3D in vitro cancer models for drug screening: A study of glucose metabolism and drug response in 2D and 3D culture models

Authors

Keywords:

2d cell cultures, 3d cell cultures, glucose metabolism, drug screening

Synopsis

Current drug screening protocols use in vitro cancer cell panels grown in 2D to evaluate drug response and select the most promising candidates for further in vivo testing. Most drug candidates fail at this stage, not showing the same efficacy in vivo as seen in vitro. An improved first screening that is more translatable to the in vivo tumor situation could aid in reducing both time and cost of cancer drug development. 3D cell cultures are an emerging standard for in vitro cancer cell models, being more representative of in vivo tumour conditions. To overcome the translational challenges with 2D cell cultures, 3D systems better model the more complex cell-to-cell contact and nutrient levels present in a tumour, improving our understanding of cancer complexity. Furthermore, cancer cells exhibit altered metabolism, a phenomenon described a century ago by Otto Warburg, and possibly related to changes in nutrient access. However, there are few reports on how 3D cultures differ metabolically from 2D cultures, especially when grown in physiological glucose conditions. Along with this, metabolic drug targeting is considered an underutilized and poorly understood area of cancer therapy. Therefore, the aim of this work was to investigate the effect of culture conditions on response to metabolic drugs and study the metabolism of 3D spheroid cultures in detail. To achieve this, multiple cancer cell lines were studied in high and low glucose concentrations and in 2D and 3D cultures.

We found that glucose concentration is important at a basic level for growth properties of cell lines with different metabolic phenotypes and it affects sensitivity to metformin. Furthermore, metformin is able to shift metabolic phenotype away from OXPHOS dependency. There are significant differences in glucose metabolism of 3D cultures compared to 2D cultures, both related to glycolysis and oxidative phosphorylation. Spheroids have higher ATP-linked respiration in standard nutrient conditions and higher non-aerobic ATP production in the absence of supplemented glucose. Multi-round treatment of spheroids is able to show more robust response than standard 2D drug screening, including resistance to therapy. Results from 2D cultures both over and underestimate drug response at different concentrations of 5-fluorouracil (5-FU). A higher maximum effect of 5-FU is seen in models with lower OCR/ECAR ratios, an indication of a more glycolytic metabolic phenotype.

In conclusion, both culture method and nutrient conditions are important consideration for in vitro cancer models. There is good reason to not maintain in vitro cultures in artificially high glucose conditions. It can have downstream affects on drug response and likely other important metrics. If possible, assays should also be implemented in 3D. If not in everyday assays, at least as a required increase in complexity to validate 2D results. Finally, metabolism even in the small scope presented here, is complex in terms of phenotypic variation. This shows the importance of metabolic screening in vitro to better understand the effects of these small changes and to model how a specific tumor may behave based on its complex metabolism.

Author Biography

Tia Renee Tidwell

PhD fellow
University of Stavanger
Faculty of Science and Technology
Department of Chemistry, Bioscience and Environmental Engineering
tia.tidwell@uis.no

References

Ewing, J. Causation, Diagnosis and Treatment of Cancer (Williams & Wilkins, 1931).

Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature reviews. Drug discovery 9, 203-214 (2010).

https://doi.org/10.1038/nrd3078

Scannell, J. W. & Bosley, J. When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis. PloS one 11, e0147215 (2016).

https://doi.org/10.1371/journal.pone.0147215

Salway, J. G. Metabolism at a glance Fourth edition. isbn: 978-0-470-67471-0 (Wiley Blackwell, Chichester, 2017).

Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology 27, 441-464 (2011).

https://doi.org/10.1146/annurev-cellbio-092910-154237

Kierans, S. J. & Taylor, C. T. Regulation of glycolysis by the hypoxia-inducible

factor (HIF): implications for cellular physiology. The Journal of physiology 599, 23-37 (2021).

https://doi.org/10.1113/JP280572

MITCHELL, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144-148 (1961).

https://doi.org/10.1038/191144a0

Baffy, G. Mitochondrial uncoupling in cancer cells: Liabilities and opportunities. Biochimica et biophysica acta. Bioenergetics 1858, 655-664. issn: 0005-2728 (2017).

https://doi.org/10.1016/j.bbabio.2017.01.005

Osellame, L. D., Blacker, T. S. & Duchen, M. R. Cellular and molecular mechanisms of mitochondrial function. Best practice & research. Clinical endocrinology & metabolism 26, 711-723 (2012).

https://doi.org/10.1016/j.beem.2012.05.003

Qi, G., Mi, Y. & Yin, F. Cellular Specificity and Inter-cellular Coordination in the Brain Bioenergetic System: Implications for Aging and Neurodegeneration. Frontiers in physiology 10, 1531. issn: 1664-042X (2019).

https://doi.org/10.3389/fphys.2019.01531

Olenchock, B. A., Rathmell, J. C. & Vander Heiden, M. G. Biochemical Underpinnings of Immune Cell Metabolic Phenotypes. Immunity 46, 703-713 (2017).

https://doi.org/10.1016/j.immuni.2017.04.013

Hargreaves, M. & Spriet, L. L. Skeletal muscle energy metabolism during exercise. Nature metabolism 2, 817-828 (2020).

https://doi.org/10.1038/s42255-020-00290-7

https://doi.org/10.1038/s42255-020-0251-4

Rozhok, A. I., Salstrom, J. L. & DeGregori, J. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes. Aging 6, 1033-1048 (2014).

https://doi.org/10.18632/aging.100707

Freitas-Rodríguez, S., Folgueras, A. R. & López-Otín, C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochimica et biophysica acta. Molecular cell research 1864, 2015-2025. issn: 0167-4889 (2017).

https://doi.org/10.1016/j.bbamcr.2017.05.007

De Luca, M. The role of the cell-matrix interface in aging and its interaction with the renin-angiotensin system in the aged vasculature. Mechanisms of ageing and development 177, 66-73 (2019).

https://doi.org/10.1016/j.mad.2018.04.002

Hanahan, D. & Weinberg, R. A. The Hallmarks of Cancer. Cell 100, 57-70 (2000).

https://doi.org/10.1016/S0092-8674(00)81683-9

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011).

https://doi.org/10.1016/j.cell.2011.02.013

Lewis, N. E. & Abdel-Haleem, A. M. The evolution of genome-scale models of cancer metabolism. Frontiers in physiology 4, 237. issn: 1664-042X (2013).

https://doi.org/10.3389/fphys.2013.00237

Warburg, O. The Metabolism of Carcinoma Cells. The Journal of Cancer Research 9, 148-163 (1925).

https://doi.org/10.1158/jcr.1925.148

Warburg, O. On the origin of cancer cells. Science (New York, N.Y.) 123, 309-314 (1956).

https://doi.org/10.1126/science.123.3191.309

Chen, K. et al. The metabolic flexibility of quiescent CSC: implications for chemotherapy resistance. Cell death & disease 12, 835 (2021).

https://doi.org/10.1038/s41419-021-04116-6

Martinez-Outschoorn, U. E. et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell cycle (Georgetown, Tex.) 9, 3256-3276 (2010).

https://doi.org/10.4161/cc.9.16.12553

Gstraunthaler, G., Seppi, T. & Pfaller, W. Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic? Cellular physiologyand biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 9, 150-172. issn: 1015-8987 (1999).

https://doi.org/10.1159/000016312

Faubert, B. & DeBerardinis, R. J. Analyzing Tumor Metabolism In Vivo. Annual Review of Cancer Biology 1, 99-117 (2017).

https://doi.org/10.1146/annurev-cancerbio-050216-121954

Whitaker-Menezes, D. et al. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell cycle (Georgetown, Tex.) 10, 1772-1783 (2011).

https://doi.org/10.4161/cc.10.11.15659

Sotgia, F. et al. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue. Cell cycle (Georgetown, Tex.) 11, 1445-1454 (2012).

https://doi.org/10.4161/cc.19841

Faubert, B. et al. Lactate Metabolism in Human Lung Tumors. Cell 171, 358- 371.e9 (2017).

https://doi.org/10.1016/j.cell.2017.09.019

Battini, S. et al. Metabolomics approaches in pancreatic adenocarcinoma: tumor metabolism profiling predicts clinical outcome of patients. BMC medicine 15, 56 (2017).

https://doi.org/10.1186/s12916-017-0810-z

DeNicola, G. M. & Cantley, L. C. Cancer's Fuel Choice: New Flavors for a Picky Eater. Molecular cell 60, 514-523 (2015).

https://doi.org/10.1016/j.molcel.2015.10.018

Hensley, C. T. et al. Metabolic Heterogeneity in Human Lung Tumors. Cell 164, 681-694 (2016).

https://doi.org/10.1016/j.cell.2015.12.034

Xiao, Z., Dai, Z. & Locasale, J. W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nature communications 10, 3763 (2019).

https://doi.org/10.1038/s41467-019-11738-0

Lee, S.-H. & Griffiths, J. R. How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular pH. Cancers12. issn: 2072-6694 (2020).

https://doi.org/10.3390/cancers12061616

Reinfeld, B. I., Rathmell, W. K., Kim, T. K. & Rathmell, J. C. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cellular & Molecular Immunology, 1-13. issn: 2042-0226 (2021).

https://doi.org/10.1038/s41423-021-00727-3

Cascone, T. et al. Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T Cell Therapy. Cell metabolism 27, 977-987.e4 (2018). 35. Yang, J. et al. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cellular and Molecular Life Sciences 77, 305-321. issn: 1420-9071 (2020).

Zhao, H. et al. Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells. Journal of cellular and molecular medicine 21, 2055-2067 (2017).

https://doi.org/10.1111/jcmm.13126

Cantor, J. R. & Sabatini, D. M. Cancer cell metabolism: one hallmark, many faces. Cancer discovery 2, 881-898 (2012).

https://doi.org/10.1158/2159-8290.CD-12-0345

Pavlova, N. N. & Thompson, C. B. The Emerging Hallmarks of Cancer Metabolism. Cell metabolism 23, 27-47 (2016).

https://doi.org/10.1016/j.cmet.2015.12.006

National Cancer Institute. Definition of biomarker - NCI Dictionary of Cancer Terms 20-Nov-21. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/biomarker.

Giammarile, F. et al. Non-FDG PET/CT in Diagnostic Oncology: a pictorial review. European journal of hybrid imaging 3, 20 (2019).

https://doi.org/10.1186/s41824-019-0066-2

Chen, J. et al. Profiling Carbohydrate Metabolism in Liver and Hepatocellular Carcinoma with [ 13 C]-Glycerate Probes. Analysis & Sensing. issn: 2629-2742 (2021).

Gould, G. W. & Holman, G. D. The glucose transporter family: structure, function and tissue-specific expression. The Biochemical journal 295 ( Pt 2), 329-341. issn: 0264-6021 (1993).

https://doi.org/10.1042/bj2950329

Szablewski, L. Expression of glucose transporters in cancers. Biochimica et biophysica acta 1835, 164-169. issn: 0006-3002 (2013).

https://doi.org/10.1016/j.bbcan.2012.12.004

Plas, D. R. & Thompson, C. B. Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24, 7435-7442. issn: 0950-9232 (2005).

https://doi.org/10.1038/sj.onc.1209097

Halestrap, A. P. & Wilson, M. C. The monocarboxylate transporter family-role and regulation. IUBMB life 64, 109-119 (2012).

https://doi.org/10.1002/iub.573

https://doi.org/10.1002/iub.572

Pérez-Escuredo, J. et al. Monocarboxylate transporters in the brain and in cancer. Biochimica et biophysica acta 1863, 2481-2497. issn: 0006-3002 (2016).

https://doi.org/10.1016/j.bbamcr.2016.03.013

Baek, G. et al. MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell reports 9, 2233-2249 (2014).

https://doi.org/10.1016/j.celrep.2014.11.025

Curry, J. M. et al. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell cycle (Georgetown, Tex.) 12, 1371-1384 (2013).

https://doi.org/10.4161/cc.24092

Melser, S., Lavie, J. & Bénard, G. Mitochondrial degradation and energy metabolism. Biochimica et biophysica acta 1853, 2812-2821. issn: 0006-3002 (2015).

https://doi.org/10.1016/j.bbamcr.2015.05.010

Eliyahu, E. et al. Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Molecular and cellular biology 30, 284-294 (2010).

https://doi.org/10.1128/MCB.00651-09

Zhang, Y. & Xu, H. Translational regulation of mitochondrial biogenesis. Biochemical Society transactions 44, 1717-1724 (2016).

https://doi.org/10.1042/BST20160071C

Aguilar, E. et al. UCP2 Deficiency Increases Colon Tumorigenesis by Promoting Lipid Synthesis and Depleting NADPH for Antioxidant Defenses. Cell reports 28, 2306-2316.e5 (2019).

https://doi.org/10.1016/j.celrep.2019.07.097

Donadelli, M., Dando, I., Dalla Pozza, E. & Palmieri, M. Mitochondrial uncoupling protein 2 and pancreatic cancer: a new potential target therapy. World Journal of Gastroenterology : WJG 21, 3232-3238. issn: 1007-9327 (2015).

https://doi.org/10.3748/wjg.v21.i11.3232

Ježek, P. 2-Hydroxyglutarate in Cancer Cells. Antioxidants & redox signaling 33, 903-926 (2020).

https://doi.org/10.1089/ars.2019.7902

Amoedo, N. D., Obre, E. & Rossignol, R. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy. Biochimica et biophysica acta 1858, 674-685. issn: 0006-3002 (2017).

https://doi.org/10.1016/j.bbabio.2017.02.005

Luengo, A., Gui, D. Y. & Vander Heiden, M. G. Targeting Metabolism for Cancer Therapy. Cell chemical biology 24, 1161-1180 (2017).

https://doi.org/10.1016/j.chembiol.2017.08.028

Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nature reviews. Clinical oncology 14, 11-31 (2017).

https://doi.org/10.1038/nrclinonc.2016.60

Evans, J. M. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ (Clinical research ed.) 330, 1304-1305 (2005).

https://doi.org/10.1136/bmj.38415.708634.F7

Thakkar, B., Aronis, K. N., Vamvini, M. T., Shields, K. & Mantzoros, C. S. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism 62, 922-934 (2013).

https://doi.org/10.1016/j.metabol.2013.01.014

Suissa, S. & Azoulay, L. Metformin and cancer: mounting evidence against an association. Diabetes Care 37, 1786-1788 (2014).

https://doi.org/10.2337/dc14-0500

Edmondson, R., Broglie, J. J., Adcock, A. F. & Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and drug development technologies 12, 207-218 (2014).

https://doi.org/10.1089/adt.2014.573

Leanne Riley. Mean fasting blood glucose: Indicator Metadata Registry Details 22- Nov-21. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/2380.

Alsahli, M. & Gerich, J. E. in Encyclopedia of Endocrine Diseases (eds Huhtaniemi, I. & Martini, L.) 72-86 (Elsevier Science, Amsterdam and San Diego, 2018). isbn: 9780128122006.

Langhans, S. A. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Frontiers in pharmacology 9, 6. issn: 1663-9812 (2018).

https://doi.org/10.3389/fphar.2018.00006

Voelkl, B., Vogt, L., Sena, E. S. & Würbel, H. Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS biology 16, e2003693 (2018).

https://doi.org/10.1371/journal.pbio.2003693

Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. American Journal of Translational Research 6, 114-118 (2014).

Shamir, E. R. & Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nature reviews. Molecular cell biology 15, 647-664. issn: 1471-0072 (2014).

https://doi.org/10.1038/nrm3873

Weiswald, L.-B., Bellet, D. & Dangles-Marie, V. Spherical cancer models in tumor biology. Neoplasia (New York, N.Y.) 17, 1-15 (2015).

https://doi.org/10.1016/j.neo.2014.12.004

Sutherland, R. M., McCredie, J. A. & Inch, W. R. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. Journal of the National Cancer Institute 46, 113-120. issn: 0027-8874 (1971).

Simian, M. & Bissell, M. J. Organoids: A historical perspective of thinking in three dimensions. The Journal of cell biology 216, 31-40 (2017).

https://doi.org/10.1083/jcb.201610056

Marchini, A. & Gelain, F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Critical reviews in biotechnology, 1-19 (2021).

https://doi.org/10.1080/07388551.2021.1932716

Eke, I., Hehlgans, S., Sandfort, V. & Cordes, N. 3D matrix-based cell cultures: Automated analysis of tumor cell survival and proliferation. International journal of oncology 48, 313-321 (2016).

https://doi.org/10.3892/ijo.2015.3230

Pasch, C. A. et al. Patient-Derived Cancer Organoid Cultures to Predict Sensitivity to Chemotherapy and Radiation. Clinical cancer research : an official journal of the American Association for Cancer Research 25, 5376-5387 (2019).

https://doi.org/10.1158/1078-0432.CCR-18-3590

Campbell, C. B., Cukierman, E. & Artym, V. V. 3-D extracellular matrix from sectioned human tissues. Current protocols in cell biology 62, Unit 19.16.1-20 (2014).

https://doi.org/10.1002/0471143030.cb1916s62

Lee, J.-H. et al. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. Journal of experimental & clinical cancer research : CR 37, 4 (2018).

https://doi.org/10.1186/s13046-017-0654-6

Campuzano, S. & Pelling, A. E. Scaffolds for 3D Cell Culture and Cellular Agriculture Applications Derived From Non-animal Sources. Frontiers in Sustainable Food Systems 3 (2019).

https://doi.org/10.3389/fsufs.2019.00038

Kopanska, K. S., Alcheikh, Y., Staneva, R., Vignjevic, D. & Betz, T. Tensile Forces Originating from Cancer Spheroids Facilitate Tumor Invasion. PloS one 11, e0156442 (2016).

https://doi.org/10.1371/journal.pone.0156442

Janská, L. et al. The MEMIC: An ex vivo system to model the complexity of the tumor microenvironment (2021).

https://doi.org/10.1101/2021.01.27.428324

Pammolli, F., Magazzini, L. & Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nature Reviews Drug Discovery 10, 428-438. issn: 1474-1784 (2011).

https://doi.org/10.1038/nrd3405

Ringel, M. S., Scannell, J. W., Baedeker, M. & Schulze, U. Breaking Eroom's Law. Nature reviews. Drug discovery 19, 833-834 (2020).

https://doi.org/10.1038/d41573-020-00059-3

Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nature reviews. Drug discovery 11, 191-200 (2012).

https://doi.org/10.1038/nrd3681

Attene-Ramos, M. S., Austin, C. P. & Xia, M. in Encyclopedia of Toxicology 916-917 (Elsevier, 2014). isbn: 9780123864550.

https://doi.org/10.1016/B978-0-12-386454-3.00209-8

Moffat, J. G., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug discovery - past, present and future. Nature reviews. Drug discovery 13, 588-602 (2014).

https://doi.org/10.1038/nrd4366

Jin, J. et al. Identification of Genetic Mutations in Cancer: Challenge and Opportunity in the New Era of Targeted Therapy. Frontiers in oncology 9, 263. issn: 2234-943X (2019).

https://doi.org/10.3389/fonc.2019.00263

Gharibi, B. & Hughes, F. J. Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem cells translational medicine 1, 771-782. issn: 2157-6564 (2012).

https://doi.org/10.5966/sctm.2010-0031

De Angelis, M. L. et al. Cancer Stem Cell-Based Models of Colorectal Cancer Reveal Molecular Determinants of Therapy Resistance. Stem cells translational medicine 5, 511-523. issn: 2157-6564 (2016).

https://doi.org/10.5966/sctm.2015-0214

Cantor, J. R. et al. Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase. Cell 169, 258-272.e17 (2017).

https://doi.org/10.1016/j.cell.2017.03.023

Arigony, A. L. V. et al. The influence of micronutrients in cell culture: a reflection on viability and genomic stability. BioMed research international 2013, 597282 (2013).

https://doi.org/10.1155/2013/597282

Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Science advances 5, eaau7314 (2019).

https://doi.org/10.1126/sciadv.aau7314

Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M. & Nielsen, L. K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and bioengineering 83, 173-180. issn: 0006-3592 (2003).

https://doi.org/10.1002/bit.10655

Comley, J. Progress Made In Applying 3D Cell Culture Technologies 23/12/2013. https://www.ddw-online.com/progress-made-in-applying-3d-cell-culture-technologies-965-201312/

Mosaad, E. O., Chambers, K. F., Futrega, K., Clements, J. A. & Doran, M. R. The Microwell-mesh: A high-throughput 3D prostate cancer spheroid and drug-testing platform. Scientific reports 8, 253 (2018).

https://doi.org/10.1038/s41598-017-18050-1

Sart, S., Tomasi, R. F.-X., Amselem, G. & Baroud, C. N. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nature communications 8, 469 (2017).

https://doi.org/10.1038/s41467-017-00475-x

Aggarwal, V., Montoya, C. A., Donnenberg, V. S. & Sant, S. Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience 24, 102113 (2021).

https://doi.org/10.1016/j.isci.2021.102113

Leung, B. M., Lesher-Perez, S. C., Matsuoka, T., Moraes, C. & Takayama, S. Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomaterials science 3, 336-344. issn: 2047-4849 (2015).

https://doi.org/10.1039/C4BM00319E

Tidwell, T., Hagland, H. R. & Fernandez, T. Application Note 003 - Cell Director 3D: Directed cell migration from a single spheroid culture in a small-molecule gradient 2018. https://gradientech.se/wp-content/uploads/2020/11/mar022-02_application_note_003_celldirector3d.pdf.

Ahmad, H. Modeling 3D cancer growth and extracellular matrix properties in vitro PhD thesis (University of Stavanger, Norway, 2018). https://uis.brage.unit.no/uisxmlui/handle/11250/2567955.

Alhourani, A. H. et al. Metformin treatment response is dependent on glucose growth conditions and metabolic phenotype in colorectal cancer cells. Scientific Reports 11 (2021).

https://doi.org/10.1038/s41598-021-89861-6

Kraut, J. A. & Madias, N. E. Lactic acidosis. New England Journal of Medicine 371, 2309-2319. issn: 0028-4793 (2014).

https://doi.org/10.1056/NEJMra1309483

Djafarzadeh, S. & Jakob, S. M. High-resolution Respirometry to Assess Mitochondrial Function in Permeabilized and Intact Cells. Journal of visualized experiments : JoVE (2017).

https://doi.org/10.3791/54985

Severinghaus, J. W. & Astrup, P. B. History of blood gas analysis. IV. Leland Clark's oxygen electrode. Journal of Clinical Monitoring 2, 125-139. issn: 1573- 2614 (1986). 54

https://doi.org/10.1007/BF01637680

Wolfbeis, O. S. Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode. BioEssays : news and reviews in molecular, cellular and developmental biology 37, 921-928 (2015).

https://doi.org/10.1002/bies.201500002

Tidwell, T. Seahorse Pipette Guide 2021. https://3dprint.nih.gov/discover/3dpx-016449.

Russell, S., Wojtkowiak, J., Neilson, A. & Gillies, R. J. Metabolic Profiling of healthy and cancerous tissues in 2D and 3D. Scientific reports 7, 15285 (2017).

https://doi.org/10.1038/s41598-017-15325-5

Schmidt, C. A., Fisher-Wellman, K. H. & Neufer, P. D. From OCR and ECAR to energy: Perspectives on the design and interpretation of bioenergetics studies. The Journal of biological chemistry 297, 101140 (2021).

https://doi.org/10.1016/j.jbc.2021.101140

Ruas, J. S. et al. Underestimation of the Maximal Capacity of the Mitochondrial Electron Transport System in Oligomycin-Treated Cells. PloS one 11, e0150967 (2016).

https://doi.org/10.1371/journal.pone.0150967

Marchetti, P., Fovez, Q., Germain, N., Khamari, R. & Kluza, J. Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in nontransformed and cancer cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 34, 13106-13124 (2020).

https://doi.org/10.1096/fj.202000767R

Shankavaram, U. T. et al. Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Molecular cancer therapeutics 6, 820-832 (2007).

https://doi.org/10.1158/1535-7163.MCT-06-0650

Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Cellular fatty acid metabolism and cancer. Cell metabolism 18, 153-161 (2013).

https://doi.org/10.1016/j.cmet.2013.05.017

Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nature reviews. Cancer 13, 572-583 (2013).

https://doi.org/10.1038/nrc3557

Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. The Journal of biological chemistry 292, 7189-7207 (2017).

https://doi.org/10.1074/jbc.M116.774471

Birsoy, K. et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508, 108-112 (2014).

https://doi.org/10.1038/nature13110

Sutherland, R. M. et al. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer research 46, 5320-5329. issn: 0008-5472 (1986).

Gaskell & Harriet. Development of a Spheroid Model Development of a Spheroid Model to Investigate Drug-Induced Liver Injury PhD thesis (University of Liverpool, August 2016). https://livrepository.liverpool.ac.uk/3004330/1/200648599_Aug2016.pdf.

Jagiella, N., Müller, B., Müller, M., Vignon-Clementel, I. E. & Drasdo, D. Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data. PLoS computational biology 12, e1004412 (2016).

https://doi.org/10.1371/journal.pcbi.1004412

Jiang, L. et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532, 255-258 (2016).

https://doi.org/10.1038/nature17393

Kasinskas, R. W., Venkatasubramanian, R. & Forbes, N. S. Rapid uptake of glucose and lactate, and not hypoxia, induces apoptosis in three-dimensional tumor tissue culture. Integrative biology : quantitative biosciences from nano to macro 6, 399-410 (2014).

https://doi.org/10.1039/C4IB00001C

Longati, P. et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC cancer 13, 95 (2013).

https://doi.org/10.1186/1471-2407-13-95

Muciño-Olmos, E. A. et al. Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq. Scientific reports 10, 12728 (2020).

https://doi.org/10.1038/s41598-020-69026-7

Pyne, E. S. The Impact of Stromal Cells on the Metabolism of Ovarian Cancer Cells in 3D Culture PhD thesis (Virginia Polytechnic Institute and State University). https://vtechworks.lib.vt.edu/bitstream/handle/10919/74931/Pyne_ES_T_2017.pdf?sequence=1&isAllowed=y.

Wrzesinski, K. et al. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments. PloS one 9, e106973 (2014).

https://doi.org/10.1371/journal.pone.0106973

Chen, Y.-J. et al. Lactate metabolism is associated with mammalian mitochondria. Nature chemical biology 12, 937-943 (2016).

https://doi.org/10.1038/nchembio.2172

Fan, T. W.-M. et al. Stable Isotope-Resolved Metabolomics Shows Metabolic Resistance to Anti-Cancer Selenite in 3D Spheroids versus 2D Cell Cultures. Metabolites 8. issn: 2218-1989 (2018).

https://doi.org/10.3390/metabo8030040

Ortiz-Prado, E., Dunn, J. F., Vasconez, J., Castillo, D. & Viscor, G. Partial pressure of oxygen in the human body: a general review. American journal of blood research 9, 1-14. issn: 2160-1992 (2019).

Chiche, J., Brahimi-Horn, M. C. & Pouysségur, J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. Journal of cellular and molecular medicine 14, 771-794 (2010).

https://doi.org/10.1111/j.1582-4934.2009.00994.x

Mueller-Klieser, W. F. & Sutherland, R. M. Oxygen tensions in multicell spheroids of two cell lines. British journal of cancer 45, 256-264 (1982).

https://doi.org/10.1038/bjc.1982.41

Grimes, D. R., Kelly, C., Bloch, K. & Partridge, M. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. Journal of the Royal Society, Interface 11, 20131124 (2014).

https://doi.org/10.1098/rsif.2013.1124

Grimes, D. R. et al. The Role of Oxygen in Avascular Tumor Growth. PloS one 11, e0153692 (2016).

https://doi.org/10.1371/journal.pone.0153692

MuellerKlieser, W. Tumor biology and experimental therapeutics. Critical reviews in oncology/hematology 36, 123-139 (2000).

https://doi.org/10.1016/S1040-8428(00)00082-2

Landman, K. A. Tumour dynamics and necrosis: surface tension and stability. Mathematical Medicine and Biology 18, 131-158. issn: 1477-8599 (2001).

https://doi.org/10.1093/imammb/18.2.131

Raza, A. et al. Oxygen Mapping of Melanoma Spheroids using Small Molecule Platinum Probe and Phosphorescence Lifetime Imaging Microscopy. Scientific reports 7, 10743 (2017).

https://doi.org/10.1038/s41598-017-11153-9

Tung, Y.-C. et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. The Analyst 136, 473-478 (2011).

https://doi.org/10.1039/C0AN00609B

Tatara, T. et al. 3D Culture Represents Apoptosis Induced by Trastuzumab Better than 2D Monolayer Culture. Anticancer research 38, 2831-2839 (2018).

https://doi.org/10.21873/anticanres.12528

Tostões, R. M. et al. Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology (Baltimore, Md.) 55, 1227-1236 (2012).

https://doi.org/10.1002/hep.24760

McMillan, K. S., Boyd, M. & Zagnoni, M. Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids. Lab on a chip 16, 3548-3557 (2016).

https://doi.org/10.1039/C6LC00884D

Khot, M. I. et al. Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity. Scientific Reports 10, 15915 (2020).

https://doi.org/10.1038/s41598-020-72952-1

Järvinen, P., Bonabi, A., Jokinen, V. & Sikanen, T. Simultaneous Culturing of Cell Monolayers and Spheroids on a Single Microfluidic Device for Bridging the Gap between 2D and 3D Cell Assays in Drug Research. Advanced Functional Materials 30, 2000479. issn: 1616-301X (2020).

https://doi.org/10.1002/adfm.202000479

Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO reports 15, 1243-1253 (2014).

https://doi.org/10.15252/embr.201439246

Bull, J. A., Mech, F., Quaiser, T., Waters, S. L. & Byrne, H. M. Mathematical modelling reveals cellular dynamics within tumour spheroids. PLoS computational biology 16, e1007961 (2020).

https://doi.org/10.1371/journal.pcbi.1007961

Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M. & Macklin, P. PhysiCell: an Open Source Physics-Based Cell Simulator for 3-D Multicellular Systems (2016).

https://doi.org/10.1101/088773

Cristaldi, D. A. et al. A Reliable Flow-Based Method for the Accurate Measure of Mass Density, Size and Weight of Live 3D Tumor Spheroids. Micromachines 11. issn: 2072-666X (2020).

https://doi.org/10.3390/mi11050465

Hari, N., Patel, P., Ross, J., Hicks, K. & Vanholsbeeck, F. Refractive index measurements of multicellular tumour spheroids using optical coherence tomography: dependence on growth phase and size https://arxiv.org/pdf/1904.04390.pdf

Peirsman, A. et al. MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nature methods (2021).

https://doi.org/10.1038/s41592-021-01291-4

Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nature reviews. Drug discovery 18, 41-58 (2019).

https://doi.org/10.1038/nrd.2018.168

Zhang, Z. et al. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal transduction and targeted therapy 5, 113 (2020).

https://doi.org/10.1038/s41392-020-00213-8

Kim, E. et al. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 588, 664-669 (2020).

https://doi.org/10.1038/s41586-020-3034-x

Park, S.-H. et al. TOMM20 as a potential therapeutic target of colorectal cancer. BMB Reports 52, 712-717 (2019).

https://doi.org/10.5483/BMBRep.2019.52.12.249

Zaal, E. A. & Berkers, C. R. The Influence of Metabolism on Drug Response in Cancer. Frontiers in oncology 8, 500. issn: 2234-943X (2018).

https://doi.org/10.3389/fonc.2018.00500

Hirpara, J. et al. Metabolic reprogramming of oncogene-addicted cancer cells to OXPHOS as a mechanism of drug resistance. Redox biology 25, 101076 (2019).

https://doi.org/10.1016/j.redox.2018.101076

Thompson, R. M. et al. Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells. Oncotarget 8, 35863-35876 (2017).

https://doi.org/10.18632/oncotarget.16262

Wangpaichitr, M. et al. Exploiting ROS and metabolic differences to kill cisplatin resistant lung cancer. Oncotarget 8, 49275-49292 (2017).

https://doi.org/10.18632/oncotarget.17568

Marcucci, F. & Rumio, C. Glycolysis-induced drug resistance in tumors-A response to danger signals? Neoplasia 23, 234-245. issn: 1476-5586 (2021).

https://doi.org/10.1016/j.neo.2020.12.009

Liang, Y. et al. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene 39, 469-485. issn: 0950-9232 (2020).

https://doi.org/10.1038/s41388-019-1035-8

Roy, M. & Finley, S. D. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model. PLoS computational biology 15, e1007053 (2019).

https://doi.org/10.1371/journal.pcbi.1007053

Dolznig, H. et al. Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. The American journal of pathology 179, 487-501 (2011).

https://doi.org/10.1016/j.ajpath.2011.03.015

Jeong, S.-Y., Lee, J.-H., Shin, Y., Chung, S. & Kuh, H.-J. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. PloS one 11, e0159013 (2016).

https://doi.org/10.1371/journal.pone.0159013

Cover image

Downloads

Published

March 16, 2022

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.