Condon and G H Shortley. The Theory of Atomic Spectra. Cambridge University Press, Cambridge, England, 1959.

K W H Stevens. Matrix elements and operator equivalents con- nected with the magnetic properties of rare earth ions. Proceed- ings of the Physical Society. Section A, 65(3):209-215, March 1952.

https://doi.org/10.1088/0370-1298/65/3/308

M. Rotter, M. D. Le, J. Keller, L. G. Pascut, T. Hoff- mann, M. Doerr, R. Schedler, F. Fabi né Hoffmann, S. Rot- ter, M. Banks, and N. Klüver. McPhase - USERS MANUAL, 2017. URL https://www2.cpfs.mpg.de/~rotter/ homepage_mcphase/manual/manual.html.

J. Jensen and A. R. Mackintosh. Rare Earth Magnetism. Oxford University Press, Oxford, UK, 1991. ISBN 9780198520276.

C. Rudowicz and J. Qin. Can the low symmetry crystal (ligand) field parameters be considered compatible and reliable? Journal of Luminescence, 110(1-2):39-64, October 2004.

https://doi.org/10.1016/j.jlumin.2004.04.003

M.T. Hutchings. Point-charge calculations of energy levels of magnetic ions in crystalline electric fields. In Solid State Physics, pages 227-273. Elsevier, 1964.

https://doi.org/10.1016/S0081-1947(08)60517-2

H. Bethe. Termaufspaltung in kristallen. Annalen der Physik, 395(2):133-208, 1929.

https://doi.org/10.1002/andp.19293950202

J. J. Baldoví, J. J. Borrás-Almenar, J. M. Clemente-Juan, Eu- genio Coronado, and Alejandro G-A. Modeling the proper- ties of lanthanoid single-ion magnets using an effective point- charge approach. Dalton Trans., 41:13705-13710, 2012.

https://doi.org/10.1039/c2dt31411h

J. J. Baldoví, J. M. Clemente-Juan, and A. Gaita-Ariño. Simpre: Installation and user manual, 2014. URL https://arxiv. org/abs/1407.6576.

Z. Dun, X. Bai, M. B. Stone, H. Zhou, and M. Mouri- gal. Effective point-charge analysis of crystal fields: Ap- plication to rare-earth pyrochlores and tripod kagome mag- nets 3Mg2Sb3O14. Phys. Rev. Research, 3:023012, Apr 2021.

https://doi.org/10.1103/PhysRevResearch.3.023012

A. Uldry, F. Vernay, and B. Delley. Systematic computation of crystal-field multiplets for x-ray core spectroscopies. Physical Review B, 85(12), March 2012.

https://doi.org/10.1103/PhysRevB.85.125133

B.Z. Malkin. Crystal field and electron-phonon interaction in rare-earth ionic paramagnets. In Spectroscopy of Solids Containing Rare Earth Ions, pages 13-50. Elsevier, 1987.

https://doi.org/10.1016/B978-0-444-87051-3.50008-0

S. V. Streltsov, A. S. Mylnikova, A. O. Shorikov, Z. V. Pchelk- ina, D. I. Khomskii, and V. I. Anisimov. Crystal-field splitting for low symmetry systems in ab initio calculations. Phys. Rev. B, 71:245114, Jun 2005.

https://doi.org/10.1103/PhysRevB.71.245114

M. W. Haverkort, M. Zwierzycki, and O. K. Andersen. Multi- plet ligand-field theory using Wannier orbitals. Phys. Rev. B, 85: 165113, Apr 2012.

https://doi.org/10.1103/PhysRevB.85.165113

P. Novák, K. Knížek, and J. Kuneš. Crystal field parameters with wannier functions: Application to rare-earth aluminates. Phys. Rev. B, 87:205139, May 2013.

https://doi.org/10.1103/PhysRevB.87.205139

A. Scaramucci, J. Ammann, N. A. Spaldin, and C. Ederer. Sepa- rating different contributions to the crystal-field parameters using Wannier functions. Journal of Physics: Condensed Matter, 27 (17):175503, apr 2015.

https://doi.org/10.1088/0953-8984/27/17/175503

E. Mihóková, P. Novák, and V. V. Laguta. Crystal field and magnetism with Wannier functions: rare-earth doped alu- minum garnets. Journal of Rare Earths, 33(12):1316-1323, 2015. ISSN 1002-0721.

https://doi.org/10.1016/S1002-0721(14)60563-9

A. Furrer, J. Mesot, and T. Strässle. Neutron Scattering in Con- densed Matter Physics. WORLD SCIENTIFIC, 2009.

https://doi.org/10.1142/4870

B. G. Wybourne. Spectroscopic Properties of Rare Earths. Inter- science Publishers, 1965.

https://doi.org/10.1063/1.3047727

D. I. Khomskii. TRANSITION METAL COMPOUNDS. Cambridge University Press, 2009. URL https://doi.org/10. 1017/cbo9781139096782.

S. J. Blundell. Magnetism in Condensed Matter. Oxford Master Series in Condensed Matter Physics. Oxford University Press, London, England, August 2001.

T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev., 120:91-98, Oct 1960.

https://doi.org/10.1103/PhysRev.120.91

M. Rotter, A. Schneidewind, M. Doerr, M. Loewenhaupt, A. M. El Massalami, and C. Detlefs. Interpreting magnetic X-ray scat- tering on Gd-compounds using the McPhase simulation pro- gram. Physica B: Condensed Matter, 345(1):231-234, 2004. ISSN 0921-4526.

https://doi.org/10.1016/j.physb.2003.11.061

J. N. Reimers. Diffuse-magnetic-scattering calculations for frustrated antiferromagnets. Phys. Rev. B, 46:193-202, Jul 1992.

https://doi.org/10.1103/PhysRevB.46.193

J. Xu. Magnetic properties of rare earth zirconate py- rochlores. Doctoral thesis, Technische Universität Berlin, Berlin, 2017. URL https://depositonce.tu-berlin.de/bitstream/11303/7102/5/xu_jianhui.pdf.

D. B. Litvin, editor. Magnetic Group Tables. International Union of Crystallography, April 2013. URL https://doi.org/ 10.1107/9780955360220001.

E. F. Bertaut. Representation analysis of magnetic struc- tures. Acta Crystallographica Section A, 24(1):217- 231, Jan 1968.

https://doi.org/10.1107/S0567739468000306

A. Wills. Magnetic structures and their determination using group theory. Le Journal de Physique IV, 11(PR9):Pr9-133-Pr9- 158, November 2001.

https://doi.org/10.1051/jp4:2001906

M. A. H. McCausland and I. S. Mackenzie. Nuclear magnetic resonance in rare earth metals. Advances in Physics, 28(3): 305-456, June 1979.

https://doi.org/10.1080/00018737900101385

B. R. Cooper and O. Vogt. Singlet Ground State Magnetism. Le Journal de Physique Colloques, 32(C1):C1-958-C1-965, February 1971.

https://doi.org/10.1051/jphyscol:19711343

A. Kumar and S.M. Yusuf. The phenomenon of negative magnetization and its implications. Physics Reports, 556:1- 34, February 2015.

https://doi.org/10.1016/j.physrep.2014.10.003

M. L. Néel. Propriétés magnétiques des ferrites ; ferrimag- nétisme et antiferromagnétisme. Annales de Physique, 12 (3):137-198, 1948.

https://doi.org/10.1051/anphys/194812030137

Bernard R. Cooper. Magnetic properties of compounds with sin- glet ground state: Exchange correlation effects. Phys. Rev., 163: 444-459, Nov 1967.

https://doi.org/10.1103/PhysRev.163.444

L. Balents. Spin liquids in frustrated magnets. Nature, 464 (7286):199-208, March 2010.

https://doi.org/10.1038/nature08917

J. Villain, R. Bidaux, J.-P. Carton, and R. Conte. Order as an effect of disorder. Journal de Physique, 41(11):1263- 1272, 1980.

https://doi.org/10.1051/jphys:0198000410110126300

C. Lacroix, P. Mendels, and Fr. Mila, editors. Introduction to Frustrated Magnetism. Springer Berlin Heidelberg, 2011.

https://doi.org/10.1007/978-3-642-10589-0

F. Heidrich-Meisner, I. A. Sergienko, A. E. Feiguin, and E. R. Dagotto. Universal emergence of the one-third plateau in the magnetization process of frustrated quantum spin chains. Phys. Rev. B, 75:064413, Feb 2007.

https://doi.org/10.1103/PhysRevB.75.064413

G. L. Squires. Introduction to the Theory of Thermal Neutron Scattering. Cambridge University Press, 2009.

https://doi.org/10.1017/CBO9781139107808

S. W. Lovesey. Theory of neutron scattering from condensed mat- ter: Volume I: Nuclear scattering. International Series of Monographs on Physics. Clarendon Press, Oxford, England, October 1986.

S. W. Lovesey. Theory of neutron scattering from condensed mat- ter: Volume II: Polarization effects and magnetic scattering. Theory of Neutron Scattering from Condensed Matter. Clarendon Press, Oxford, England, October 1986.

K. Lefmann. Neutron Scattering: Theory, Experiment, and Sim- ulations, October 2018.

A. Yaouanc and P. D. de Reotier. Muon Spin Rotation, Relax- ation, and Resonance: Applications to Condensed matter. In- ternational series of monographs on physics. Oxford University Press, Oxford, 2010. ISBN 9780199596478.

A. Amato. Physics with Muons: From Atomic Physics to Solid State Physics, February 2021. URL https://www.psi.ch/en/media/73526/download?attachment.

S. Cottenier. Density Functional Theory and the Family of (L)APW-methods: a step-by-step introduction. Instituut voor Kernen Stralingsfysica, K.U.Leuven, Belgium, 2013. ISBN 978-90-807215-1-7.

Thomas Bagger Stibius Jensen. Magnetic structures, phase dia- gram and spin waves of magneto-electric LiNiPO4. PhD thesis, 2007. URL https://orbit.dtu.dk/files/5000886/ris-phd-40.pdf.

A. Buchsteiner and N. Stüßer. Optimizations in angular disper- sive neutron powder diffraction using divergent beam geome- tries. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 598(2):534-541, January 2009.

https://doi.org/10.1016/j.nima.2008.09.022

A. Franz and A. Hoser. E9: The fine resolution powder diffractometer (FIREPOD) at BER II. Journal of large-scale research facilities, 3:A103, 2017.

https://doi.org/10.17815/jlsrf-3-127

A. Huq, J. P. Hodges, O. Gourdon, and L. Heroux. Pow- gen: A third-generation highresolution high-throughput pow- der diffraction instrument at the spallation neutron source. In European Powder Diffraction Conference, August 2010, Darmstadt, Germany, pages 127-136. OLDENBOURG WISSENSCHAFTSVERLAG, December 2011.

https://doi.org/10.1524/9783486991321-024

P. Fischer, L. Keller, J. Schefer, and J. Kohlbrecher. Neutron diffraction at sinq. Neutron News, 11(3):19-21, 2000.

https://doi.org/10.1080/10448630008233743

C. J. Carlile and B. T. M. Willis. Experimental Neutron Scatter- ing. Oxford university press, 2013. ISBN 9780199673773.

M. D. Le, M. Skoulatos, D. L. Quintero-Castro, R. Toft- Petersen, F. Groitl, K. C. Rule, and K. Habicht. The upgraded cold neutron three-axis spectrometer FLEXX at BER II at HZB. Neutron News, 25(2):19-22, April 2014.

https://doi.org/10.1080/10448632.2014.902699

R. A. Ewings, J. R. Stewart, T. G. Perring, R. I. Bewley, M. D. Le, D. Raspino, D. E. Pooley, G. Škoro, S. P. Waller, D. Za- cek, C. A. Smith, and R. C. Riehl-Shaw. Upgrade to the MAPS neutron time-of-flight chopper spectrometer. Review of Scientific Instruments, 90(3):035110, March 2019.

https://doi.org/10.1063/1.5086255

J. R. Stewart, P. P. Deen, K. H. Andersen, H. Schober, J.-F. Barthélémy, J. M. Hillier, A. P. Murani, T. Hayes, and B. Lindenau. Disordered materials studied using neutron polarization analysis on the multi-detector spectrometer, D7. Journal of Applied Crystallography, 42(1):69-84, Feb 2009.

https://doi.org/10.1107/S0021889808039162

A. Amato, H. Luetkens, K. Sedlak, A. Stoykov, R. Scheuer- mann, M. Elender, A. Raselli, and D. Graf. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for µSR measurements on a continuous-wave beam. Review of Scientific Instruments, 88(9):093301, September 2017.

https://doi.org/10.1063/1.4986045

S.R. Giblin, S.P. Cottrell, P.J.C. King, S. Tomlinson, S.J.S. Jago, L.J. Randall, M.J. Roberts, J. Norris, S. Howarth, Q.B. Mutamba, N.J. Rhodes, and F.A. Akeroyd. Optimising a muon spectrometer for measurements at the ISIS pulsed muon source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 751:70-78, July 2014.

https://doi.org/10.1016/j.nima.2014.03.010

J. E. Sonier. Muon Spin Rotation/Relaxation/Resonance (µSR). Brochure, 2002. URL http://cmms.triumf.ca/intro/musr/muSRBrochure.pdf.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbrac- cia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39):395502, sep 2009.

https://doi.org/10.1088/0953-8984/21/39/395502

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Mad- sen, and L. D. Marks. WIEN2k: An APW+lo program for calculating the properties of solids. The Journal of Chemical Physics, 152(7):074101, February 2020.

https://doi.org/10.1063/1.5143061

Von W. Rüdorff, G. Walter, and H. Becker. Über einige Ox- overbindungen und Doppeloxyde des vierwertigen Vanadins. Zeitschrift für Anorganische und Allgemeine Chemie, 285(3-6): 287-296, June 1956.

https://doi.org/10.1002/zaac.19562850321

E. J. W. Verwey and E. L. Heilmann. Physical Properties and Cation Arrangement of Oxides with Spinel Structures I. Cation Arrangement in Spinels. The Journal of Chemical Physics, 15(4): 174-180, April 1947.

https://doi.org/10.1063/1.1746464

V. O. Garlea, R. Jin, D. Mandrus, B. Roessli, Q. Huang, M. Miller, A. J. Schultz, and S. E. Nagler. Magnetic and Orbital Ordering in the Spinel MnV2O4. Phys. Rev. Lett., 100: 066404, Feb 2008.

https://doi.org/10.1103/PhysRevLett.100.066404

G. J. MacDougall, V. O. Garlea, A. A. Aczel, H. D. Zhou, and S. E. Nagler. Magnetic order and ice rules in the multiferroic spinel FeV2O4. Phys. Rev. B, 86:060414, Aug 2012.

https://doi.org/10.1103/PhysRevB.86.060414

Q. Zhang, M. Ramazanoglu, S. Chi, Y. Liu, T. A. Lograsso, and D. Vaknin. Magnetic excitations and anomalous spin-wave broadening in multiferroic FeV2O4. Phys. Rev. B, 89: 224416, Jun 2014.

https://doi.org/10.1103/PhysRevB.89.224416

H. Ishibashi, S. Shimono, K. Tomiyasu, S. Lee, S. Kawaguchi, H. Iwane, H. Nakao, S. Torii, T. Kamiyama, and Y. Kubota. Small crystal distortion and long-range antiferro-orbital ordering in the spinel oxide CoV2O4. Phys. Rev. B, 96: 144424, Oct 2017.

https://doi.org/10.1103/PhysRevB.96.144424

R. Koborinai, S. E. Dissanayake, M. Reehuis, M. Matsuda, T. Kajita, H. Kuwahara, S.-H. Lee, and T. Katsufuji. Orbital glass state of the nearly metallic spinel cobalt vanadate. Phys. Rev. Lett., 116:037201, Jan 2016.

https://doi.org/10.1103/PhysRevLett.116.037201

E. J. Verwey, P. W. Haayman, and F. C. Romeijn. Physical Prop- erties and Cation Arrangement of Oxides with Spinel Structures II. Electronic Conductivity. The Journal of Chemical Physics, 15(4):181-187, April 1947.

https://doi.org/10.1063/1.1746466

Konstantin P Belov. Electronic processes in magnetite (or, "Enigmas of magnetite"). Physics-Uspekhi, 36(5):380- 391, May 1993.

https://doi.org/10.1070/PU1993v036n05ABEH002160

P. W. Anderson. Ordering and Antiferromagnetism in Ferrites. Phys. Rev., 102:1008-1013, May 1956. URL https://link. aps.org/doi/10.1103/PhysRev.102.1008.

https://doi.org/10.1103/PhysRev.102.1008

K. P. Belov. Ferrimagnets with a 'weak' magnetic sub- lattice. Uspekhi Fizicheskikh Nauk (UFN) Journal, 39(6): 623-634, 1996.

https://doi.org/10.1070/PU1996v039n06ABEH000153

S. Thota and S. Singh. Nature of magnetic ordering in cobalt- based spinels. In Magnetic Spinels - Synthesis, Properties and Applicationsn, chapter 4. InTech Open Bookseries, 2017. URL https://www.intechopen.com/chapters/53006.

https://doi.org/10.5772/65913

S. Nayak, S. Thota, D. C. Joshi, M. Krautz, A. Waske, A. Behler, J. Eckert, T. Sarkar, M. S. Andersson, R. Math- ieu, V. Narang, and M. S. Seehra. Magnetic compensa- tion, field-dependent magnetization reversal, and complex mag- netic ordering in Co2TiO4. Phys. Rev. B, 92:214434, Dec 2015.

https://doi.org/10.1103/PhysRevB.92.214434

X. Liu, C.and Kan, X. Liu, Z. Zhang, and J. Hu. Magnetic compensation and critical behavior in spinel Co2TiO4. Phys. Chem. Chem. Phys., 22:20929-20940, 2020.

https://doi.org/10.1039/D0CP03713C

C. Mu, J. Mao, J. Guo, Q. Guo, Z. Li, W. Qin, Z. Hu, K. Davey, T. Ling, and S-Z. Qiao. Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis. Advanced Materials, 32(10):1907168, January 2020.

https://doi.org/10.1002/adma.201907168

T. Yang, D. Xia, Z. Wang, and Y. Chen. A novel anode material of Fe2VO4 for high power Lithium ion battery. Materials Letters, 63(1):5-7, January 2009.

https://doi.org/10.1016/j.matlet.2008.08.012

W. Jauch, M. Reehuis, H. J. Bleif, F. Kubanek, and P. Pattison. Crystallographic symmetry and magnetic structure of CoO. Phys. Rev. B, 64:052102, Jul 2001.

https://doi.org/10.1103/PhysRevB.64.052102

K. Tomiyasu, T. Inami, and N. Ikeda. Magnetic structure of CoO studied by neutron and synchrotron x-ray diffraction. Phys. Rev. B, 70:184411, Nov 2004.

https://doi.org/10.1103/PhysRevB.70.184411

J. Rodríguez-Carvajal. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1):55-69, 1993. ISSN 0921-4526.

https://doi.org/10.1016/0921-4526(93)90108-I

N. R. Wilson, O. A. Petrenko, and L. C. Chapon. Magnetic phases in the kagomé staircase compound Co3V2O8 studied using powder neutron diffraction. Phys. Rev. B, 75:094432, Mar 2007.

https://doi.org/10.1103/PhysRevB.75.094432

N. Qureshi, M. Zbiri, J. Rodríguez-Carvajal, A. Stunault, E. Ressouche, T. C. Hansen, M. T. Fernández-Díaz, M. R. John- son, H. Fuess, H. Ehrenberg, Y. Sakurai, M. Itou, B. Gillon, Th. Wolf, J. A. Rodríguez-Velamazan, and J. Sánchez-Montero. Experimental magnetic form factors in Co3V2O8: A com- bined study of ab initio calculations, magnetic Compton scat- tering, and polarized neutron diffraction. Physical Review B, 79(9), March 2009.

https://doi.org/10.1103/PhysRevB.79.094417

R. Szymczak, M. Baran, R. Diduszko, J. Fink-Finowicki, M. Gutowska, A. Szewczyk, and H. Szymczak. Magnetic field-induced transitions in geometrically frustrated Co3V2O8 single crystal. Phys. Rev. B, 73:094425, Mar 2006.

https://doi.org/10.1103/PhysRevB.73.094425

Y. Yasui, Y. Kobayashi, M. Soda, T. Moyoshi, M. Sato, N. Igawa, and K. Kakurai. Successive Magnetic Transitions of the Kagomé Staircase Compound Co3V2O8 Studied in Various Magnetic Fields. Journal of the Physical Society of Japan, 76(3): 034706, March 2007.

https://doi.org/10.1143/JPSJ.76.034706

Y. Nii, H. Sagayama, T. Arima, S. Aoyagi, R. Sakai, S. Maki, E. Nishibori, H. Sawa, K. Sugimoto, H. Ohsumi, and M. Takata. Orbital structures in spinel vanadates AV2O4(A= Fe,Mn). Phys. Rev. B, 86:125142, Sep 2012. URL https://link.aps. org/doi/10.1103/PhysRevB.86.125142.

L. H. Bennett and E. Della Torre. Analysis of wasp-waist hysteresis loops. Journal of Applied Physics, 97(10):10E502, 2005.

https://doi.org/10.1063/1.1846171

Peter J. W. Magnetic hysteresis in natural materials. Earth and Planetary Science Letters, 20(1):67-72, 1973. ISSN 0012-821X.

https://doi.org/10.1016/0012-821X(73)90140-4

B. Debnath, A. Bansal, H. G. Salunke, A. Sadhu, and S. Bhat- tacharyya. Enhancement of Magnetization through Interface Ex- change Interactions of Confined NiO Nanoparticles within the Mesopores of CoFe2O4. The Journal of Physical Chemistry C, 120(10):5523-5533, 2016.

https://doi.org/10.1021/acs.jpcc.5b12332

L. Tauxe, T. A. T. Mullender, and T. Pick. Potbellies, wasp- waists, and superparamagnetism in magnetic hysteresis. Journal of Geophysical Research, 101:571-583, 1996.

https://doi.org/10.1029/95JB03041

J. P. Palakkal, C. R. Sankar, A. P. Paulose, and M. R. Varma. Hopping conduction and spin glass behavior of La2FeMnO6. Journal of Alloys and Compounds, 743:403-409, 2018. ISSN 0925-8388.

https://doi.org/10.1016/j.jallcom.2018.01.210

P. Singh, A. Pal, V. K. Gangwar, P. K. Gupta, Md. Alam, S. Ghosh, R. K. Singh, A. K. Ghosh, and S. Chatterjee. Wasp - Waisted loop and spin frustration in Dy2-xEuxTi2O7 pyrochlore. Journal of Magnetism and Magnetic Materials, 518: 167364, 2021. ISSN 0304-8853.

https://doi.org/10.1016/j.jmmm.2020.167364

A. S. Wills. A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh). Physica B: Condensed Matter, 276-278: 680-681, March 2000.

https://doi.org/10.1016/S0921-4526(99)01722-6

J.M. Perez-Mato, S.V. Gallego, E.S. Tasci, L. Elcoro, G. de la Flor, and M.I. Aroyo. Symmetry-Based Computational Tools for Magnetic Crystallography. Annual Review of Materials Research, 45(1):217-248, July 2015.

https://doi.org/10.1146/annurev-matsci-070214-021008

Aroyo M.I., Perez-Mato J.M., Orobengoa D., Tasci E., De La Flor G., and Kirov A. Crystallography on- line: Bilbao crystallographic server. Bulgarian Chem- ical Communications, 43(2):183 - 197, 2011. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-80955140447&partnerID=40&md5= 488772b9e21d2636a3952f66ae80ae84.

L. Néel. Magnetism and Local Molecular Field, December 1971.

https://doi.org/10.1126/science.174.4013.985

N. A. Anderson. X-ray magnetic circular dichroism (XMCD) of metallic nano-structures on epitaxial graphene. PhD thesis, 2021.

https://doi.org/10.31274/etd-20210609-6

B. F. Decker and J. S. Kasper. The structure of calcium fer- rite. Acta Crystallographica, 10(4):332-337, Apr 1957.

https://doi.org/10.1107/S0365110X5700095X

O. A. Petrenko. Low-temperature magnetism in the honeycomb systems SrLn2O4 (review article). Low Temperature Physics, 40 (2):106-112, 2014.

https://doi.org/10.1063/1.4865556

B. Z. Malkin, S. I. Nikitin, I. E. Mumdzhi, D. G. Zverev, R. V. Yusupov, I. F. Gilmutdinov, R. Batulin, B. F. Gabbasov, A. G. Kiiamov, D. T. Adroja, O. Young, and O. A. Petrenko. Magnetic and spectral properties of the multisub-lattice oxides SrY2O4:Er3+ and SrEr2O4. Phys. Rev. B, 92: 094415, Sep 2015. URL https://link.aps.org/doi/ 10.1103/PhysRevB.92.094415.

A. Fennell, V. Y. Pomjakushin, A. Uldry, B. Delley, B. Prévost, A. Désilets-Benoit, A. D. Bianchi, R. I. Bewley, B. R. Hansen, T. Klimczuk, R. J. Cava, and M. Kenzelmann. Evidence for SrHo2O4 and SrDy2O4 as model l1-l2 zigzag chain materials. Phys. Rev. B, 89:224511, Jun 2014.

https://doi.org/10.1103/PhysRevB.89.224511

N. Qureshi, O. Fabelo, P. Manuel, D. D. Khalyavin, E. Lhotel, S.X.M. Riberolles, G. Balakrishnan, and O. A. Petrenko. Field-induced magnetic states in geometrically frustrated SrEr2O4. SciPost Phys., 11:7, 2021.

https://doi.org/10.21468/SciPostPhys.11.1.007

A. Togo and I. Tanaka. First principles phonon calculations in materials science. Scripta Materialia, 108:1-5, 2015. ISSN 1359-6462.

https://doi.org/10.1016/j.scriptamat.2015.07.021

The Materials Project. Materials data on SrTm2O4 by materials project, 7 2020. URL https://materialsproject.org/materials/mp-3446/.

PhononDB. Phonon database at kyoto university: SrTm2O4, 2018. URL http://phonondb.mtl.kyoto-u.ac. jp/ph20180417/d003/mp-3446.html?highlight= srtm2o4.

Magnetic form factors. URL https://www.ill.eu/sites/ccsl/ffacts/ffactnode1.html.

P. Novák, J. Kuneš, and K. Knížek. Crystal field of rare earth impurities in LaF3. Optical Materials, 37:414-418, November 2014.

https://doi.org/10.1016/j.optmat.2014.07.001

Z. Huesges, K. Kliemt, C. Krellner, R. Sarkar, H-H. Klauß, C. Geibel, M. Rotter, P. Novák, J. Kuneš, and O. Stockert. Analysis of the crystal electric field parameters of YbNi4P2. New Journal of Physics, 20(7):073021, jul 2018.

https://doi.org/10.1088/1367-2630/aace35

H. Tsuchiura, T. Yoshioka, P. Novák, J. Fischbacher, A. Kovacs, and T. Schrefl. First-principles calculations of magnetic proper- ties for analysis of magnetization processes in rare-earth permanent magnets. Science and Technology of Advanced Materials, 22(1):748-757, September 2021.

https://doi.org/10.1080/14686996.2021.1947119

J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77:3865- 3868, Oct 1996.

https://doi.org/10.1103/PhysRevLett.77.3865

J. Kuneš, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K. Held. Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions. Computer Physics Communications, 181(11):1888-1895, nov 2010.

https://doi.org/10.1016/j.cpc.2010.08.005

A. A. Mostofi, J. R. Yates, G. Pizzi, Y-S. Lee, I. Souza, D. Van- derbilt, and N. Marzari. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Computer Physics Communications, 185(8):2309-2310, August 2014.

https://doi.org/10.1016/j.cpc.2014.05.003

N. Magnani, G. Amoretti, A. Baraldi, and R. Capelletti. Crystal-field and superposition model analysis of :BaY f (= er, dy, nd). The European Physical Journal B, 29(1):79- 84, September 2002.

https://doi.org/10.1140/epjb/e2002-00264-0

S. Edvardsson and D. Åberg. An atomic program for energy levels of equivalent electrons: lanthanides and actinides. Computer Physics Communications, 133(2-3):396- 406, January 2001.

https://doi.org/10.1016/S0010-4655(00)00171-5

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. The Journal of Chemical Physics, 90 (7):3443-3457, April 1989.

https://doi.org/10.1063/1.455853

R. Wang, E. A. Lazar, H. Park, A. J. Millis, and C. A. Marianetti. Selectively localized Wannier functions. Phys. Rev. B, 90: 165125, Oct 2014.

https://doi.org/10.1103/PhysRevB.90.165125

R. Sakuma. Symmetry-adapted Wannier functions in the maximal localization procedure. Phys. Rev. B, 87:235109, Jun 2013.

https://doi.org/10.1103/PhysRevB.87.235109

R. Feyerherm, A. Amato, A. Grayevsky, F. N. Gygax, N. Ka- plan, and A. Schenck. Crystal electric field next to a hydrogen-like interstitial- µ+ in PrNi5. Zeitschrift für Physik B Con- densed Matter, 99(1):3-13, Mar 1995. ISSN 1431-584X.

https://doi.org/10.1007/s002570050002

F. R. Foronda, F. Lang, J. S. Müller, T. Lancaster, A. T. Boothroyd, F. L. Pratt, S. R. Giblin, D. Prabhakaran, and S. J. Blundell. Anisotropic local modification of crystal field levels in pr-based pyrochlores: A muon-induced effect modeled using density functional theory. Phys. Rev. Lett., 114:017602, Jan 2015.

https://doi.org/10.1103/PhysRevLett.114.017602

S. Sturniolo and L. Liborio. Computational prediction of muon stopping sites: A novel take on the unperturbed electrostatic potential method. The Journal of Chemical Physics, 153(4):044111, 2020.

https://doi.org/10.1063/5.0012381

B. M. Huddart. Muon stopping sites in magnetic systems from density functional theory. PhD thesis, Durham University, 2020. URL http://etheses.dur.ac.uk/13423/.

D. L. Quintero-Castro, B. Lake, M. Reehuis, A. Niazi, H. Ryll, A. T. M. N. Islam, T. Fennell, S. A. J. Kimber, B. Klemke, J. Ol- livier, V. Garcia Sakai, P. P. Deen, and H. Mutka. Coexistence of long- and short-range magnetic order in the frustrated magnet SrYb2O4. Phys. Rev. B, 86:064203, Aug 2012.

https://doi.org/10.1103/PhysRevB.86.064203

N. Gauthier, A. Fennell, B. Prévost, A.-C. Uldry, B. Del- ley, R. Sibille, A. Désilets-Benoit, H. A. Dabkowska, G. J. Nilsen, L.-P. Regnault, J. S. White, C. Niedermayer, V. Pomjakushin, A. D. Bianchi, and M. Kenzelmann. Absence of long-range order in the frustrated magnet SrDy2O4 due to trapped defects from a dimensionality crossover. Phys. Rev. B, 95: 134430, Apr 2017.

https://doi.org/10.1103/PhysRevB.95.134430

O. Young, G. Balakrishnan, M. R. Lees, and O. A. Petrenko. Magnetic properties of geometrically frustrated SrGd2O4. Phys. Rev. B, 90:094421, Sep 2014.

https://doi.org/10.1103/PhysRevB.90.094421

J.-J. Wen, W. Tian, V. O. Garlea, S. M. Koohpayeh, T. M. Mc- Queen, H.-F. Li, J.-Q. Yan, J. A. Rodriguez-Rivera, D. Vaknin, and C. L. Broholm. Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4. Phys. Rev. B, 91:054424, Feb 2015.

https://doi.org/10.1103/PhysRevB.91.054424

N. Qureshi, A. R. Wildes, C. Ritter, B. Fåk, S. X. M. Riberolles, M. Ciomaga Hatnean, and O. A. Petrenko. Magnetic structure and low-temperature properties of geometrically frustrated SrNd2O4. Phys. Rev. B, 103:134433, Apr 2021.

https://doi.org/10.1103/PhysRevB.103.134433

Hai-Feng Li, C. Zhang, A. Senyshyn, A. Wildes, K. Schmalzl, W. Schmidt, M. Boehm, E. Ressouche, B. Hou, P. Meuffels, G. Roth, and T. Brückel. Incommensurate antiferromagnetic order in the manifoldly-frustrated SrTb2O4 with transition temperature up to 4.28 k. Frontiers in Physics, 2:42, 2014. ISSN 2296-424X.

https://doi.org/10.3389/fphy.2014.00042

O. Young, G. Balakrishnan, P. Manuel, D. D. Khalyavin, A. R. Wildes, and O. A. Petrenko. Field-Induced Transitions in Highly Frustrated SrHo2O4. Crystals, 9(10), 2019. ISSN 2073-4352. URL https://www.mdpi.com/2073-4352/9/10/488.

https://doi.org/10.3390/cryst9100488

T. H. Cheffings, M. R. Lees, G. Balakrishnan, and O. A. Petrenko. Magnetic field-induced ordering in SrDy2O4. Journal of Physics: Condensed Matter, 25(25):256001, May 2013. URL

https://doi.org/10.1088/0953-8984/25/25/256001

N. Gauthier, A. Fennell, B. Prévost, A. Désilets-Benoit, H. A. Dabkowska, O. Zaharko, M. Frontzek, R. Sibille, A. D. Bianchi, and M. Kenzelmann. Field dependence of the magnetic cor- relations of the frustrated magnet SrDy2O4. Phys. Rev. B, 95: 184436, May 2017.

https://doi.org/10.1103/PhysRevB.95.184436

O. A. Petrenko, O. Young, D. Brunt, G. Balakrishnan, P. Manuel, D. D. Khalyavin, and C. Ritter. Evolution of spin correlations in SrDy2O4 in an applied magnetic field. Phys. Rev. B, 95:104442, Mar 2017.

https://doi.org/10.1103/PhysRevB.95.104442

J. A. M .Paddison, J. R. Stewart, and A. L. Goodwin. SPIN-VERT: a program for refinement of paramagnetic diffuse scattering data. Journal of Physics: Condensed Matter, 25(45): 454220, Oct 2013.

https://doi.org/10.1088/0953-8984/25/45/454220

J. A. M. Paddison and A. L. Goodwin. Empirical Magnetic Structure Solution of Frustrated Spin Systems. Phys. Rev. Lett., 108:017204, Jan 2012.

https://doi.org/10.1103/PhysRevLett.108.017204

W. Schweika. XYZ-polarisation analysis of diffuse magnetic neutron scattering from single crystals. Journal of Physics: Conference Series, 211:012026, Feb 2010.

https://doi.org/10.1088/1742-6596/211/1/012026

J. A. M. Paddison. Ultrafast calculation of diffuse scattering from atomistic models. Acta Crystallographica Section A, 75 (1):14-24, Jan 2019.

https://doi.org/10.1107/S2053273318015632

M. Rotter, M. D. Le, J. Keller, L. G. Pascut, T. Hoff- mann, M. Doerr, R. Schedler, F. Fabi né Hoffmann, S. Rot- ter, M. Banks, and N. Klüver. McPhase - USERS MANUAL, 2017. URL https://www2.cpfs.mpg.de/~rotter/homepage_mcphase/manual/manual.html.

G. H. Wannier. Antiferromagnetism. the triangular ising net. Phys. Rev., 79:357-364, Jul 1950.

https://doi.org/10.1103/PhysRev.79.357

A. P. Ramirez. Strongly Geometrically Frustrated Mag- nets. Annual Review of Materials Science, 24(1):453-480, 1994.

https://doi.org/10.1146/annurev.ms.24.080194.002321

I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki. Rigorous re- sults on valence-bond ground states in antiferromagnets. Phys. Rev. Lett., 59:799-802, Aug 1987.

https://doi.org/10.1103/PhysRevLett.59.799

T. Giamarchi. Quantum Physics in One Dimension. Oxford University Press, December 2003.

https://doi.org/10.1093/acprof:oso/9780198525004.001.0001

Subir Sachdev. Quantum Phase Transitions. Cambridge Uni- versity Press, 2009. URL https://doi.org/10.1017/cbo9780511973765.

O. Golinelli, Th. Jolicoeur, and R. Lacaze. Dispersion of mag- netic excitations in a spin-1 chain with easy-plane anisotropy. Phys. Rev. B, 46:10854-10857, Nov 1992.

https://doi.org/10.1103/PhysRevB.46.10854

J Ren, W-L You, and A M. Oles'. Quantum phase transitions in a spin-1 antiferromagnetic chain with long-range interactions and modulated single-ion anisotropy. Phys. Rev. B, 102:024425, Jul 2020.

https://doi.org/10.1103/PhysRevB.102.024425

V. S. Zapf, D. Zocco, B. R. Hansen, M. Jaime, N. Harrison, C. D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, and A. Paduan-Filho. Bose-einstein condensation of s = 1 nickel spin degrees of freedom in NiCl2 4SC NH2 2. Phys. Rev. Lett., 96:077204, Feb 2006.

https://doi.org/10.1103/PhysRevLett.96.077204

S. A. Zvyagin, J. Wosnitza, C. D. Batista, M. Tsukamoto, N. Kawashima, J. Krzystek, V. S. Zapf, M. Jaime, N. F. Oliveira, and A. Paduan-Filho. Magnetic Excitations in the Spin-1 Anisotropic Heisenberg Antiferromagnetic Chain System NiCl2 4SC NH2 2. Phys. Rev. Lett., 98:047205, Jan 2007.

https://doi.org/10.1103/PhysRevLett.98.047205

T. Giamarchi, C. Rüegg, and O. Tchernyshyov. Bose-einstein condensation in magnetic insulators. Nature Physics, 4(3):198- 204, Mar 2008. ISSN 1745-2481.

https://doi.org/10.1038/nphys893

J. Jensen. Spin fluctuations in a spin-1 paramagnet with easy-planar anisotropy: Application to praseodymium. Journal of Physics C: Solid State Physics, 15(11):2403-2415, Apr 1982.

https://doi.org/10.1088/0022-3719/15/11/020

A. Abragam and B. Bleaney. Enhanced nuclear mag- netism: some novel features and prospective experiments. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 387(1793):221-256, 1983.

https://doi.org/10.1098/rspa.1983.0059

B. Bleaney. Enhanced nuclear magnetism. Physica, 69(1):317- 329, 1973. ISSN 0031-8914.

https://doi.org/10.1016/0031-8914(73)90224-3

F. Foronda. Muon spin spectroscopy and high mag- netic field studies of novel superconductors and magnetic materials. PhD thesis, University of Oxford, 2017. URL https://ora.ox.ac.uk/objects/uuid:55c7ed6b-af31-4b7b-8b64-217dcc6846ac.

C. Fermon, J.F. Gregg, J.-F. Jacquinot, Y. Roinel, V. Bouf- fard, G. Fournier, and A. Abragam. « enhanced » magnetism and nuclear ordering of 169Tm spins in TmPO4. Journal de Physique, 47(6):1053-1075, 1986.

https://doi.org/10.1051/jphys:019860047060105300

B. Bleaney, J. F. Gregg, C. H. A. Huan, I. D. Morris, and M. R. Wells. Further Studies of the Enhanced Nuclear Magnet TmPO4. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 424(1867):245-254, 1989. ISSN 00804630. URL http://www.jstor.org/stable/2398366.

https://doi.org/10.1098/rspa.1989.0079

D. D. Khalyavin, D. T. Adroja, P. Manuel, A. Daoud-Aladine, M. Kosaka, K. Kondo, K. A. McEwen, J. H. Pixley, and Qimiao Si. Field-induced long-range magnetic order in the spin-singlet ground-state system YbAl3C3: Neutron diffraction study. Phys. Rev. B, 87:220406, Jun 2013.

https://doi.org/10.1103/PhysRevB.87.220406

G. Hester, H. S. Nair, T. Reeder, D. R. Yahne, T. N. DeLazzer, L. Berges, D. Ziat, J. R. Neilson, A. A. Aczel, G. Sala, J. A. Quilliam, and K. A. Ross. Novel Strongly Spin-Orbit Cou- pled Quantum Dimer Magnet: Yb2Si2O7. Phys. Rev. Lett., 123: 027201, Jul 2019.

https://doi.org/10.1103/PhysRevLett.123.027201

M. Bałanda. AC Susceptibility Studies of Phase Transitions and Magnetic Relaxation: Conventional, Molecular and Low-Dimensional Magnets. Acta Physica Polonica A, 124(6):964- 976, December 2013.

https://doi.org/10.12693/APhysPolA.124.964

C. V. Topping and S. J. Blundell. A.c. susceptibility as a probe of low-frequency magnetic dynamics. Journal of Physics: Condensed Matter, 31(1):013001, Nov 2018. URL

https://doi.org/10.1088/1361-648X/aaed96

V. Petˇrícˇek, M. Dušek, and L. Palatinus. Crystallo- graphic Computing System JANA2006: General features. Zeitschrift für Kristallographie - Crystalline Materials, 229(5): 345-352, April 2014.

https://doi.org/10.1515/zkri-2014-1737

A. Ochiai, T. Inukai, T. Matsumura, A. Oyamada, and K. Ka- toh. Spin Gap State of S = 1/2 Heisenberg Antiferromagnet YbAl3C3. Journal of the Physical Society of Japan, 76(12): 123703, 2007.

https://doi.org/10.1143/JPSJ.76.123703

Y. Kato, M. Kosaka, H. Nowatari, Y. Saiga, A. Yamada, T. Ko- biyama, S. Katano, K. Ohoyama, H. S. Suzuki, N. Aso, and K. Iwasa. Spin-Singlet Ground State in the Two-Dimensional Frustrated Triangular Lattice: YbAl3C3. Journal of the Physical Society of Japan, 77(5):053701, 2008.

https://doi.org/10.1143/JPSJ.77.053701

N. F. Berthusen, Y. Sizyuk, M. S. Scheurer, and P. P. Orth. Learning crystal field parameters using convolutional neural networks. SciPost Phys., 11:11, 2021. URL https://scipost.org/10.21468/SciPostPhys.11.1.011.

https://doi.org/10.21468/SciPostPhys.11.1.011

Cover image

Downloads

Published

August 17, 2022

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.