Bridge deck aerodynamics: A case study in full-scale

Authors

Nicolô Daniotti

Keywords:

bridge deck aerodynamics, wind turbulence, nearwake flow, wind buffeting, surface pressure measurements

Synopsis

One of the key aspects of bridge deck aerodynamics is the transformation of the incident wind flow into fluctuating surface pressures around a bridge deck. The atmospheric turbulence generates fluctuating loads on bridge decks, i.e. the buffeting wind action. The state-of-the-art knowledge about bridge deck aerodynamics, as well as the bases for the design of long-span bridges, relies primarily on wind-tunnel testing. By contrast, full-scale studies concentrating on the surface pressure distributions around bridge girders are rare. The central thrust of this work is to develop an experimental setup to investigate the aerodynamics of a closed-box girder bridge deck in full-scale.

A bespoke pressure measuring system is designed and developed to monitor wind-induced surface pressures around three chords of the Lysefjord Bridge in Norway, previously instrumented by a number of wind and vibration sensors. The one- and two-point statistics of the undisturbed turbulence are simultaneously measured, thereby facilitating the study of the spatial structure of the gust loading in the atmosphere. The experimental setup is aided by 3D sonic anemometers placed within the disturbed flow regions, upstream of the bridge deck nose and in the near wake.

The overall distortion of the atmospheric turbulence induced by the bridge deck body is examined, as well as the related vortex shedding process. In particular, the flow in the near-wake region of the bridge deck is investigated, in both model- and full-scale. For skewed incident winds, the near-wake flow exhibits highly three-dimensional features, including a significant axial flow on the leeward side of the full-scale bridge deck. Also, the frequency-dependent energy redistribution within the near wake is examined with emphasis on wavelengths associated with the periodic formation of vortex structures. The Strouhal number associated with the deck cross-section studied is found to be similar in both full- and model-scale. The turbulence level in the inflow is found to impact significantly the value of the non-dimensional vortex shedding frequency in full-scale. Specifically, the higher the turbulence intensity, the higher the Strouhal number. Lastly, the “anatomy” of the vortex shedding process is described based on the surface pressure measurements undertaken on the trailing edges of the deck.

Investigating the gust loading generation in full-scale is central to this research. Fluctuating drag, lift and twisting moment are estimated on three chord-wise strips, based on a limited number of pressure sensing points. The analysis of the monitored surface pressures underpins the limits of the strip assumption in modelling the correlation along the bridge span of the lift and moment. Specifically, the span-wise coherence of the turbulence-driven lift and moment is observed to be higher than the span-wise coherence of the incident vertical velocity fluctuations. This result, which is deemed original given its full-scale framework, is in an overall agreement with the wind tunnel studies focusing on the gust loading on motionless section models of closedbox girder bridge decks. Also, a pronounced amplification of the vertical velocity fluctuations is observed upstream of the bridge deck nose, thereby providing a link between the undisturbed turbulence and the resulting gust loading on the deck.

Author Biography

Nicolô Daniotti

PhD fellow
Faculty of Science and Technology
Department of Mechanical and Structural Engineering and Materials Science
University of Stavanger
nicolo.daniotti@uis.no

References

[1] Achenbach, E. and E. Heinecke (1981). On vortex shedding from smooth and rough cylinders in the range of reynolds numbers 6 103 to 5 106. Journal of Fluid Mechanics 109, 239-251. 18
https://doi.org/10.1017/S002211208100102X

[2] Albertson, J. D., G. G. Katul, M. B. Parlange, and W. E. Eichinger (1998). Spectral scaling of static pressure fluctuations in the atmospheric surface layer: The interaction between large and small scales. Physics of Fluids 10(7), 1725-1732. 128
https://doi.org/10.1063/1.869689

[3] Andersen, M. S. (2021). Operational fluid modal analysis of full-scale pressure and wake flow measurements on the Gjemnessund Bridge. Engi- neering Structures 249, 113295. 9, 24, 112
https://doi.org/10.1016/j.engstruct.2021.113295

[4] Andersen, M. S. and N. S. Bossen (2021). Modal decomposition of the pressure field on a bridge deck under vortex shedding using POD, DMD and ERA with correlation functions as Markov parameters. Journal of Wind Engineering and Industrial Aerodynamics 215, 104699. 9, 112, 132
https://doi.org/10.1016/j.jweia.2021.104699

[5] Andersen, M. S., B. Isaksen, and S. O. Hansen (2021). Full-scale mon- itoring of the wind field, surface pressures and structural response of Gjemnessund suspension bridge. Structural Engineering International. 7, 9, 68, 81, 117, 132, 133, 134, 146, 161

[6] Argentini, T., D. Rocchi, and C. Somaschini (2020). Effect of the low- frequency turbulence on the aeroelastic response of a long-span bridge in wind tunnel. Journal of Wind Engineering and Industrial Aerodynam- ics 197, 104072. 30
https://doi.org/10.1016/j.jweia.2019.104072

[7] Bastos, F. (2015). Aerodynamic Behaviour of Long Span Structures. Numerical Analysis and Experimental Validation based on Full-Scale Measurements. Ph. D. thesis. 9

[8] Batchelor, G. K. (1953). The theory of homogeneous turbulence. Cam- bridge University Press. 128

[9] Bearman, P. (1965). Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. Journal of Fluid Mechanics 21(2), 241-255. 100
https://doi.org/10.1017/S0022112065000162

[10] Bearman, P. (1971). An investigation of the forces on flat plates normal to a turbulent flow. Journal of Fluid Mechanics 46(1), 177-198. 70, 72, 73
https://doi.org/10.1017/S0022112071000478

[11] Bearman, P. (1972). Some measurements of the distortion of turbulence approaching a two-dimensional bluff body. Journal of Fluid Mechanics 53(3), 451-467. 67, 70, 72, 73
https://doi.org/10.1017/S0022112072000254

[12] Bergh, H. and H. Tijdeman (1965). Theoretical and experimental results for the dynamic response of pressure measuring systems. Technical report. NLR-TR F.238. 50, 56, 119, 120, 121

[13] Bietry, J., D. Delaunay, and E. Conti (1995). Comparison of full-scale measurement and computation of wind effects on a cable-stayed bridge. Journal of Wind Engineering and Industrial Aerodynamics 57(2-3), 225- 235. 7, 67
https://doi.org/10.1016/0167-6105(94)00110-Y

[14] Bogunovic Jakobsen, J. (1995). Fluctuating wind load and response of a line-like engineering structure with emphasis on motion-induced wind forces. Doktor ingenioravhandling, Institutt for Konstruksjonsteknikk, Trondheim 62. 98, 143, 148

[15] Bowen, A., R. Flay, and H. Panofsky (1983). Vertical coherence and phase delay between wind components in strong winds below 20 m. Boundary-Layer Meteorology 26(4), 313-324. 78
https://doi.org/10.1007/BF00119530

[16] Britter, R., J. Hunt, and J. Mumford (1979). The distortion of turbulence by a circular cylinder. Journal of Fluid Mechanics 92(2), 269-301. 70
https://doi.org/10.1017/S0022112079000628

[17] Brownjohn, J., M. Bocciolone, A. Curami, M. Falco, and A. Zasso (1994). Humber bridge full-scale measurement campaigns 1990-1991. Journal of Wind Engineering and Industrial Aerodynamics 52, 185-218. 67
https://doi.org/10.1016/0167-6105(94)90047-7

[18] Bursnall, W. J. and L. K. Loftin Jr (1951). Experimental investigation of the pressure distribution about a yawed circular cylinder in the critical reynolds number range. Technical report, National Aeronautics And Space Administration Washington DC. 26

[19] Busch, N. E. and H. A. Panofsky (1968). Recent spectra of atmospheric turbulence. Quarterly Journal of the Royal Meteorological Society 94(400), 132-148. 13, 93
https://doi.org/10.1002/qj.49709440003

[20] Chamecki, M. and N. Dias (2004). The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanogra- phy 130(603), 2733-2752. 87, 95
https://doi.org/10.1256/qj.03.155

[21] Cheung, J. and W. Melbourne (1983). Turbulence effects on some aerodynamic parameters of a circular cylinder at supercritical numbers. Journal of Wind Engineering and Industrial Aerodynamics 14(1-3), 399- 410. 18, 22, 110
https://doi.org/10.1016/0167-6105(83)90041-7

[22] Cheynet, E. (2016). Wind-induced vibrations of a suspension bridge: A case study in full-scale. Ph. D. thesis, University of Stavanger, Norway. 3, 29, 30

[23] Cheynet, E. (2020). Personal Communication. 71, 87, 90

[24] Cheynet, E., N. Daniotti, J. B. Jakobsen, and J. Snæbjörnsson (2020). Improved long-span bridge modeling using data-driven identification of vehicle-induced vibrations. Structural Control and Health Monitor- ing 27(9), e2574. 3, 114
https://doi.org/10.1002/stc.2574

[25] Cheynet, E., J. B. Jakobsen, and J. Snæbjörnsson (2016). Buffeting response of a suspension bridge in complex terrain. Engineering Struc- tures 128, 474-487. 3, 7, 30, 35, 48, 62
https://doi.org/10.1016/j.engstruct.2016.09.060

[26] Cheynet, E., J. B. Jakobsen, and J. Snæbjörnsson (2019). Flow distortion recorded by sonic anemometers on a long-span bridge: Towards a better modelling of the dynamic wind load in full-scale. Journal of Sound and Vibration 450, 214-230. 7, 13, 29, 35, 36, 37, 40, 61, 62, 63, 64, 65, 67, 68, 82, 88, 123, 124, 126, 131, 142

[27] Cheynet, E., J. B. Jakobsen, J. Snæbjörnsson, N. Angelou, T. Mikkelsen, M. Sjöholm, and B. Svardal (2017). Full-scale observation of the flow downstream of a suspension bridge deck. Journal of Wind Engineering and Industrial Aerodynamics 171, 261-272. 8, 63, 81, 83, 89, 101
https://doi.org/10.1016/j.jweia.2017.10.007

[28] Cheynet, E., J. B. Jakobsen, J. Snæbjörnsson, T. Mikkelsen, M. Sjöholm, J. Mann, P. Hansen, N. Angelou, and B. Svardal (2016). Application of short-range dual-doppler lidars to evaluate the coherence of turbulence. Experiments in Fluids 57(12), 1-17. 61, 129
https://doi.org/10.1007/s00348-016-2275-9

[29] Cheynet, E., S. Liu, M. C. Ong, J. B. Jakobsen, J. Snæbjörnsson, and I. Gatin (2020). The influence of terrain on the mean wind flow character- istics in a fjord. Journal of Wind Engineering and Industrial Aerodynam- ics 205, 104331. 62, 63
https://doi.org/10.1016/j.jweia.2020.104331

[30] Dalley, S. and G. Richardson (1992). Reference static pressure mea- surements in wind tunnels. Journal of Wind Engineering and Industrial Aerodynamics 42(1-3), 909-920. 56
https://doi.org/10.1016/0167-6105(92)90097-T

[31] Davenport, A. G. (1961a). The application of statistical concepts to the wind loading of structures. Proceedings of the Institution of Civil Engineers 19(4), 449-472. 7
https://doi.org/10.1680/iicep.1961.11304

[32] Davenport, A. G. (1961b). The spectrum of horizontal gustiness near the ground in high winds. Quarterly Journal of the Royal Meteorological Society 87(372), 194-211. 8, 17
https://doi.org/10.1002/qj.49708737208

[33] Davenport, A. G. (1962a). Buffetting of a suspension bridge by storm winds. Journal of the Structural Division 88(3), 233-270. 27, 31, 33
https://doi.org/10.1061/JSDEAG.0000773

[34] Davenport, A. G. (1962b). The response of slender, line-like structures to a gusty wind. Proceedings of the Institution of Civil Engineers 23(3), 389-408. 16, 27, 29, 31, 61, 76, 117, 145
https://doi.org/10.1680/iicep.1962.10876

[35] Davenport, A. G. (1975). Perspectives on the full-scale measurement of wind effects. Journal of Wind Engineering and Industrial Aerodynamics 1, 23-54. 1
https://doi.org/10.1016/0167-6105(75)90005-7

[36] D'Errico, J. (2020). inpaint_nans. http://www.mathworks.com/ matlabcentral/fileexchange/4551-inpaint{_}nans. MATLAB Central File Exchange, Retrieved: July 01, 2020. 65, 88

[37] Diana, G., S. Bruni, A. Cigada, and E. Zappa (2002). Complex aero- dynamic admittance function role in buffeting response of a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics 90(12-15), 2057-2072. 30, 31
https://doi.org/10.1016/S0167-6105(02)00321-5

[38] Diana, G., M. Falco, S. Bruni, A. Cigada, G. L. Larose, A. Darnsgaard, and A. Collina (1995). Comparisons between wind tunnel tests on a full aeroelastic model of the proposed bridge over Stretto di Messina and numerical results. Journal of Wind Engineering and Industrial Aerody- namics 54, 101-113. 29
https://doi.org/10.1016/0167-6105(94)00034-B

[39] Diana, G. and S. Omarini (2020). A non-linear method to compute the buffeting response of a bridge validation of the model through wind tunnel tests. Journal of Wind Engineering and Industrial Aerodynamics 201, 104163. 30
https://doi.org/10.1016/j.jweia.2020.104163

[40] Diana, G., F. Resta, A. Zasso, M. Belloli, and D. Rocchi (2004). Effects of the yaw angle on the aerodynamic behaviour of the Messina multi-box girder deck section. Wind & Structures 7(1), 41-54. 99
https://doi.org/10.12989/was.2004.7.1.041

[41] Dyrbye, C. and S. O. Hansen (1997). Wind loads on structures. Wiley. 27, 171

[42] Elliott, J. (1972a). Instrumentation for measuring static pressure fluctu- ations within the atmospheric boundary layer. Boundary-Layer Meteorol- ogy 2(4), 476-495. 128
https://doi.org/10.1007/BF00821550

[43] Elliott, J. A. (1972b). Microscale pressure fluctuations measured within the lower atmospheric boundary layer. Journal of Fluid Mechanics 53(2), 351-384. 125, 128, 131
https://doi.org/10.1017/S0022112072000199

[44] En, B. et al. (1991). Eurocode 1: Actions on structuresâA˘Tˇpart 1-4: General actionsâA˘Tˇwind actions. NA to BS EN, Brussels, Belgium. 170

[45] ESDU 86010 (2001). Characteristics of atmospheric turbulence near the ground Part III: Variations in space and time for strong winds (neutral atmosphere). 129

[46] Fabris, G. (1983). Higher-order statistics of turbulent fluctuations in the plane wake. The Physics of Fluids 26(6), 1437-1445. 103
https://doi.org/10.1063/1.864313

[47] Fenerci, A., O. Øiseth, and A. Rønnquist (2017). Long-term monitoring of wind field characteristics and dynamic response of a long-span suspen- sion bridge in complex terrain. Engineering Structures 147, 269-284. 7, 61, 67
https://doi.org/10.1016/j.engstruct.2017.05.070

[48] Ferre, J. A. and F. Giralt (1989). Pattern-recognition analysis of the velocity field in plane turbulent wakes. Journal of Fluid Mechanics 198, 27-64. 98
https://doi.org/10.1017/S0022112089000029

[49] Frandsen, J. (2001). Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics 89(1), 95-129. 8, 10, 23, 81
https://doi.org/10.1016/S0167-6105(00)00059-3

[50] George, W. K., P. D. Beuther, and R. E. Arndt (1984). Pressure spectra in turbulent free shear flows. Journal of Fluid Mechanics 148, 155-191. 128
https://doi.org/10.1017/S0022112084002299

[51] Gill Instruments, . (2019). KN1508. improvements to the WindMaster product range. WindMaster and WindMaster Pro. Technical report. 65

[52] Graham, J. (1970). Lifting surface theory for the problem of an arbi- trarily yawed sinusoidal gust incident on a thin aerofoil in incompressible flow. The Aeronautical Quarterly 21(2), 182-198. 33
https://doi.org/10.1017/S0001925900005357

[53] Graham, J. (1971). A lifting-surface theory for the rectangular wing in non-stationary flow. The Aeronautical Quarterly 22(1), 83-100. 33
https://doi.org/10.1017/S0001925900005667

[54] Gutmark, E., M. Wolfshtein, and I. Wygnanski (1978). The plane turbulent impinging jet. Journal of Fluid Mechanics 88(4), 737-756. 74
https://doi.org/10.1017/S0022112078002360

[55] Haan Jr, F. and A. Kareem (2009). Anatomy of turbulence effects on the aerodynamics of an oscillating prism. Journal of Engineering Mechanics 135(9), 987-999. 143, 160
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000012

[56] Haan Jr, F. L., T. Wu, and A. Kareem (2016). Correlation structures of pressure field and integrated forces on oscillating prism in turbulent flows. Journal of Engineering Mechanics 142(5), 04016017. 9, 160
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001058

[57] Hansen, E. H. (1988). Wind engineering-lecture notes. 7

[58] Hansen, S. O., R. G. Srouji, B. Isaksen, and K. Berntsen (2015). Vortex- induced vibrations of streamlined single box girder bridge decks. In 14th International Conference on Wind Engineering. 23, 24

[59] Hanson, A. (1966). Vortex shedding from yawed cylinders. AIAA Journal 4(4), 738-740. 26, 109
https://doi.org/10.2514/3.3531

[60] Hejlesen, M. M., J. T. Rasmussen, A. Larsen, and J. H. Walther (2015). On estimating the aerodynamic admittance of bridge sections by a mesh- free vortex method. Journal of Wind Engineering and Industrial Aerody- namics 146, 117-127. 30
https://doi.org/10.1016/j.jweia.2015.08.003

[61] Hillier, R. and N. Cherry (1981). The effects of stream turbulence on separation bubbles. Journal of Wind Engineering and Industrial Aerody- namics 8(1-2), 49-58. 136
https://doi.org/10.1016/0167-6105(81)90007-6

[62] Hjorth-Hansen, E., A. Jakobsen, and E. Strømmen (1992). Wind buffet- ing of a rectangular box girder bridge. Journal of Wind Engineering and Industrial Aerodynamics 42(1-3), 1215-1226. 17
https://doi.org/10.1016/0167-6105(92)90128-W

[63] Holmes, J. (1984). Effect of frequency response on peak pressure measurements. Journal of Wind Engineering and Industrial Aerodynam- ics 17(1), 1-9. 119
https://doi.org/10.1016/0167-6105(84)90031-X

[64] Holmes, J. and R. Lewis (1987). Optimization of dynamic-pressure- measurement systems. I. single point measurements. Journal of Wind Engineering and Industrial Aerodynamics 25(3), 249-273. 119
https://doi.org/10.1016/0167-6105(87)90021-3

[65] Hoxey, R. and P. Moran (1983). A full-scale study of the geometric parameters that influence wind loads on low rise buildings. Journal of Wind Engineering and Industrial Aerodynamics 13(1-3), 277-288. 56
https://doi.org/10.1016/0167-6105(83)90149-6

[66] Hoxey, R., A. Reynolds, G. Richardson, A. Robertson, and J. Short (1998). Observations of reynolds number sensitivity in the separated flow region on a bluff body. Journal of Wind Engineering and Industrial Aerodynamics 73(3), 231-249. 2, 24, 81
https://doi.org/10.1016/S0167-6105(97)00287-0

[67] Hoxey, R. and P. Richards (1993). Flow patterns and pressure field around a full-scale building. Journal of Wind Engineering and Industrial Aerodynamics 50, 203-212. 53, 56, 161
https://doi.org/10.1016/0167-6105(93)90075-Y

[68] Hoxey, R., P. Richards, A. Quinn, A. Robertson, and H. Gough (2021). Measurements of the static pressure near the surface in the atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynam- ics 209, 104487. 53, 56, 127, 128, 163
https://doi.org/10.1016/j.jweia.2020.104487

[69] Hoxey, R. and G. Richardson (1984). Measurements of wind loads on full-scale film plastic clad greenhouses. Journal of Wind Engineering and Industrial Aerodynamics 16(1), 57-83. 53, 161
https://doi.org/10.1016/0167-6105(84)90049-7

[70] Hunt, J. (1973). A theory of turbulent flow round two-dimensional bluff bodies. Journal of Fluid Mechanics 61(4), 625-706. 69, 70, 72
https://doi.org/10.1017/S0022112073000893

[71] Hussain, A. F. and M. Hayakawa (1987). Eduction of large-scale orga- nized structures in a turbulent plane wake. Journal of Fluid Mechanics 180, 193-229. 92
https://doi.org/10.1017/S0022112087001782

[72] Irwin, H. (1979). Cross-spectra of turbulence velocities in isotropic turbulence. Boundary-Layer Meteorology 16(3), 237-243. 17, 77
https://doi.org/10.1007/BF03335368
https://doi.org/10.1007/BF02350513

[73] Irwin, H., K. Cooper, and R. Girard (1979). Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures. Journal of Wind Engineering and Industrial Aerodynamics 5(1-2), 93-107. 50, 56, 119, 120, 121
https://doi.org/10.1016/0167-6105(79)90026-6

[74] Irwin, H. P. A. (1977). Wind tunnel and analytical investigations of the response of Lions' Gate Bridge to a turbulent wind. National Research Council Canada. 28

[75] Irwin, P. (1998). The role of wind tunnel modeling in the prediction of wind effects on bridges. In Proc. of the international symposium on advances in bridge aerodynamics, Copenhagen, Denmark, pp. 99-117. 23, 113

[76] Isaksen, B. (2008). Experimental Investigations of Wind Loading on a Suspension Bridge Girder. Ph. D. thesis, Fakultet for ingeniørvitenskap og teknologi. 9, 52, 119, 132, 161

[77] Isaksen, B., E. Strømmen, and K. Gjerding-Smith (2001). Suppression of vortex shedding vibrations at osterøy suspension bridge. In Proceedings of the forth Symposium on Strait Crossings, pp. 99-105. 23

[78] Jakobsen, J. B. (1997). Span-wise structure of lift and overturning moment on a motionless bridge girder. Journal of Wind Engineering and Industrial Aerodynamics 69, 795-805. 17, 32, 33, 117, 145
https://doi.org/10.1016/S0167-6105(97)00206-7

[79] Kaimal, J. C. and J. J. Finnigan (1994). Atmospheric boundary layer flows: their structure and measurement. Oxford University Press. 10, 12, 14, 65, 76, 83, 87, 95, 149
https://doi.org/10.1093/oso/9780195062397.001.0001

[80] Kaimal, J. C., J. Wyngaard, Y. Izumi, and O. Coté (1972). Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society 98(417), 563-589. 13, 14
https://doi.org/10.1002/qj.49709841707

[81] Kaspersen, J. and P.-Å. Krogstad (1993). The effect of transition to turbulent flow in tubing networks for fluctuating pressure measurement. Journal of Wind Engineering and Industrial Aerodynamics 48(1), 1-11. 50, 119
https://doi.org/10.1016/0167-6105(93)90276-T

[82] Katul, G. G., J. D. Albertson, M. B. Parlange, C.-I. Hsieh, P. S. Conklin, J. T. Sigmon, and K. R. Knoerr (1996). The âA˘ IJinactiveâA˘ ˙I eddy motion and the large-scale turbulent pressure fluctuations in the dynamic sublayer. Journal of the atmospheric sciences 53(17), 2512-2524. 125, 128
https://doi.org/10.1175/1520-0469(1996)053<2512:TEMATL>2.0.CO;2

[83] Kimura, K., Y. Fujino, S. Nakato, and H. Tamura (1997). Characteristics of buffeting forces on flat cylinders. Journal of Wind Engineering and Industrial Aerodynamics 69, 365-374. 33, 145
https://doi.org/10.1016/S0167-6105(97)00169-4

[84] Kimura, K. and H. Tanaka (1992). Bridge buffeting due to wind with yaw angles. Journal of Wind Engineering and Industrial Aerodynam- ics 42(1-3), 1309-1320. 12
https://doi.org/10.1016/0167-6105(92)90139-2

[85] Kiya, M. and M. Matsumura (1985). Turbulence structure in intermedi- ate wake of a circular cylinder. Bulletin of JSME 28(245), 2617-2624. 81, 92, 93, 102
https://doi.org/10.1299/jsme1958.28.2617

[86] Kleissl, K. and C. Georgakis (2012). Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface. Journal of Wind Engineering and Industrial Aerodynamics 104, 166-175. 27
https://doi.org/10.1016/j.jweia.2012.02.031

[87] Kolmogorov, A. N. (1941). The local structure of turbulence in incom- pressible viscous fluid for very large reynolds numbers. Cr Acad. Sci. URSS 30, 301-305. 14, 72, 74, 95, 104, 128

[88] Kovaerk, M., L. Amatucci, K. A. Gillis, F. A. Potra, J. Ratino, M. L. Levitan, D. Yeo, et al. (1994). Calibration of dynamic pressure in a tubing system and optimized design of tube configuration: A numerical and experimental study. Technical report. NIST Technical Note. 119, 120

[89] Kozakiewicz, A., J. Fredsee, and B. M. Sumer (1995). Forces on pipelines in oblique attack: steady current and waves. In The fifth interna- tional offshore and polar engineering conference. 26, 67, 109

[90] Krenk, S. (1996). Wind field coherence and dynamic wind forces. In IUTAM symposium on advances in nonlinear stochastic mechanics, pp. 269-278. Springer. 17
https://doi.org/10.1007/978-94-009-0321-0_25

[91] Kristensen, L. and N. Jensen (1979). Lateral coherence in isotropic turbulence and in the natural wind. Boundary-Layer Meteorology 17(3), 353-373. 17, 61, 67, 77
https://doi.org/10.1007/BF00117924

[92] Kristensen, L., H. A. Panofsky, and S. D. Smith (1981). Lateral coher- ence of longitudinal wind components in strong winds. Boundary-Layer Meteorology 21(2), 199-205. 78
https://doi.org/10.1007/BF02033937

[93] Kubo, Y., Y. Niihara, R. Nakano, and K. Hayashida (1997a). Full scale measurement of wind pressure on a deck of a concrete cable-stayed bridge part 1 mean and fluctuating pressure coefficient. Wind Engineers, JAWE 1997(72), 47-58. 8, 68
https://doi.org/10.5359/jawe.1997.72_47

[94] Kubo, Y., Y. Niihara, R. Nakano, and K. Hayashida (1997b). Full scale measurement of wind pressure on a deck of a concrete cable-stayed bridge part 2 spectra of fluctuating pressure and reynolds number effect. Wind Engineers, JAWE 1997(73), 25-34. 8, 24, 112
https://doi.org/10.5359/jawe.1997.73_25

[95] Kwok, K. C. (1986). Turbulence effect on flow around circular cylinder. Journal of Engineering Mechanics 112(11), 1181-1197. 18, 22, 110
https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1181)

[96] Laneville, A., I. Gartshore, and G. Parkinson (1975). An explanation of some effects of turbulence on bluff bodies. In Proc. of 4th Int'l Conference on Buildings and Structures, London, England. Cambridge Univ. Press. 22, 113, 150

[97] Larose, G. and A. DâA˘ Z'auteuil (2006). On the Reynolds number sensitivity of the aerodynamics of bluff bodies with sharp edges. Journal of Wind Engineering and Industrial Aerodynamics 94(5), 365-376. 2, 24, 26, 81, 93, 111, 112
https://doi.org/10.1016/j.jweia.2006.01.011

[98] Larose, G. and J. Mann (1998). Gust loading on streamlined bridge decks. Journal of Fluids and Structures 12(5), 511-536. 30, 33, 34, 47, 143, 146
https://doi.org/10.1006/jfls.1998.0161

[99] Larose, G., H. Tanaka, N. Gimsing, and C. Dyrbye (1998). Direct measurements of buffeting wind forces on bridge decks. Journal of Wind Engineering and Industrial Aerodynamics 74, 809-818. 33, 47, 144
https://doi.org/10.1016/S0167-6105(98)00073-7

[100] Larose, G. L. (1992). The response of a suspension bridge deck to turbulent wind: the taut strip model approach. Master's thesis, The University of Western Ontario. 30, 32, 33, 117, 143, 144, 145

[101] Larose, G. L. (1997). The dynamic action of gusty winds on long-span bridges. Ph. D. thesis, Technical University of Denmark. 14, 15, 19, 29, 30, 31, 32, 34, 47, 73, 76, 80, 117, 143, 144, 145, 146, 147, 148

[102] Larose, G. L. (1999). Experimental determination of the aerody- namic admittance of a bridge deck segment. Journal of Fluids and Struc- tures 13(7-8), 1029-1040. 33
https://doi.org/10.1006/jfls.1999.0244

[103] Larose, G. L. (2003). The spatial distribution of unsteady loading due to gusts on bridge decks. Journal of Wind Engineering and Industrial Aerodynamics 91(12-15), 1431-1443. 142, 144, 148
https://doi.org/10.1016/j.jweia.2003.09.008

[104] Larsen, A., S. Esdahl, J. E. Andersen, and T. Vejrum (2000). Storebælt suspension bridge-vortex shedding excitation and mitigation by guide vanes. Journal of Wind Engineering and Industrial Aerodynamics 88(2-3), 283-296. 23
https://doi.org/10.1016/S0167-6105(00)00054-4

[105] Larsen, A. and G. L. Larose (2015). Dynamic wind effects on suspen- sion and cable-stayed bridges. Journal of Sound and Vibration 334, 2-28. 1, 9
https://doi.org/10.1016/j.jsv.2014.06.009

[106] Larsen, A. and A. Wall (2012). Shaping of bridge box girders to avoid vortex shedding response. Journal of Wind Engineering and Industrial Aerodynamics 104, 159-165. 23
https://doi.org/10.1016/j.jweia.2012.04.018

[107] Lenschow, D., J. Mann, and L. Kristensen (1994). How long is long enough when measuring fluxes and other turbulence statistics? Journal of Atmospheric and Oceanic Technology 11(3), 661-673. 12
https://doi.org/10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2

[108] Letchford, C., P. Sandri, M. Levitan, and K. Mehta (1992). Frequency response requirements for fluctuating wind pressure measurements. Jour- nal of Wind Engineering and Industrial Aerodynamics 40(3), 263-276. 119
https://doi.org/10.1016/0167-6105(92)90379-O

[109] Levitan, M. L. (1993). Analysis of reference pressure systems used in field measurements of wind loads. Ph. D. thesis, Texas Tech University. 50, 53, 55, 56

[110] Levitan, M. L. and K. C. Mehta (1992). Texas Tech field experiments for wind loads part 1: building and pressure measuring system. Journal of Wind Engineering and Industrial Aerodynamics 43(1-3), 1565-1576. 53, 161
https://doi.org/10.1016/0167-6105(92)90372-H

[111] Levitan, M. L., K. C. Mehta, W. Vann, and J. Holmes (1991). Field measurements of pressures on the Texas Tech building. Journal of Wind Engineering and Industrial Aerodynamics 38(2-3), 227-234. 53
https://doi.org/10.1016/0167-6105(91)90043-V

[112] Li, H., S. Laima, J. Ou, X. Zhao, W. Zhou, Y. Yu, N. Li, and Z. Liu (2011). Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements. Engi- neering Structures 33(6), 1894-1907. 8, 81
https://doi.org/10.1016/j.engstruct.2011.02.017

[113] Li, H., S. Laima, Q. Zhang, N. Li, and Z. Liu (2014). Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics 124, 54-67. 8, 112
https://doi.org/10.1016/j.jweia.2013.11.006

[114] Li, S. and M. Li (2017). Spectral analysis and coherence of aerody- namic lift on rectangular cylinders in turbulent flow. Journal of Fluid Mechanics 830, 408-438. 146
https://doi.org/10.1017/jfm.2017.593

[115] Li, S., M. Li, and G. L. Larose (2018). Aerodynamic admittance of streamlined bridge decks. Journal of Fluids and Structures 78, 1-23. 30, 33, 34, 117, 146
https://doi.org/10.1016/j.jfluidstructs.2017.12.014

[116] Li, S., M. Li, and H. Liao (2015). The lift on an aerofoil in grid- generated turbulence. Journal of Fluid Mechanics 771, 16-35. 30, 33, 34
https://doi.org/10.1017/jfm.2015.162

[117] Liepmann, H. W. (1952). On the application of statistical concepts to the buffeting problem. Journal of the Aeronautical Sciences 19(12), 793-800. 27, 29, 33, 133, 142, 143
https://doi.org/10.2514/8.2491

[118] Liepmann, H. W. (1955). Extension of the statistical approach to buffet- ing and gust response of wings of finite span. Journal of the Aeronautical Sciences 22(3), 197-200. 33
https://doi.org/10.2514/8.3305

[119] Lim, H. C., I. P. Castro, and R. P. Hoxey (2007). Bluff bodies in deep turbulent boundary layers: Reynolds-number issues. Journal of Fluid Mechanics 571, 97-118. 2, 24
https://doi.org/10.1017/S0022112006003223

[120] Lou, X., T. Zhou, Y. Zhou, H. Wang, and L. Cheng (2016). Experimen- tal investigation on wake characteristics behind a yawed square cylinder. Journal of Fluids and Structures 61, 274-294. 26, 90
https://doi.org/10.1016/j.jfluidstructs.2015.11.017

[121] Lumley, J. (1965). Interpretation of time spectra measured in high- intensity shear flows. The Physics of Fluids 8(6), 1056-1062. 87
https://doi.org/10.1063/1.1761355

[122] Lyons, G. W. (2016). Statistical Scaling of Turbulent Surface Pres- sure in the Atmospheric Boundary Layer. Ph. D. thesis, University of Mississippi. 128

[123] Ma, C., Q. Duan, Q. Li, H. Liao, and Q. Tao (2019). Aerodynamic characteristics of a long-span cable-stayed bridge under construction. En- gineering Structures 184, 232-246. 8, 10, 30, 68
https://doi.org/10.1016/j.engstruct.2018.12.097

[124] Ma, C., C. Pei, H.-l. Liao, M. Liu, and M. Li (2020). Field measurement and wind tunnel study of aerodynamic characteristics of twin-box girder. Journal of Wind Engineering and Industrial Aerodynamics 202, 104209. 8, 30
https://doi.org/10.1016/j.jweia.2020.104209

[125] Ma, X., G.-S. Karamanos, and G. Karniadakis (2000). Dynamics and low-dimensionality of a turbulent near wake. Journal of Fluid Mechan- ics 410, 29-65. 95
https://doi.org/10.1017/S0022112099007934

[126] Macdonald, J. H., P. A. Irwin, and M. S. Fletcher (2002). Vortex- induced vibrations of the Second Severn Crossing cable-stayed bridge - full-scale and wind tunnel measurements. Proceedings of the Institution of Civil Engineers-Structures and Buildings 152(2), 123-134. 7, 22, 23, 113, 114
https://doi.org/10.1680/stbu.2002.152.2.123

[127] Mannini, C., A. M. Marra, L. Pigolotti, and G. Bartoli (2017). The ef- fects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5:1 cross section. Journal of Wind Engineering and Industrial Aerodynamics 161, 42-58. 98, 103, 109, 110, 137, 139
https://doi.org/10.1016/j.jweia.2016.12.001

[128] Marshall, J. (2003). Wake dynamics of a yawed cylinder. J. Fluids Eng. 125(1), 97-103. 90, 99, 109
https://doi.org/10.1115/1.1523069

[129] Matsuda, K., K. Cooper, H. Tanaka, M. Tokushige, and T. Iwasaki (2001). An investigation of Reynolds number effects on the steady and unsteady aerodynamic forces on a 1:10 scale bridge deck section model. Journal of Wind Engineering and Industrial Aerodynamics 89(7-8), 619- 632. 113
https://doi.org/10.1016/S0167-6105(01)00062-9

[130] Matsumoto, M. (1998). Observed behavior of prototype cable vi- brationn and its generation mechanism. In Proc. of the international symposium on advances in bridge aerodynamics, Copenhagen, Denmark, pp. 189-211. 27, 90

[131] Matsumoto, M., N. Shiraishi, M. Kitazawa, C. Knisely, H. Shirato, Y. Kim, and M. Tsujii (1990). Aerodynamic behavior of inclined circular cylinders-cable aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics 33(1-2), 63-72. 27, 88, 90
https://doi.org/10.1016/0167-6105(90)90021-4

[132] Matsumoto, M., N. Shiraishi, H. Shirato, S. Stoyanoff, and T. Yagi (1993). Mechanism of, and turbulence effect on vortex-induced oscilla- tions for bridge box girders. Journal of Wind Engineering and Industrial Aerodynamics 49(1-3), 467-476. 23
https://doi.org/10.1016/0167-6105(93)90041-L

[133] Matsumoto, M., T. Yagi, H. Hatsuda, T. Shima, M. Tanaka, and H. Naito (2010). Dry galloping characteristics and its mechanism of inclined/yawed cables. Journal of Wind Engineering and Industrial Aero- dynamics 98(6-7), 317-327. 23, 27, 82, 88, 90, 91
https://doi.org/10.1016/j.jweia.2009.12.001

[134] Mauder, M. and M. J. Zeeman (2018). Field intercomparison of pre- vailing sonic anemometers. Atmospheric Measurement Techniques 11(1), 249-263. 42
https://doi.org/10.5194/amt-11-249-2018

[135] McBean, G. and J. Elliott (1975). The vertical transports of kinetic energy by turbulence and pressure in the boundary layer. Journal of Atmospheric Sciences 32(4), 753-766. 124, 131
https://doi.org/10.1175/1520-0469(1975)032<0753:TVTOKE>2.0.CO;2

[136] McCoy, E. J., A. T. Walden, and D. B. Percival (1998). Multitaper spectral estimation of power law processes. IEEE Transactions on Signal Processing 46(3), 655-668. 66
https://doi.org/10.1109/78.661333

[137] Melbourne, W. (1982). Comparison of model and full-scale tests of a bridge and chimney stack. In Proc. of Int'l Workshop on Wind Tunnel Modelling, Maryland, USA, pp. 637-653. 8, 117, 146

[138] Midjiyawa, Z., E. Cheynet, J. Reuder, H. Ágústsson, and T. Kvamsdal (2021a). Potential and challenges of wind measurements using met-masts in complex topography for bridge design: Part I-integral flow character- istics. Journal of Wind Engineering and Industrial Aerodynamics 211, 104584. 13, 61
https://doi.org/10.1016/j.jweia.2021.104584

[139] Midjiyawa, Z., E. Cheynet, J. Reuder, H. Ágústsson, and T. Kvamsdal (2021b). Potential and challenges of wind measurements using met-masts in complex topography for bridge design: Part II-spectral flow character- istics. Journal of Wind Engineering and Industrial Aerodynamics 211, 104585. 61
https://doi.org/10.1016/j.jweia.2021.104585

[140] Moore, C. J. (1986). Frequency response corrections for eddy correla- tion systems. Boundary-Layer Meteorology 37(1), 17-35. 17
https://doi.org/10.1007/BF00122754

[141] Moran, P. and R. Hoxey (1979). A probe for sensing static pressure in two-dimensional flow. Journal of Physics E: Scientific Instruments 12(8), 752. 45, 46, 56, 57, 163, 164, 165, 166
https://doi.org/10.1088/0022-3735/12/8/021

[142] Mugridge, B. (1971). Gust loading on a thin aerofoil. Aeronautical Quarterly 22(3), 301-310. 33
https://doi.org/10.1017/S0001925900005849

[143] Niihara, Y., R. Nakano, K. Hayashida, and Y. Kubo (1998). Full- scale measurements of wind pressures acting on the deck cross-section of a cable-stayed bridge. In Wind Engineering into the 21st Century, pp. 1005-1012. Balkema Rotterdam. 8, 10, 117, 146

[144] Nishiyama, R. T. and A. J. Bedard Jr (1991). A "Quad-Disc" static pressure probe for measurement in adverse atmospheres: With a com- parative review of static pressure probe designs. Review of scientific instruments 62(9), 2193-2204. 56
https://doi.org/10.1063/1.1142337

[145] Norberg, C. and B. Sunden (1987). Turbulence and Reynolds number effects on the flow and fluid forces on a single cylinder in cross flow. Journal of Fluids and Structures 1(3), 337-357. 18
https://doi.org/10.1016/0889-9746(87)90264-7

[146] Novak, M. and H. Tanaka (1977). Pressure correlations on a vibrat- ing cylinder. In Proc. 4th Int. Conf. on Wind Effects on Buildings and Structures, Heathrow, U.K., pp. 227-232. 22, 23

[147] Øiseth, O., A. Rönnquist, and R. Sigbjörnsson (2013). Effects of co- spectral densities of atmospheric turbulence on the dynamic response of cable-supported bridges: a case study. Journal of Wind Engineering and Industrial Aerodynamics 116, 83-93. 29
https://doi.org/10.1016/j.jweia.2013.03.001

[148] Olesen, H., S. E. Larsen, and J. Højstrup (1984). Modelling velocity spectra in the lower part of the planetary boundary layer. Boundary-Layer Meteorology 29(3), 285-312. 13
https://doi.org/10.1007/BF00119794

[149] Ong, L. and J. Wallace (1996). The velocity field of the turbulent very near wake of a circular cylinder. Experiments in Fluids 20(6), 441-453. 93, 95, 102, 103
https://doi.org/10.1007/BF00189383

[150] Panofsky, H., D. Larko, R. Lipschut, G. Stone, E. Bradley, A. J. Bowen, and J. Højstrup (1982). Spectra of velocity components over complex terrain. Quarterly Journal of the Royal Meteorological Society 108(455), 215-230. 69
https://doi.org/10.1002/qj.49710845513

[151] Peña, A., E. Dellwik, and J. Mann (2019). A method to assess the accuracy of sonic anemometer measurements. Atmospheric Measurement Techniques 12(1), 237-252. 65, 74
https://doi.org/10.5194/amt-12-237-2019

[152] Quinn, A., M. Hayward, C. Baker, F. Schmid, J. Priest, and W. Powrie (2010). A full-scale experimental and modelling study of ballast flight under high-speed trains. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 224(2), 61-74. 56
https://doi.org/10.1243/09544097JRRT294

[153] Ramberg, S. E. (1983). The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders. Journal of Fluid Mechanics 128, 81-107. 18, 26, 99, 109
https://doi.org/10.1017/S0022112083000397

[154] Rasmussen, J. T., M. M. Hejlesen, A. Larsen, and J. H. Walther (2010). Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics. Journal of Wind Engineering and Industrial Aerody- namics 98(12), 754-766. 30
https://doi.org/10.1016/j.jweia.2010.06.011

[155] Raspet, R., J. Yu, and J. Webster (2008). Low frequency wind noise contributions in measurement microphones. The Journal of the Acoustical Society of America 123(3), 1260-1269. 128
https://doi.org/10.1121/1.2832329

[156] Richards, P. and R. Hoxey (2012). Pressures on a cubic buildingâA˘Tˇ- part 1: Full-scale results. Journal of Wind Engineering and Industrial Aerodynamics 102, 72-86. 121
https://doi.org/10.1016/j.jweia.2011.11.004

[157] Richards, P., R. Hoxey, B. Connell, and D. Lander (2007). Wind-tunnel modelling of the Silsoe Cube. Journal of Wind Engineering and Industrial Aerodynamics 95(9-11), 1384-1399. 113
https://doi.org/10.1016/j.jweia.2007.02.005

[158] Richards, P., R. Hoxey, and J. Short (2000). Spectral models for the neutral atmospheric surface layer. Journal of Wind Engineering and Industrial Aerodynamics 87(2-3), 167-185. 13
https://doi.org/10.1016/S0167-6105(00)00035-0

[159] Richardson, G. and D. Surry (1992). The Silsoe Building: a comparison of pressure coefficients and spectra at model and full-scale. Journal of Wind Engineering and Industrial Aerodynamics 43(1-3), 1653-1664. 53, 56
https://doi.org/10.1016/0167-6105(92)90575-U

[160] Robertson, A. and A. Glass (1988). The Silsoe Structures Building: Its design, instrumentation and research facilities. AFRC Institute of Engineering Research Silsoe, Bedford, England. 56

[161] Ropelewski, C. F., H. Tennekes, and H. Panofsky (1973). Horizontal coherence of wind fluctuations. Boundary-Layer Meteorology 5(3), 353- 363. 16, 154
https://doi.org/10.1007/BF00155243

[162] Roshko, A. (1961). Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics 10(3), 345-356. 24
https://doi.org/10.1017/S0022112061000950

[163] Saathoff, P. and W. Melbourne (1989). The generation of peak pres- sures in separated/reattaching flows. Journal of Wind Engineering and Industrial Aerodynamics 32(1-2), 121-134. 113, 136
https://doi.org/10.1016/0167-6105(89)90023-8

[164] Sacré, C. and D. Delaunay (1992). Structure spatiale de la turbulence au cours de vents forts sur differents sites. Journal of Wind Engineering and Industrial Aerodynamics 41(1-3), 295-303. 67, 78
https://doi.org/10.1016/0167-6105(92)90424-9

[165] Sankaran, R. and E. Jancauskas (1992). Direct measurement of the aerodynamic admittance of two-dimensional rectangular cylinders in smooth and turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics 41(1-3), 601-611. 30, 144
https://doi.org/10.1016/0167-6105(92)90469-Q

[166] Sankaran, R. and E. Jancauskas (1993). Measurements of cross- correlation in separated flows around bluff cylinders. Journal of Wind Engineering and Industrial Aerodynamics 49(1-3), 279-288. 33, 145
https://doi.org/10.1016/0167-6105(93)90023-H

[167] Saranyasoontorn, K., L. Manuel, and P. S. Veers (2004). A comparison of standard coherence models for inflow turbulence with estimates from field measurements. J. Sol. Energy Eng. 126(4), 1069-1082. 77
https://doi.org/10.1115/1.1797978

[168] Scanlan, R. (1978). The action of flexible bridges under wind, II: Buffeting theory. Journal of Sound and Vibration 60(2), 201-211. 7, 27, 33
https://doi.org/10.1016/S0022-460X(78)80029-7
https://doi.org/10.1016/S0022-460X(78)80028-5

[169] Schaefer, J. W. and S. Eskinazi (1959). An analysis of the vortex street generated in a viscous fluid. Journal of Fluid Mechanics 6(2), 241-260. 100
https://doi.org/10.1017/S0022112059000593

[170] Schewe, G. (2001). Reynolds-number effects in flow around more-or- less bluff bodies. Journal of Wind Engineering and Industrial Aerodynam- ics 89(14-15), 1267-1289. 2, 19, 24, 25, 81, 111
https://doi.org/10.1016/S0167-6105(01)00158-1

[171] Schewe, G. (2013). Reynolds-number-effects in flow around a rectan- gular cylinder with aspect ratio 1:5. Journal of Fluids and Structures 39, 15-26. 2, 24, 81, 93, 110, 111, 113
https://doi.org/10.1016/j.jfluidstructs.2013.02.013

[172] Schewe, G. and A. Larsen (1998). Reynolds number effects in the flow around a bluff bridge deck cross section. Journal of Wind Engineering and Industrial Aerodynamics 74, 829-838. 2, 24, 25, 111
https://doi.org/10.1016/S0167-6105(98)00075-0

[173] Sears, W. R. (1941). Some aspects of non-stationary airfoil theory and its practical application. Journal of the Aeronautical Sciences 8(3), 104-108. 33, 142, 143
https://doi.org/10.2514/8.10655

[174] Shiraishi, N. and M. Matsumoto (1983). On classification of vortex- induced oscillation and its application for bridge structures. Journal of Wind Engineering and Industrial Aerodynamics 14(1-3), 419-430. 22, 23
https://doi.org/10.1016/0167-6105(83)90043-0

[175] Shirakashi, M., A. Hasegawa, and S. Wakiya (1986). Effect of the secondary flow on Karman vortex shedding from a yawed cylinder. Bulletin of JSME 29(250), 1124-1128. 27, 67, 90
https://doi.org/10.1299/jsme1958.29.1124

[176] Sill, B., N. Cook, and C. Fang (1992). The Aylesbury comparative experiment: a final report. Journal of Wind Engineering and Industrial Aerodynamics 43(1-3), 1553-1564. 53
https://doi.org/10.1016/0167-6105(92)90371-G

[177] Simiu, E. and R. H. Scanlan (1978). Wind effects on structures. Wiley. 27

[178] Snæbjörnsson, J., J. Jakobsen, E. Cheynet, and J. Wang (2017). Full- scale monitoring of wind and suspension bridge response. In IOP Confer- ence Series: Materials Science and Engineering, Volume 276, pp. 012007. IOP Publishing. 36, 45
https://doi.org/10.1088/1757-899X/276/1/012007

[179] Snæbjörnsson, J. T. (2002). Full-and model scale study of wind effects on a medium-rise building in a built up area. Ph. D. thesis, NTNU. 53, 56, 161

[180] SOH Wind Engineering LLC (2021a). Lysefjord Bridge, Norway. Flow properties of njord 1 wind tunnel (Revision 0). 170

[181] SOH Wind Engineering LLC (2021b). Lysefjord Bridge, Norway. Static wind tunnel tests (Revision 1). 169, 170

[182] SOH Wind Engineering LLC (2021c). Lysefjord Bridge, Norway. Wake flow measurements (Revision 1). 100, 169, 175

[183] Solari, G. and G. Piccardo (2001). Probabilistic 3-D turbulence mod- eling for gust buffeting of structures. Probabilistic Engineering Mechan- ics 16(1), 73-86. 68
https://doi.org/10.1016/S0266-8920(00)00010-2

[184] Soper, D., C. Baker, A. Jackson, D. Milne, L. Le Pen, G. Watson, and W. Powrie (2017). Full scale measurements of train underbody flows and track forces. Journal of Wind Engineering and Industrial Aerodynam- ics 169, 251-264. 56
https://doi.org/10.1016/j.jweia.2017.07.023

[185] Strouhal, V. (1878). Über eine besondere art der tonerregung. In Annalen der Physik, Feb. 16. 1878. Presented at der physikalische- medicininischen Gesellschaft in WÃijrzburg, 16, February 1878. 21

[186] Surry, J. and D. Surry (1967). The effect of inclination on the strouhal number and other wake properties of circular cylinders at subcritical reynolds numbers. Technical report, Toronto Univ (Ontario) Inst For Aerospace Studies. 26, 109

[187] Svend Ole Hansen ApS (2020). Hoxey probe for measuring the static pressure component. Wind tunnel tests (Revision 0). 163, 164

[188] Svend Ole Hansen ApS (2021). Personal Communication. 10, 161

[189] Taylor, G. I. (1938). The spectrum of turbulence. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sci- ences 164(919), 476-490. 14, 17, 124, 129
https://doi.org/10.1098/rspa.1938.0032

[190] Thakur, A., X. Liu, and J. Marshall (2004). Wake flow of single and multiple yawed cylinders. J. Fluids Eng. 126(5), 861-870. 99
https://doi.org/10.1115/1.1792276

[191] Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE 70(9), 1055-1096. 66, 94
https://doi.org/10.1109/PROC.1982.12433

[192] Tieleman, H. W. (1995). Universality of velocity spectra. Journal of Wind Engineering and Industrial Aerodynamics 56(1), 55-69. 13, 14, 15
https://doi.org/10.1016/0167-6105(94)00011-2

[193] Tieleman, H. W. (2003). Wind tunnel simulation of wind loading on low-rise structures: a review. Journal of Wind Engineering and Industrial Aerodynamics 91(12-15), 1627-1649. 113
https://doi.org/10.1016/j.jweia.2003.09.021

[194] Tsuji, Y., J. H. Fransson, P. H. Alfredsson, and A. V. Johansson (2007). Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. Journal of Fluid Mechanics 585, 1-40. 125
https://doi.org/10.1017/S0022112007006076

[195] Van Atta, C. (1968). Experiments on vortex shedding from yawed circular cylinders. AIAA Journal 6(5), 931-933. 26, 109
https://doi.org/10.2514/3.4630

[196] Vickers, D. and L. Mahrt (1997). Quality control and flux sampling problems for tower and aircraft data. Journal of atmospheric and oceanic technology 14(3), 512-526. 65
https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2

[197] Vickery, B. (1966). Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream. Journal of Fluid Mechanics 25(3), 481-494. 33
https://doi.org/10.1017/S002211206600020X

[198] Vickery, B. and R. Basu (1983). Across-wind vibrations of structures of circular cross-section. Part I. development of a mathematical model for two-dimensional conditions. Journal of Wind Engineering and Industrial Aerodynamics 12(1), 49-73. 22, 96
https://doi.org/10.1016/0167-6105(83)90080-6

[199] Wang, H., S. M. Razali, T. Zhou, Y. Zhou, and L. Cheng (2011). Streamwise evolution of an inclined cylinder wake. Experiments in flu- ids 51(2), 553-570. 99
https://doi.org/10.1007/s00348-011-1068-4

[200] Weber, R. O. (1999). Remarks on the definition and estimation of friction velocity. Boundary-Layer Meteorology 93(2), 197-209. 12
https://doi.org/10.1023/A:1002043826623

[201] Welch, P. (1967). The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics 15(2), 70-73. 77
https://doi.org/10.1109/TAU.1967.1161901

[202] Wilczak, J., S. Oncley, and A. Bedard Jr (1992). Turbulent pressure fluctuations in the atmospheric surface layer. In Tenth Symposium on Turbulence and Diffusion, pp. 167-170. 128

[203] Wilczak, J. M., S. P. Oncley, and S. A. Stage (2001). Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99(1), 127-150. 10, 65
https://doi.org/10.1023/A:1018966204465

[204] Wyngaard, J., A. Siegel, and J. Wilczak (1994). On the response of a turbulent-pressure probe and the measurement of pressure transport. Boundary-Layer Meteorology 69(4), 379-396. 131
https://doi.org/10.1007/BF00718126

[205] Xie, J., H. Tanaka, R. Wardlaw, and M. Savage (1991). Buffeting analysis of long span bridges to turbulent wind with yaw angle. Journal of Wind Engineering and Industrial Aerodynamics 37(1), 65-77. 12
https://doi.org/10.1016/0167-6105(91)90005-H

[206] Xu, Y. L. and Y. Xia (2019). Structural health monitoring of long-span suspension bridges. CRC Press. 7

[207] Xu, Y. L. and L. Zhu (2005). Buffeting response of long-span cable- supported bridges under skew winds. Part 2: Case study. Journal of Sound and Vibration 281(3-5), 675-697. 68
https://doi.org/10.1016/j.jsv.2004.01.025

[208] Yan, L., X. H. He, R. G. Flay, et al. (2019). Experimental determination of aerodynamic admittance functions of a bridge deck considering oscilla- tion effect. Journal of Wind Engineering and Industrial Aerodynamics 190, 83-97. 143
https://doi.org/10.1016/j.jweia.2019.04.009

[209] Zdravkovich, M. M. (1997a). Flow around circular cylinders: Volume 1: Fundamentals, Volume 1. Oxford University Press. 2, 18, 19, 20, 82

[210] Zdravkovich, M. M. (1997b). Flow around circular cylinders: Volume 2: Applications, Volume 2. Oxford University Press. 2, 18, 23, 26

[211] Zhao, M., L. Cheng, and T. Zhou (2009). Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length. Journal of Fluids and Structures 25(5), 831-847. 88, 90
https://doi.org/10.1016/j.jfluidstructs.2009.02.004

[212] Zhou, T., S. M. Razali, Y. Zhou, L. Chua, and L. Cheng (2009). De- pendence of the wake on inclination of a stationary cylinder. Experiments in fluids 46(6), 1125-1138. 88, 90, 99, 101, 109
https://doi.org/10.1007/s00348-009-0625-6

[213] Zhu, L., Y. L. Xu, F. Zhang, and H. Xiang (2002). Tsing Ma Bridge deck under skew winds Part I: Aerodynamic coefficients. Journal of Wind Engineering and Industrial Aerodynamics 90(7), 781-805. 99
https://doi.org/10.1016/S0167-6105(02)00159-9
https://doi.org/10.1016/S0167-6105(02)00160-5
Cover image

Downloads

Published

April 5, 2022

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.