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“What we do see depends mainly on what we look for.
...
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Though we may all look at the same things,
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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Stavanger. The research presented
here was conducted at the University of Stavanger, University of Bergen, and
Western Norway University of Applied Sciences under the supervision of Associate
Professor Hanne R. Hagland, Ph.D., Professor Kjetil Søreide, MD Ph.D., Professor
Karl Johan Tronstad, Ph.D., and Gro Vatne Røsland, PhD. This work was funded
by the University of Stavanger and a Plogen grant from Validé.

The thesis is a collection of three papers, presented in chronological order of
writing. The papers are preceded by chapters that provide background information
(Chapter 1), motivation (Chapter 2) and methodological considerations (Chapter
3), then finally discuss the results (Chapter 5), and conclude with a view to the
future (Chapter 6).
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Abstract

Current drug screening protocols use in vitro cancer cell panels grown in 2D to
evaluate drug response and select the most promising candidates for further in
vivo testing. Most drug candidates fail at this stage, not showing the same efficacy
in vivo as seen in vitro. An improved first screening that is more translatable to
the in vivo tumor situation could aid in reducing both time and cost of cancer drug
development. 3D cell cultures are an emerging standard for in vitro cancer cell
models, being more representative of in vivo tumour conditions. To overcome the
translational challenges with 2D cell cultures, 3D systems better model the more
complex cell-to-cell contact and nutrient levels present in a tumour, improving
our understanding of cancer complexity. Furthermore, cancer cells exhibit altered
metabolism, a phenomenon described a century ago by Otto Warburg, and
possibly related to changes in nutrient access. However, there are few reports on
how 3D cultures differ metabolically from 2D cultures, especially when grown
in physiological glucose conditions. Along with this, metabolic drug targeting
is considered an underutilized and poorly understood area of cancer therapy.
Therefore, the aim of this work was to investigate the effect of culture conditions
on response to metabolic drugs and study the metabolism of 3D spheroid cultures
in detail. To achieve this, multiple cancer cell lines were studied in high and low
glucose concentrations and in 2D and 3D cultures.

We found that glucose concentration is important at a basic level for growth
properties of cell lines with different metabolic phenotypes and it affects sensitivity
to metformin. Furthermore, metformin is able to shift metabolic phenotype
away from OXPHOS dependency. There are significant differences in glucose
metabolism of 3D cultures compared to 2D cultures, both related to glycolysis
and oxidative phosphorylation. Spheroids have higher ATP-linked respiration
in standard nutrient conditions and higher non-aerobic ATP production in the
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Abstract

absence of supplemented glucose. Multi-round treatment of spheroids is able to
show more robust response than standard 2D drug screening, including resistance
to therapy. Results from 2D cultures both over and underestimate drug response
at different concentrations of 5-fluorouracil (5-FU). A higher maximum effect of
5-FU is seen in models with lower OCR/ECAR ratios, an indication of a more
glycolytic metabolic phenotype.

In conclusion, both culture method and nutrient conditions are important
consideration for in vitro cancer models. There is good reason to not maintain
in vitro cultures in artificially high glucose conditions. It can have downstream
affects on drug response and likely other important metrics. If possible, assays
should also be implemented in 3D. If not in everyday assays, at least as a required
increase in complexity to validate 2D results. Finally, metabolism even in the
small scope presented here, is complex in terms of phenotypic variation. This
shows the importance of metabolic screening in vitro to better understand the
effects of these small changes and to model how a specific tumor may behave
based on its complex metabolism.

xii
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Introduction

In the early 1900s cancer was recognized as a disease formed from an aberration
of our own cells, and not an infection from an external source [1]. Unfortunately,
this is also why cancer is so difficult to treat, and what makes it challenging to
find treatments that target only cancer cells and leave normal cells unharmed. As
each cancer is as unique as its host, finding common denominators to other like
cancers and common differentiators from normal cells is a challenge. The preferred
first-line treatment is to surgically resect a tumor, but this is only possible if is
localized, does not involve non-resectable structures such as major arteries or
veins, and the patient is in good health. In other cases, however, chemotherapy
or radiotherapy treatment is necessary and this is where eradicating cancer cells
is balanced with harsh systemic side effects. Both are toxic to cancer cells, but
unfortunately they are also toxic to normal, healthy cells. Historically, systemic
side effects have been a necessary outcome in order to achieve cancer remission.
Because of the harsh treatment to the entire body, many people are not healthy
enough to tolerate the treatment or are completely debilitated by it. Attempts
have been made to target these cytotoxic therapies as much as possible to cancer
cells only. With radiation, this means very fine resolution and for chemotherapy,
innovative drug delivery methods. The field has been trying to move beyond
standard chemotherapy by developing more targeted molecular treatments to
different cancers and also by getting the body to recognize and attack cancer
itself via immunotherapy.

The number of new cancer drugs actually approved for use is startlingly low,
though. The likelihood of success from phase I of testing is 9.6% overall and
just 5.1% for oncology drugs [2]. Drug approval is a long and expensive process
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1. Introduction

so starting with the right candidates has double the benefit, both for improved
treatment of cancer and better economic outcomes, both public and private.
To improve the drugs entering the development process, drug targets must be
based on acquired knowledge of cancer biology and be assessed using functional
testing and performance measures that actually yield some predictive value for
clinical success [3]. Additionally, there is opportunity to more effectively target
already approved drugs for better clinical outcomes. In both cases, more relevant
cell model systems should be used for better understanding and predictability
of targeted drug responses. This thesis attempts to address these needs by
focusing on metabolism as a drug target and response metric, but also studying
metabolism and drug response in an enhanced in vitro cell model to yield better
predictive validity. To explain this further, some background is given on cellular
metabolism and its relevance in cancer (1.1). In the next section, the current state
of modelling cancer in vitro and different treatment options (1.2) are described.
The last section concludes with considerations for improved targeting and testing
of cancer drugs given this context (1.3).

1.1 Cellular Metabolism

At the cornerstone of cell biology, and therefore also cancer biology, is cell
metabolism. All cells are driven by energy transfer reactions from catabolic
(destructive) and anabolic (constructive) metabolism, for growth, cell division
and every cellular process. “Normal” cell metabolism is a thus a large, complex,
web of connected molecular pathways (Figure 1.1).

1.1.1 Glucose metabolism

Glucose metabolism forms the backbone of cellular metabolism as the major
pathway for conversion of glucose to energy in the form of adenosine triphosphate
(ATP), the primary energy currency of the cell. ATP is produced when adenosine
diphosphate (ADP) is phosphorylated. When the bonds between these groups
are hydrolyzed under physiological conditions, 30.66 kJ [4] are released making
ATP the most important energy transfer unit in a cell. In normal healthy cells,
glucose metabolism is variable and adjusts according to nutrient changes in the
cellular environment. For example, nutrient gradients are formed in tissues with
diffusion from vasculature, whereby some tissues need to be highly vascularized
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Cellular Metabolism

Figure 1.1: Metabolic Metro Map. Attribution: Chakazul. For interactive
exploration of metabolic pathways, visit the full Metabolic Pathways Map.

to perform their regular metabolism; cells that outgrow the vascular system will
eventually perish if cell metabolism does not compensate until more vessels are
developed. Other biomolecules that can fuel ATP production include fatty acids
(the other major contributor for energy conversion), amino acids, and lactate.

Glycolysis

In all cells, glucose is imported into the cell via glucose transport receptors
(GLUTs) and catabolized through glycolysis (Figure 1.2). It is a multi-step
process involving several enzymes, split into two phases. The first preparatory
phase requires investment of 2 ATP molecules to oxidize glucose. The second
pay-off phase generates 2 NADH molecules, 2 H+, 2 H2O molecules, and 4 ATP
for a net gain of 2 ATP per glucose molecule. Glycolysis is able to produce
ATP very quickly, despite the low output per glucose molecule. Additionally,
many glycolytic intermediates support macromolecular synthesis essential for

3
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1. Introduction

cell proliferation, such as nucleotides, lipids, and some amino acids [5]. The end
product of glycolysis is pyruvate and in hypoxic conditions, it is converted to
lactate via lactate dehydrogenase (LDH) in the cytosol for export out of the cell.
In normoxic conditions, it is transported into the mitochondria and converted to
acetyl-CoA by pyruvate dehydrogenase (PDH).

Figure 1.2: Overview of glucose metabolism through glycolysis. (A) Oxidation of
glucose in the preparatory phase. (B) Production of NADH, H+, H2O, and net 2
ATP in the pay-off phase [6]. Reproduced with permission from Wiley.

Oxidative phosphorylation

In the mitochondria, acetyl-CoA is subsequently decarboxylated through several
intermediate steps in the tricarboxylic acid (TCA) cycle (Figure 1.3). The TCA
cycle supplies essential cofactors for reactions in the electron transport chain
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Cellular Metabolism

(ETC), such as NADH and FADH2. This electron transport process in the
mitochondria is known as oxidative phosphorylation (OXPHOS), in reference
to the oxygen consumed and ATP produced from phosphorylation of ADP. The
ETC is a supercomplex spanning the mitochondrial inner membrane and consists
of five protein complexes. The movement of electrons and protons over the first
four complexes results in a proton surplus in the mitochondrial intermembrane
space. Proton shuttling occurs specifically at complexes I, III, and IV, while
complex II transfers electrons to complex III via ubiquinone. Electrons are carried
further from complex III to complex IV via cyctochrome c. At Complex IV,
oxygen is reduced to water by electron transfer. Complex V, or ATP-synthase,
combines ADP and a free phosphate to form ATP using the proton motive
force driven by the proton surplus in intermembrane space. Consequently, the
ability of the mitochondria to produce ATP is heavily reliant on its membrane
integrity, being able to uphold a proton motive force to support the ATP synthase
to produce ATP [7]. Assuming full coupling to ATP production, 32 ATP are
produced from catabolism of one glucose molecule [4], from glycolysis to oxidative
phosphorylation. Any disruption in the mitochondrial matrix allowing for proton
backflux outside of ATP synthase restricts ATP production, but can still allow the
running of the TCA cycle by re-cycling of NADH and FADH2 through the ETC.
Uncoupling proteins (UCPs) are one way for protons to re-enter the mitochondrial
matrix uncoupled from ATP-production [8].

Normal metabolic heterogeneity

Metabolic activity and fuel dependence varies in different cell types, from slower-
growing cells to fast-growing or highly-active cells. Neurons are an example of
slow-growing cells; they rely on oxidative phosphorylation to generate ATP as
they have a low capacity for glycolysis and fatty acid oxidation [10]. In contrast,
astrocytes have low OXPHOS, higher glycolytic rates, and an ability to oxidize
fatty acids. They are known to shuttle lactate and ketone bodies to neurons
as fuel [10]. Resting immune cells such as microglia [10] and lymphocytes [11]
rely on OXPHOS. However, when these cells are activated, they switch to utilize
more glycolysis. Slower-growing cells are the typical normal phenotype used for
comparison with cancer phenotypes. Fast-growing and active normal cells shift
metabolism from the mitochondria-centric OXPHOS to glycolysis for proliferation
and biosynthesis. The same occurs in muscle cells during intense exercise at the
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1. Introduction

Figure 1.3: Bioenergetics of the electron transport chain and the TCA/Krebs
cycle [9].

peak of maximal oxygen uptake; when cells need to maximize ATP production
under limited oxygen conditions, they resort to anaerobic glycolysis, churning
through available glucose and glycogen [12].

1.1.2 Cancer metabolism

As cells age, dysfunction accumulates in many essential cellular processes, such
as mitophagy, proteostasis, and nutrient sensing, ultimately resulting in altered
bioenergetics (reviewed in Paper IV). As autophagy is inhibited, these cells persist
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despite their dysfunction and perhaps due to the dysfunction conferring survival
in the surrounding degraded microenvironment [13]. Tissue remodeling [14],
aging vasculature [15], and lifestyle can alter access to nutrients and oxygen,
further selecting for those cells that thrive in such conditions. Eventually, the
cells’ dysfunction hits a tipping point whereby the cells are no longer reacting
to regulatory checkpoints on growth and are no longer recognizable as normal.
In contrast with normal cells, cancer cells do not require signalling from growth
factors and adhesion for continued proliferation, key hallmarks of cancer [16].
Metabolic reprogramming to support cancer growth and its microenvironment is
accepted as a hallmark of cancer as well [17].

From Warburg to present

It is almost 100 years since Otto Warburg first reported that cancer cell metabolism
differs from normal cells through their use of aerobic glycolysis [19], now termed
the Warburg effect. In hypoxic conditions, normal cells will utilize anaerobic
glycolysis, but in the presence of oxygen a return to oxidative phosphorylation
occurs. Warburg suggested this must be due to defective mitochondria and a
resulting energy shortage or adaptation to oxygen deprivation. In 1956 [20], he
reported on further experiments quantifying and supporting his former conclusions.
He confirmed that this shift can occur through injury to respiration and oxygen
deprivation. However, not all cancer cells express this exact Warburg phenotype.
Even Warburg alludes to this in his mention of “sleeping cancer cells” and
description of two cell lines from one clone with differing malignancy and levels
of aerobic glycolysis. Metabolic heterogeneity in cancer can lead to a potential
divergence in drug response and even detection and visualization of cancer cells
using standard methods. Chemotherapy targets fast-growing cells, which typically
exhibit Warburg (aerobic glycolysis) metabolism [5]. Meanwhile, cells that are
slower-growing and depend upon OXPHOS are less targeted or destroyed by this
treatment, leaving the resistant cells remaining, thus providing the potential for
recurrence or metastasis [21]. Understanding the inherent differences between
these two metabolic states can identify biomarkers to better stratify patient
responses to current drugs and reveal other, more effective anti-cancer therapies.

Some arguments against typical Warburg metabolism are that it is an
artifact of in vitro cell culture, driven by saturation with glucose in culture
media [22, 23] and that this is not a phenotype found in tumors in vivo [24].
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1. Introduction

Figure 1.4: Relationship of cell metabolism with cancer hallmarks [18].

Additionally, The “reverse Warburg-effect” is seen in primary and metastatic
breast cancer, and potentially in prostate cancer and melanoma. This is whereby
the tumor-associated stromal cells (fibroblasts, immune cells, adipocytes) have
been transformed to be more glycolytic by the cancer cells, and secrete lactate
that then fuels oxidative metabolism in cancer cells [25, 26]. That cancer cells
use lactate as a fuel is replicated in an analysis of non-small cell lung carcinoma
cells [27], but it is also important to note that the same study points to higher
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levels of oxidation of glucose in vivo. However, when performing metabolomic
analysis of tissue biopsies from pancreatic adenocarcinomas, Battini et al [28]
found significant differences from normal samples, pointing to higher glycolysis in
tumor cells. The reliance on glucose versus other fuels depends mainly on the
local environment and available nutrients and oxygen, with the main takeaway
being that a tumor is advantageously heterogeneous in its metabolism [29–31].
The space around tumors are found to be a lower pH than normal tissues, between
6.3 and 7.0 versus between 7.35 and 7.45, respectively. This is also typically
explained by a metabolic shift to aerobic glycolysis [19] and thereby increased
secretion of lactate in the tumor microenvironment (TME). However, it has been
found that what contributes most to the acidity is secretion of CO2, not lactate,
via increased catalysis by carbonic anhydrase IX [32].

Metabolism and the hallmarks of cancer

Altered metabolism can be tied to all of the hallmarks of cancer [17, 18] (Figure
1.4). This makes metabolism a potential target for inhibiting many cancer
processes, especially as most cancer cells exhibit divergent metabolism from
normal. Increased glycolysis can be linked to immune system evasion [33, 34] and
perturbed cell adhesion and metastasis [35, 36] via increased lactate secretion.
Perturbed OXPHOS affects both apoptosis and growth suppression, in favor of
cancer cell survival. Glycosylation changes can be linked to angiogenesis, immune
system evasion, and inflammation. Not only responsible driving hallmarks,
metabolic changes are driven by other hallmarks, such as genetic mutations and
instability (p53, SDH, FH, IDH1, Myc) [37]. Key aberrations to metabolism in
cancer have been defined into their own metabolic hallmarks [38] which can be
helpful to classify cells and tumors accordingly.

1.1.3 Metabolic biomarkers

Given the importance of metabolic abnormalities in cancer, analysis and detection
of metabolic phenotype is essential for clinical translation. This kind of insight is
typically provided by biomarkers. According the the National Cancer Institute’s
Dictionary of Cancer Terms [39], a biomarker is, “a biological molecule found in
blood, other body fluids, or tissues that is a sign of a normal or abnormal process,
or of a condition or disease.” Metabolism itself is not currently a standard clinical
marker for prognosis or drug response. However, research suggests a link between
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1. Introduction

tumor metabolism and clinical outcomes [28]. Biomarkers of metabolism are
therefore important for translating basic metabolic research into clinical practice.
Potential metabolic biomarkers include high content clinical imaging, protein
expression, and metabolic flux analysis.

High content imaging includes positron emission tomography (PET), combined
with computed tomography (CT, combined as PET/CT), is already used for
basic detection of cancer using 18F-fluorodeoxyglucose (FDG) to identify tissues
consuming a high amount of glucose. The radioactive glucose tracer is used to
visualize increased glucose uptake and overlayed with the detailed imaging of
bones, tissues, and organs from CT. Normal tissues that have high uptake are
the brain (high glucose consumption), kidneys (clearing of tracer), and bladder
(clearing of tracer), and any sites with active inflammation or infection. Any
other areas that have abundant FDG signal in the body are suspected cancerous
and a biopsy is taken to confirm, if possible. As mentioned previously, not all
cancers exhibit significantly increased glucose consumption so other indicators
may can be useful for further characterization. Other molecules of interest include
markers of proliferation (such as 11C-acetate, 11C-choline/18F-fluorocholine,
and 18F-fluorothymidine), markers of hypoxia (18F-fluoromisonidazole and
18F-fluoroazomycin arabinoside) [40], and 13C-glycerate for tracing glycolysis
specifically [41].

Tissue biopsies are already assessed histologically for some indicators, such as
Ki67 (marker of proliferation), H&E (visualization of the extracellular matrix and
nuclei to assess cell abnormalities), and other tumor specific molecular markers
such as hormone receptors in breast, prostate, uterine, and ovarian cancers. There
are many proteins that are involved in glucose metabolic flux, as shown in Figure
1.1, that could serve as metabolic biomarkers. Gene expression or sequencing
also offer some insight into molecular differences between cells, but are indirect
measures of functional units such as protein.

Specifically, essential proteins for metabolic function may serve as good
biomarkers of metabolic phenotype (Figure 1.5). Glucose transport proteins play
the most important role for glucose import into cells. The glucose transporter
family consists of 14 members where glucose transporter 1 (GLUT1) is the best
described and ubiquitously expressed [42]. Its increased expression is shown to
be associated with cancer aggressiveness [43]. Cancer cells that heavily rely on
glucose have altered metabolism to support the increased flux through glycolysis
[44] where lactate is shuttled out of the cell via the monocarboxylate transporters
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Cellular Metabolism

Figure 1.5: Simplified overview of glucose metabolism pathways with relevant
proteins labelled. Compounds used in metabolic flux assays are in red. The
lines show their respective targets in glycolysis and oxidative phosphorylation.
Other details of glucose metabolism are shown for further reference. Blue circles
represent protons. Orange circles represent electrons. Green pentagons represent
inorganic phosphate (Pi).

[45]. Monocarboxylate transporter 1 and 4 (MCT1 and MCT4, respectively) are
implicated in lactate import and export [46]. Their expression has been related to
glycolytic dependency [47] and already shown potential as metabolic biomarkers
[48]. Mitochondrial mass or volume in a cancer cell can give information regarding
the dynamics of metabolic flexibility [49]. Translocase Of Outer Mitochondrial
Membrane 20 (TOMM20) is a commonly used marker of mitochondria, as it is
involved in recognition and translocation of cytosolically synthesized mitochondrial
pre-proteins [50], thus crucial in mitochondrial biogenesis [51]. Furthermore,
another mitochondrial marker and involved in stress responses, is the uncoupling
protein 2 (UCP2), found ubiquitously expressed in mitochondria of many tissues,
and associated with tumorigenesis in CRC [52] and pancreatic cancer [53]. Specific
cancer metabolites such as 2-HG [54] may serve as metabolic markers as well.
However, normal concentrations can vary widely so monitoring baselines and
changes in metabolite levels on an individual basis is important. Analysis via
magnetic resonance imaging, blood or urine sampling over time in the same
patient is what can be the most useful to capture metabolic dynamics for the
best prognostic value.
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1. Introduction

1.1.4 Metabolism-targeting drugs

The rationale for targeting metabolism in tumors is that in their altered state,
optimized for survival in restrictive environment or for their specific dysfunction,
they are less flexible and unable to adapt to different processes as well as a normal
cell might. However, this remains a relatively small focus in cancer therapy. In
2017, Amoedo et al [55] identified 2358 studies in the clinical trials database
(clinicaltrial.gov) from the search combination of “cancer” and “metabolism”. As
of August 2021, this had increased to 4770, but is still only 5.7% of the total
registered cancer trials (84 322).

There are many anti-cancer agents being investigated for their ability to target
different aspects of cellular metabolism, from glycolytic and TCA cycle enzymes
to transport proteins to mitochondrial complexes; an exhaustive list can be found
elsewhere [56, 57]. The two drugs used in the studies here, metformin and 5-
fluorouracil, both target metabolism. Metformin gained attention as a possible
anti-cancer drug in 2005 due to its correlation with reduced colorectal cancer
incidence in diabetic patients prescribed the drug [58]. Other studies have also
shown improved survival in patients prescribed metformin compared to diabetic
patients on other drugs [59]. There are also studies showing no cancer-related
effects of metformin [60]. However, it continues to be of interest due to its low
cost and lack of major side effects. Unfortunately, it has not been as successful in
clinical trials as hoped. 5-fluorouracil (5-FU), an essential chemotherapy agent,
inhibits thymidylate synthase, which is responsible for production of dTMP
(one of the four base nucleotides in DNA) from dUMP, thereby inhibiting DNA
replication. Through its action within nucleotide metabolism, it is categorized as a
metabolism-targeting drug but its relationship to glucose and energy metabolism
is less understood.

1.2 Modelling cancer in vitro

The first steps to identify and test drugs that have anti-cancer activity largely
take place in 2D cell cultures. This is then tested in small animals such as mice
and rats and typically in non-human primates. Assuming efficacious effects are
still observed at this stage, it then goes into humans for a Phase I trial. However,
2D culture does not mimic in vivo human results [61] despite being human cells.
Cells in 2D culture are not exposed to physiological substrate levels and gradients.
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They are grown with a flat morphology that provides no cell-cell interaction,
extracellular matrix (ECM), and do not mimic the tumor microenvironment
(TME) (Figure 1.6A). In a 2D model, approximately 50% of the cell surface is
exposed to nutrients, an environment rarely achieved in vivo (Figure 1.6B). The
basic cell culture media used to supplement the cultures are not physiologically
relevant. Normal glucose concentration in blood plasma after fasting is 3.9-5.6
mM, with diabetes diagnosed in those with fasting blood glucose over 7 mM [62],
while standard culture medium contains 25 mM glucose. The renal threshold
for glucose in the blood is 10 mM [63], with glucose beyond this excreted in
urine. However, glucose concentration may reach 10 mM post-meal in a diabetic
individual. This concentration can be relevant for diabetic in vitro models,
but not for normal disease modeling, and certainly no physiological relevance
exists for glucose levels as high as 25 mM. The effect of these morphological and
environmental differences has a significant effect on the cancer cell behavior [64],
which may mask real responses to treatments in vitro.

Figure 1.6: Illustrated representation of A) tumor organization in vivo, B) 2D
culture of cells in vitro, and C) one example of 3D culture of cells in vitro in
spheroids. Red arrows denote direct exposure to nutrients and drugs and how
this differs between 2D and 3D culture.
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1.2.1 3D culture models

In contrast with 2D cultures, where cells are cultured side-by-side, 3D culture
comprises cells on top of one another as well, adding a third dimension (Figure
1.6C). Pre-clinical tests in small animals are commonly the first complex 3D
model of the cancer in the development process. However, it has been shown
that in addition to causing undue harm to the animals, the results are neither
reliable or reproducible, and difficult to translate to humans [65]. Animals used
in testing are normally homogenous, immuno-compromised, represent specific
exclusive phenotypes, and have divergent responses from humans in many ways
[66]. 3D in vitro culture offers the ability to model the major characteristics
of the in vivo tumor environment namely the ECM, multicellular organization,
and the possibility co-culture with fibroblasts and immune cells. For this reason,
3D cultures are recognized as the way forward for enhanced screening in cancer
research. Because of the more complex structure, gradients are formed from
the surface of the culture to the core (Figure 1.7); most notably of oxygen and
nutrients, thus driving changes to energy dynamics of these regions.

Different options exist for culture of 3D models. At the most basic level is
2.5D, which is just 2D cell growth on top of a matrix [67]. Although providing a
bottom layer of ECM for cell attachment, it lacks the same 360◦ environment for
both cell-cell and cell-matrix contact. As well reviewed by Weiswald et al [68],
there are many ways to refer to 3D cultures in literature, but the terminology
is inconsistent. The first mention of 3D cell culture was by Sutherland [69], as
“multicell spheroids”. While these cultures were sourced directly from tumor-
derived cells, the term “spheroids” now refers more to culture of established cell
lines. This is in contrast to freshly derived cells from tissue which is referred to
generally as an organoid [70]. It is also important to note the difference from cell
aggregates, that are not organized in 3D, but are just a collection of detached
cells, loosely associated, which should not be described as a spheroid or organoid.

3D cultures can include scaffold-free cultures, cultures in a scaffolding matrix,
and the most complex models, microfluidic chip devices. The matrices and
scaffolds used for 3D culture come in a wide variety from synthetic polymers [71]
to biological ECM from animal [72–74] and plant sources [75, 76]. Although not
the focus of this thesis, 3D cultures also offer the ability to study biophysical forces
present in the 3D TME, such as between cells, cells to matrix [77], interstitial
pressure, and oxygenation [78].

14



Improving cancer targeting and testing

Figure 1.7: 3D culture microenvironment [64].

1.3 Improving cancer targeting and testing

The potential for 3D culture to enhance drug targeting and improved testing in
cancer lies early in the drug development process. The current drug development
process in the USA, regulated by the FDA, is comprised of many steps and can
take 10-15 years from start to finish [2]. The first step encompasses research and
development (lead generation) and pre-clinical testing (lead optimization) can
take from 1-3 years, and perhaps even more if basic research into targets and
compounds is included before this. During this time, short-term animal testing
may begin in order to identify the translation potential of findings, safety, dosage,
and efficacy. The next step involving clinical trials in humans is done in three
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phases which together can take 2-10 years to complete. Long-term animal testing
can take place concurrently. After clinical testing is done, the FDA approval
process for a New Drug Application (NDA) takes up to a year.

When looking at the total cost of developing a single successful new molecular
entity (NME), it requires on average 24 candidates in the beginning of the pipeline
and a total of US$1.778 billion (15.2 billion NOK) (Figure 1.8) [2]. This bottleneck
in the development process has been referred to as “the productivity crisis” [79]
and has been described as Moore’s law in reverse, or Eroom’s law [80]. While
Moore’s law describes the exponential growth in efficiency in a technology (“the
number of transistors that can be placed at a reasonable cost onto an integrated
circuit”) and many R&D processes have experienced this, drug approval has had
the opposite trend. Whereby the number of new drugs per billion US dollars
spent in R&D has halved every 9 years since 1950 [81]. If this bottleneck can
be reduced, with just half the number of candidates entering the process due to
better pre-screening methods and thus increased success rates, it could reduce
costs to US$889 million (7.6 billion NOK). Data since 2010 do suggest that drug
approval is on an upswing in the past decade [80], however this is not specific to
oncology and it remains to be seen if the trend will continue.

Figure 1.8: R&D costs to discover and develop a single new molecular entity
(NME). Cost per successful launch is capitalized cost. Prior to Target-to-hit, there
is target identification and target validation where many potential candidates are
also screened. Figure reproduced and adapted from Paul et al [2] with permission
from Springer Nature.
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1.3.1 Drug discovery

In the 1990s, in response to the productivity issues in R&D, there was a shift
to target-based high-throughput screening (HTS) [81], but this did not coincide
with an increase in drug development efficiency. When discussing HTS there is
a range of what this includes. In compound screening, this could mean testing
a collection of thousands (105) of drugs using highly-parallelized, automated,
and miniaturized 2D assays in 384-, 1536-, or 3456-well microtiter plates [82].
However, when talking about high-content phenotypic assays, with more complex
analysis and sample handling, HTS peaks at the level of 96-well or perhaps
384-well plates. For 3D culture formats, a reasonable goal is this magnitude of
reproducible HTS. This is a consideration in the development of 3D culture assay
systems. A microfluidic or lab-on-a-chip system, while possibly more biologically
relevant, may only serve as a basic research tool and not for drug development
if there is no option for higher-throughput parallelization. The right balance of
complexity and resource cost has to be found to have a quality in vitro model to
improve the drug development process.

Target-based and Phenotypic Drug Discovery

The ideal cancer drug would target all cancer cells and leave normal cells unharmed.
However cancer biology is complex and targeting treatment in groups of like
cancers is more feasible. Knowing which groups are most sensitive to a potential
treatment based on certain markers is how we achieve personalized medicine. In
recent history, this has been undertaken via target-based drug discovery (TDD)
[83], focusing on common gene mutations and important signalling pathway
proteins (Figure 1.9). Many targets identified in this manner come from promising
early research, but have resulted in lackluster outcomes later in validation testing.
Working on simplified, homogeneous model systems can amplify small positive
effects and blind to inhibiting factors and complexities. There are many new drugs
are targeted to gene mutations [84], while only 10% of cancers have been tied to
familial gene mutations. For this reason, a more foundational and phenotypic
approach to target cancer is more promising. Phenotypic drug discovery (PDD)
is in contrast with TDD, but is how most drugs were discovered before the
current technological and molecular science revolution. PDD is supported by the
ability to monitor behaviors in a culture of primary cells from patients and 3D
cultures. However, a combination of biomarkers and TDD while monitoring the
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real effect of such targets with PDD results in mechanism-informed phenotypic
drug discovery (MIPDD), a powerful tool in the search for clinically relevant
therapies [83] (Figure 1.9).

Figure 1.9: Personalized medicine and target identification in drug discovery [83].
Reprinted with permission from Springer Nature.

Mechanism-informed phenotypic drug discovery

Many robust options exit that can yield insight into functional phenotypes of
cancer cells for MIPDD, specifically metabolic phenotypes. Analyzing metabolic
flux is one way to do this. Metabolic flux can be described as the movement of
molecules through metabolic pathways. The balance of different metabolites in
the process, their rates of turnover, and what pathways are used are characteristics
of flux and help define the cell’s metabolic phenotype. Different methods exist
that can indirectly assess this flow of molecules. Stable isotopes (13C, 18F)
can be used to label substrates like glucose to trace how the labelled carbon
is integrated into final measured metabolites. The positioning of the labelled
carbon gives some insight into the pathway taken to get to a specific endpoint. It
requires heavy data analysis and modelling to extract metabolic flux maps from
the raw data. Metabolomics, assessing pools of metabolites in a cell population,
gives some data on the ratio of molecules and thus some insight into favored
pathways or substrates. Live measurement of oxygen consumption and proton
excretion is another way to assess metabolic flux. Monitoring these metrics while
injecting different reagents that affect metabolic pathways is the principle of the
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Seahorse Analyzer instrument. By combining reagents in specific orders, insight is
gained into the cell’s metabolic phenotype with regard to mitochondrial function,
glycolytic capacity, and also utilization of other substrates. However, to achieve
the most relevant insight into function, the cells should be in more relevant culture
conditions such as 3D culture.
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Aims of Study

The aim of this thesis was to investigate metabolic phenotypes of cell line models,
the potential biomarkers thereof, and how this could relate to drug response in
cancer. To achieve a more physiological culture environment for both metabolism
and drug response experiments, physiological glucose levels and 3D cancer cell
line models were used.

2.1 Objectives

• Study the effect of glucose concentration and metabolic phenotype on
response to mitochondria-targeting drug metformin in colorectal cancer cell
line models

• Analyse the metabolic flux of models in a Seahorse metabolic analyzer to
compare differences between 2D and 3D cell line models of colorectal cancer
and pancreatic ductal adenocarcinoma

• Measure the response of 3D culture models of colorectal cancer and
pancreatic ductal adenocarcinoma to chemotherapy drug, 5-fluorouracil
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Material and Methodological
Considerations

3.1 Culturing cancer cells in vitro

A major goal in cancer research is to understand cancer biology at a deeper level
and test relationships between markers and drug response. However, only so
much information can be gleaned from endpoint testing of tumor biopsies, and
animal models have many disadvantages. Because of this, in vitro cell culture is
how fundamental cancer research is performed. Here we are working with in vitro
culture models using established cell lines. Colorectal cancer has been the focus
of our group due to the high incidence rate and direct metabolic relevance of the
gastrointestinal cancer type. Pancreatic cancer is also of high relevance due to
its high mortality rates, association with metastatic colorectal cancer, and low
representation in metabolic research [55]. In the first paper, two cell lines were
used, SW948 and SW1116, that were already under study for their metabolic
characteristics in the Hagland lab. As the focus in later papers were on 3D
spheroid models, SW1116 was not included due to the suboptimal culturing and
3D characteristics (discussed more below). HCT116 was chosen as an alternate
CRC model due to its interesting metabolic phenotype and well-documented 3D
qualities. The PDAC cell lines (Panc1 and MIA-Pa-Ca-2) were also chosen to
be of differential metabolic phenotypes and having recorded spheroid forming
properties.

Beyond the cell lines used, the media is the next most important variable
in vitro. Here, we used standard DMEM supplemented with high (25 mM) and
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low or physiological glucose (5 mM) in Paper I as a comparison of the effect.
After this first study, the others were carried out only in physiological glucose.
The importance of nutrient supplementation is well researched, but perhaps is
not as widely known as it should be, especially outside the metabolism and
stem cell fields. In stem cell cultures, growth factors and nutrients are known to
activate and differentiate cells [85]. With the propensity of cancer cells to also
exhibit stemness properties [86], it is surprising it is also not a more substantial
consideration in cancer research. Glucose as a supplement is the obvious focus for
our research, but other supplements are also important to consider in vitro such as
uric acid [87] and several micronutrients [88, 89]. The media surrounding the cells
can only be optimized so much, however. There is a certain point where no matter
how optimized the liquid formulation is, the morphology and micro-environment
of the cells in 2D are very different from the in vivo TME. This is why we began
working with 3D culture models.

3.1.1 3D Culture

3D culture is a very general term that covers many methodological techniques.
There were two main methods used in this thesis, culture in hanging drops and
low-attachment round-bottom plates. There are many commercial solutions
available for spheroid culture, and they can be useful for specific applications,
but basic lower-cost methods are equally easy to work with as more expensive
options. The reason these two methods were chosen was to start with simple
methods that produce reproducible single spheroids [90]. Before introducing more
variables such as embedding in a matrix or co-culture, basic characteristics had
to be assessed in these simple scaffold-free cultures which are easier to work with
and analyse. Low cost was another requirement, both to reduce our own costs,
but also because price and complexity are major perceived barriers to entry in to
3D culture, in addition to reproducibility [91]. The cost to run basic assays in
3D should not be much more than 2D if more labs are going to implement them.
This is another consideration: being able to achieve the same high-throughput
level that is achieved in 2D. There are perhaps some better options for more
high-throughput formation of spheroids for some destructive assays, but the
methods here fit the level of high-throughput limitations in other areas, such as
microscopy (Paper III) and also Seahorse assays (Paper II). The decision to use
hanging drops and round-bottom plates depended on the analysis needed and the
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best method upstream of these. The microscopic analysis of the spheroids could
have been improved in a 384-well format but this increases the difficulty of media
exchange in such low-volumes and best fits the use of a liquid handling system.
This could be a next step. Other methods to produce high numbers of spheroids
at once would be ideal for the flow cytometry analysis such as micro-well mesh
[92] or hydrogel droplet formation of spheroids [93].

The need to use cell lines with documented spheroid-formation presents a
major limitation in this type of work. When working with suspension cultures
only, some cell lines may not form spheroids (for example, SW1116). Embedding
in a matrix can help, as we experimented with collagen I matrices, but even
then formation is not guaranteed. This may force analysis to only take place on
certain cell models and bias results. More research is needed on the difference
between cell lines and what affects the ability to form spheroids. This could be
an important characteristic to consider in itself and what it may represent in
terms of cancer aggressiveness and potential drug response. The contribution of
epithelial-to-mesenchymal transition (EMT) properties are an interesting avenue
to investigate for this [94]. Media supplements that may be essential for spheroid-
formation should be considered as well, such as methylcellulose and collagen
[95].

Some preliminary work was done with more complex, microfluidic systems.
However, with time taken to initialize the set-ups and throughput being an
issue, the results did not reach a publishable stage. The CellDirector3D from
Gradientech is a microfluidic device with a single chamber large enough to
accommodate spheroids and also offer continuous fluid flow, as well as gradient
formation across the culture area. It was investigated for studying the effect of
nutrient and drug gradients on spheroid(s) growth and cell migration in a collagen
matrix. While we did author an application note [96], further development was
not able to be done to take this project further. AIMBiotech 3D cell culture
chips offer the opportunity to introduce fluid flow and form gradients in a 3D
channel. They were used for 3D culture of colorectal cell lines in collagen matrices
with fibroblast co-culture to investigate the effect of directional fluid flow and
cancer-associated fibroblasts on cancer cell growth and migration. A master
student project was dedicated to this study [97], but was not developed further.
The dimensions of these chips do not allow for culture of spheroids of relevant
sizes. Finally, the Ibidi µ-slide spheroid perfusion slide is designed for spheroids
cultured in parallel, with fluid flow through the channel possible from volume
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differentials in opposing media ports. This was tested for graphene nanosheet
uptake [98] in spheroids, but also holds interesting potential for cancer co-culture
and metastasis modeling.

3.1.2 Drug treatment and long term culture

When planning the experiments to test response of spheroids to 5-fluorouracil,
biological replicates had to be balanced with technical considerations of longer-
term culture and throughput limitations of microscopy. The cell lines were treated
in tumor groups, with CRC together and PDAC together, and two plates of each
cell line were prepared, resulting in 20 replicates at once for each experiment. This
was the same in 2D as well, and as the imaging of (8) 96-well plates takes some
time, only transmitted light images were taken at regular intervals. The more
time-consuming volume stacks of viability using fluorescent dyes were limited to
after treatment rounds. In total, the spheroids were cultured for over 3 weeks.
Between treatments, media was exchanged every other day to avoid glucose
starvation, but as shown in Paper II, over the 4-day treatment period, glucose
was not entirely exhausted in the cultures, only dropping to 1.1 mM. Also, at
these low glucose levels, lactate remained within a normal range [99].

3.2 Metabolic flux

Seahorse was used for metabolic flux analysis because it probes the live, dynamic
metabolic state of the cell. The metabolic flexibility to adapt to acute changes
in the environment is an interesting phenotypic characteristic we wanted to
incorporate. This is still a relatively new system from 2006, performing some
of the same measurements of other systems such as the Oxygraph-2K [100], the
Clark electrode [101], and other fluorescent or luminescent reporter systems [102].
The Oxygraph is the most accurate for mitochondrial analysis as it is completely
closed system, with very high sensitivity and resolution. The main benefit of
Seahorse over the Oxygraph is that it enables assay of adherent cell culture in 2D
or 3D, therefore requiring less processing and potentially more relevant results.
It is designed to form a microassay chamber within the well when the probe
lowers, decreasing the assay volume to 7 ul and able to largely minimize oxygen
exchange during the short measure time. The potential oxygen leak is taken into
consideration in any data analysis where this makes a difference, such as ATP
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production. Other benefits include higher throughput testing and simultaneous
measurement of pH and oxygen. As the semi-closed chamber is formed, this
does not require a completely closed system. Injections are integrated into the
assay cartridge and it automatically calibrates. The disadvantages are perhaps
not exclusive to the Seahorse system and are detailed below to some degree.
Other options for metabolic flux analysis are isotope tracing and metabolomics,
but these are more indirect measurements and do not allow for the same acute
functional assays as Seahorse and other respirometers.

3.2.1 Technique: 2D v 3D

Seahorse has good standard operating protocols for measurement in 2D, but
common practices in 3D measurement are lacking. More experience and data
for this application area was one of the outcomes of this thesis. One of the
major hurdles in 3D analysis is working with cell lines that form well-structured
spheroids. Since the spheroids have to be transferred to the assay plates, a
successful assay depends on effective transfer. Here the choice was made to grow
spheroids in hanging drops because of the relative ease of transfer from these to
the plates in a multichannel format. It is much easier to control the pipetting
and track if a spheroid is in the pipet from the plate lid than from the wells of a
round-bottom plate. After transfer, placement is very important. The spheroid
is ideally placed in the center of the well for the best detection of signal by the
sensor. This can be the most time-consuming part of the process and introduces
significant variation in incubation time before the assay is run. For the studies
described in Paper II, a pipetting guide was designed, 3D printed, and used for
this purpose [103].

The seahorse plate is designed to have beneficial flow through the well to
promote exchange of molecules in the media and also to prevent movement of
the spheroid. However, coating the plate with CellTak is still recommended by
Seahorse to make spheroids more stable. Because of the design of the plate, the
complete removal of the high-pH CellTak solution is difficult, which can cause
some effect on the assay pH as well as introduce bubbles. This is a hindrance for
normalization as well. Avoiding CellTak may be recommended for these reasons.
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3.2.2 Assay design and chemical considerations: 2D v 3D

In 3D Seahorse assays, higher cycle numbers are used after some reagent injections
to ensure enough time for diffusion into the spheroids. Basal readings are more
unstable at first, perhaps due to settling of the spheroid in the well after initial
agitation. Oligomycin was the most difficult to infiltrate the spheroid, and this is
experienced by others as well [104]. However, response to CCCP was immediate
and did not change over several readings. CCCP is recommended by Agilent to
be titrated over a range to find the maximum respiration achievable. This was
done for both 2D and 3D, so this could be why there are clear reactions to the
concentration used. This is not currently a suggestion for oligomycin, but given
the results, it should be a consideration. Even with a higher concentration, they
may not show a rapid reaction, primarily due to the limitation of the method
of action of oligomycin. This response to oligomycin could be an interesting
characteristic of spheroid metabolism, specifically ATP-synthase function.

3.2.3 Data analysis and normalization

Agilent and Seahorse have produced many standard assays and analysis workflows
for metabolic analysis, but consistency in data analysis and presentation is still a
problem in the field. Setting aside the limitations of Seahorse macros for custom
assay designs, there are no recommendations or workflows for assessing data
quality. Some published data from Seahorse is still not normalized, making it very
difficult to compare between studies. When normalized, the method tends to vary.
The two main ways to normalize are by protein content and cell number. Both
of these have their limitations and values are not comparable between the two.
This is why the Seahorse data here (Papers I and II) are presented normalized to
the basal reading. This loses resolution at the absolute level, but as the purpose
here was to compare metabolic phenotypes, it enables comparison of cells that
vary in absolute metabolic activity. Finally, the overinterpretation of Seahorse
data should be avoided. While it has the ability to yield important information
on the dynamic metabolism of cells, it is not a representation of physiological
environment and some parameters are ambiguous [105].
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3.2.4 Terminology

Something that is not discussed enough is the terminology used around some
of the assays. Specifically “maximum respiration” after FCCP/CCCP. This has
been an issue for discussing our own data analysis during the peer-review process
and it deserves more discussion. We find that some cancer cells do not experience
measurable spare capacity in certain conditions and this could be due to the
inability to overcome ATP-synthase inhibition by oligomycin [106] or due to
only simulated ATP demand [107]. This is something not addressed in most
Seahorse publications, but important to note. It may be worthwhile to also run
an assay without oligomycin (both for titration and functional assay) to establish
maximum oxygen consumption without ATP-synthase inhibition.

3.3 Metabolic biomarkers

Standard clinical biomarkers are typically assessed from liquid biopsies and also
tumor biopsies. Liquid biopsies typically include blood and urine samples and
analysis of these are quite robust but general. They are good candidates for
analysis of metabolites via metabolomics. Tumor biopsies are used to study the
standard markers and more specific molecular markers using basic cell stains and
immunohistochemistry. Since this project is being carried out in vitro on cell
culture, these standard clinical methods are not used and one objective of this
thesis was to investigate new markers.

Metabolomics and gene expression are good for finding marker candidates
with significant changes, but are costly. Protein expression was preferred due to
the direct measurement of the functional properties of the cell. Gene expression
can give insight into demands of the cell, but there can be some disconnect in
gene expression and protein expression [108] due to complex epigenetic control
processes. There are many steps and controls in the process from DNA code to
gene expression (mRNA) and ultimately proteins.

Here flow cytometry was used in an attempt to quantify protein expression on
single cells, with capability of resolving any heterogeneity in protein expression.
Immunohistochemistry is an ideal method to compare to other studies though, due
to less variables in the process, being a common method in research and the clinic,
and offering spatial view of differential expression. The drawbacks are that it is
not a high-throughput method and is very time and resource intensive. For these
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reasons, flow cytometry was chosen. As mentioned above, spheroid production
for this method was a limiting step. Implementing a much higher-throughput
method of spheroid production could improve the data by yielding many more
cells for analysis. The proteins analyzed were chosen based on their function in
glucose metabolism, reporting on key transport processes in the cell (Figure 1.5).
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4.1 Paper I

Metformin treatment response is dependent on glucose growth
conditions and metabolic phenotype in colorectal cancer cells

Background

Cancer cells exhibit altered metabolism, a phenomenon described a century ago by
Otto Warburg. However, metabolic drug targeting is considered an underutilized
and poorly understood area of cancer therapy. Metformin, a metabolic drug
commonly used to treat type 2 diabetes, has been associated with lower cancer
incidence, although studies are inconclusive concerning effectiveness of the drug
in treatment or cancer prevention. The aim of this study was to determine how
glucose concentration influence cancer cells’ response to metformin, highlighting
why metformin studies are inconsistent. We used two colorectal cancer cell lines
with different growth rates and clinically achievable metformin concentrations.

Results

We found that fast growing SW948 are more glycolytic in terms of metabolism,
while the slower growing SW1116 are reliant on mitochondrial respiration. Both
cell lines show inhibitory growth after metformin treatment under physiological
glucose conditions, but not in high glucose conditions. Furthermore, SW1116
converges with SW948 at a more glycolytic phenotype after metformin treatment.
This metabolic shift is supported by changed GLUT1 expression.
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Conclusions

Thus, cells having different metabolic phenotypes, show a clear differential
response to metformin treatment based on glucose concentration. This
demonstrates the importance of growth conditions for experiments or clinical
studies involving metabolic drugs such as metformin.

4.2 Paper II

Metabolic flux analysis of 3D spheroids reveals significant
differences in glucose metabolism from matched 2D cultures of
colorectal cancer and pancreatic ductal adenocarcinoma cell lines

Background

3D cell cultures are the emerging standard for in vitro cancer cell models, being
more representative of in vivo tumour conditions. To overcome the translational
challenges with 2D cell cultures, 3D systems better model more complex cell-to-
cell contact and nutrient levels present in a tumour, improving our understanding
of cancer complexity. However, there are few reports on how 3D cultures differ
metabolically from 2D cultures, especially when grown in physiological glucose
conditions (5 mmol/L). Well-described cell lines from colorectal cancer (HCT116
and SW948) and pancreatic ductal adenocarcinoma (Panc-1 and MIA-Pa-Ca-2)
were used to investigate metabolism in 3D spheroid models. The metabolic
variation under normal glucose conditions were investigated between 2D and 3D
cultures by metabolic flux analysis and expression of key metabolic proteins.

Results

We found significant differences in glucose metabolism of 3D cultures compared to
2D cultures, both related to glycolysis and oxidative phosphorylation. Spheroids
have higher ATP-linked respiration in standard nutrient conditions and higher
non-aerobic ATP production in the absence of supplemented glucose. In addition,
ATP-linked respiration is significantly negatively correlated with OCR/ECAR
(p=0.0096). Mitochondrial transport protein, TOMM20, expression decreases in
all spheroid models compared to 2D, and monocarboxylate transporter (MCT)
expression increases in spheroids in 3 of the 4 cell models.
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Conclusions

Studies in cancer cell metabolism should consider that 2D metabolic analysis
does not replicate spheroid metabolism. This study presents a comparison of
how metabolic flux, metabolic biomarkers, and nutrient utilization differ in
corresponding 2D and 3D grown cancer cell lines of colorectal and pancreatic
origin. The results emphasize the need to use more complex 3D cell models for
investigation into nutrient utilization and metabolic flux for a better understanding
of tumour metabolism and possible therapeutic targets.

4.3 Paper III

Increased response of CRC and PDAC multicellular spheroids using
long-term culture and multi-round exposure to 5-fluorouracil

Background

The current drug screening protocols use 2D-grown cancer cell panels in vitro to
evaluate drug responses and select the most promising candidates for further in
vivo testing. Most drug candidates fail at this stage, not showing the same efficacy
in vivo as seen in vitro. An improved first screening that is more translatable to
the in vivo tumor situation could aid in reducing both time and cost of cancer
drug development. Here we address some of the shortcomings in the current drug
screening protocol. We show how treatment with 5-fluorouracil (5-FU) in 2D and
mathed 3D culture models of colorectal (CRC) and pancreatic adenocarcinomas
(PDAC) give very different responses with regard to growth inhibition. Growth
and viability are assessed in spheroids over long-term multi-round treatment and
results are discussed with regard to the metabolic phenotypes of the models.

Results

The multi-round 3D screening is able to show more robust response than standard
2D drug screening, including resistance to therapy. Results from 2D cultures
both over and underestimate drug response at different concentrations of 5-FU.
In 3D, only by the end of the second round of treatment do CRC models reach
50% inhibition at clinically achievable concentrations. The PDAC models are
not strongly inhibited at clinical doses even after two rounds, with MIA-Paca-2
demonstrating regrowth after all but the highest dose. High content viability
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metrics point to even lower response in the resistant PDAC models. Higher
maximum effect of 5-FU is seen in models with lower OCR/ECAR ratios, an
indication of a more glycolytic metabolic phenotype.

Conclusions

This study reveals the limitations of testing drugs in 2D cancer models and even
short exposure in 3D models. Longer exposure and multi-round treatment is a
viable and effective way to assess drug response. This is useful for evaluating
sensitivities to drugs already widely in use, and screening those in the discovery
pipeline. Lastly, identifying tumors with chemoresistance related to oxidative
metabolism has high potential for targeting by metabolic drugs to increase
chemosensitivity.

34



Discussion

5.1 Cell metabolism is complex yet important to characterize

Cell metabolism is dynamic and offers integral information about a cancer. The
fact that cancer does exhibit altered metabolism compared to normal cells is an
early insight by Otto Warburg that predates even a universal acceptance of the
origin of cancer [19]. It is considered a cancer hallmark and is one of the major
explanations in epigenetic or extragenetic drivers of cancer (Paper IV). However,
it is not as simple as first theorized by Warburg. Cancer metabolic phenotypes
exist on a sliding scale of dependence on glycolysis and oxidative phosphorylation,
and this is just with respect to glucose metabolism. The importance of other
metabolic pathways altered in cancer cannot be understated and there is much
research being done on the metabolism of fatty acids [109] and amino acids [110]
in cancer.

In Paper I, the differences between the two studied cell lines are very clear,
despite displaying similar levels of OXPHOS, the faster-growing cell line (SW948)
was significantly more glycolytic than SW1116. Upon analysis of even more cell
lines as in Paper II, clear categorization into either glycolytic and OXPHOS are
difficult. HCT116 is the most glycolytic when comparing based on OCR/ECAR
ratio, and MIA-Pa-Ca-2 the most oxidative. However, if also considering spare
capacity for glycolysis and respiration, measures of metabolic flexibilty under
acute stress, and inclusion of other metabolic analysis methods, phenotypes
become quite complicated [18]. This is why it is important to perform metabolic
analysis of each sample for a clear picture of individual cell models’ phenotypes.
Having informative and quantitative metrics to report these metabolic differences

35



5. Discussion

is needed so comparisons between studies can be done [111]. This is attempted in
Paper II, but a concerted standardized approach by the field at large would be big
step in the right direction. Metabolism and more specifically cancer metabolism
is certainly a niche field, but would benefit from standardized methods and data
reporting, as discussed in detail in the methodology chapter.

5.2 The in vitro nutrient environment alters cell metabolism
and drug response

The measurement of metabolism in vitro is important for fundamental research and
to fully understand characteristics of cells cultured in vitro. In vitro culture is the
first way to screen for cancer characteristics and responses before choosing to move
forward with testing in more advanced models. We know more about culturing
cells now than we did 70 years ago, when basic culture practices and media were
first formulated. Many challenges from then have been overcome and it is now
easier than ever to culture primary cells. When establishing cultures now, short
doubling time should not be the goal, but maintaining physiological phenotypes
as much as possible. Proper nutrient conditions are the main requirement for
this. In Paper I, we show how much the glucose concentration affects metabolic
phenotypes and drug response. From there, the effect of culturing in 3D versus
2D has a large effect on the metabolic phenotype (Paper II) and drug response
(Paper III).

Perhaps intuitively, the level glucose in culture medium affects glucose
metabolism and, by extension, drug response. We have used 1 g/L glucose
(5 mM), as the average concentration of blood glucose in a fasted state is 3.8-5.5
mM [63]. Some groups haveused even lower glucose levels (e.g. 0.75 mM) to
reflect much lower glucose concentrations present in tumor tissues [112]. In
Paper I, there is a distinct difference in glucose sensitivity between the two
colorectal cancer cell models used. SW1116 was more proliferative in low glucose
(5 mM) than high glucose (25 mM) and did not have spare glycolytic capacity.
Impaired glucose utilization has been linked to increased sensitivity to biguanides
such as metformin [112]. However, that particular study examined much lower
glucose concentrations than ours. We found that the relationship between glucose
concentration and response to metformin was mainly due to metabolic differences
exerted by the glucose levels, as glucose does not directly affect the function of
metformin. The effect of glucose on GLUT1 levels presented in Paper I is an
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example of how these conditions can make analysis of biomarkers difficult as
well. For this reason, when carrying out the later studies (Papers II and III) only
physiological glucose levels were used. Once the first study was done, no reason
remained to continue to double the resources with irrelevant culture conditions.
There are many other media components not addressed here, but have been
implicated to also be important for more physiological in vitro culture: uric acid
[87], amino acids such as citrate, acetate, and numerous minerals and cofactors
[88, 89].

3D culture differs from 2D culture mainly in the presence of 360◦ cell-cell
contact and natural gradients of nutrients and oxygen [113]. These have a
downstream affect on metabolism, and further in a constant feedback loop on cell
growth and drug response. We found higher ATP-linked respiration in standard
nutrient conditions and higher non-aerobic ATP production in the absence of
supplemented glucose (Paper II). Our finding that glycolysis is upregulated in
spheroids, stands in agreement with what others have found [114–118], with
some exceptions [119, 120]. However, not only do we find upregulated glycolysis,
but also higher ATP-coupled respiration. This has not been reported before,
but could fit with some other findings of the lower response of ATP-synthase
to oligomycin in spheroids [104] and also a decreased number of ATP-synthase
subunits [121]. The changes in protein expression were difficult to interpret, but
deserve more analysis going forward, as both TOMM20 could serve as a marker of
mitochondrial volume/function and MCT as an interesting marker of metabolic
phenotype and perhaps nutrient shuttling [122]. This along with other results
of higher ATP production without glucose, introduces complexity in metabolic
changes and also fits with others’ findings of 3D culture having much more variety
of nutrient sources and metabolism [117, 119, 121, 123]. This is intuitive given
the more heterogeneous nature of cells in 3D culture compared to 2D culture.

Additional culture conditions are also not addressed in the studies here but
remain relevant. For example, the oxygen level in tissues is not as high as that in
the air (21%, pO2 = 149 mmHg), and varies considerably among different tissues:
as low as 8 mmHg in the epidermis, 57.6 mmHg in the large bowel, and peaking
at 108 mmHg in the alveoli [124]. Oxygen levels have an effect on the cellular
metabolism and mitochondrial activity [6, 125]. By using 3D culture models, we
have aimed to achieve this naturally via the spheroid’s hypoxic core [113, 126–128].
The studies here have been focused on large single spheroids in order to model
this effect. While we have not focused on studying oxygen profiles and the effect
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thereof in the spheroids ourselves, there is much research being undertaken by
others. In early spheroid studies, the metabolic shift and cell viability in spheroids
was apparent but also noted to be more complicated than just due to nutrient
and oxygen gradients alone [126], a finding which holds decades later [129, 130].
Oxygen and pH sensitive markers for fluorescent microscopy have been used to
show significant nutrient gradients in spheroids, and this was the major cause of
cell death, not oxygen depletion [117]. Oxygen mapping in spheroids have also
been elegantly done using a small-molecule phosphorescent probe coupled with
lifetime imaging, with potential for use in the clinic [131].

5.3 3D culture models are necessary for relevant in vitro
drug screening

In Paper II, the effect of 3D culture on drug screening is clear. Results from 2D
cultures both over and underestimate drug response at different concentrations
of 5-FU. They overestimate in that lower concentrations trigger a maximum
inhibitory effect that is not achievable in 3D. This is widely represented in many
studies [132]. However, 2D cultures may also underestimate response, in part
due to increased target expression in 3D culture [133]. Also, in typical high-
throughput 2D culture for assays, the culture time may be shorter due to the
culture vessels used and the growth dynamics of cells in a monolayer. This shorter
exposure period does not allow the same maximum effect of a drug, regardless of
concentration, that can be reached in 3D cultures over long-term culture with
two treatment rounds. The multi-round 3D screening is able to show more robust
response than standard 2D drug screening, including resistance to therapy. It
seems this long-term culture and treatment regime is not common practice in
vitro outside of toxicology models [134], and is a highlight of this work.

The ability to introduce more complexity in the therapy regime in vitro is
one of the main benefits of screening with 3D culture. This would be enhanced
even more by culturing under constant flow and media exchange to mimic more
what is happening in the body with proximity to blood and lymphatic vessels.
Some different microfluidic models have incorporated both seeding and culture of
spheroids under flow are interesting examples for furture implementation [135–
137]. To take this further, inclusion of a culture matrix is an important feature as
well, considering the relation of the ECM to the cancer hallmarks [138], including
metabolism.
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With the extra dimension added going from 2D to 3D culture, extra
consideration in analysis is required as well. Metrics such as confluency and
absolute viability used in 2D culture do not transfer simply to 3D culture. In
3D, viability analysis requires more nuance, as presented in Paper III, with very
healthy spheroids exhibiting strong dead cell staining due to large necrotic cores
from significant growth. There, many measurements extracted from viability
staining were integrated into principal components for the purpose of extracting
trends from different cell types and treatment concentrations. The different
viability staining patterns between cell lines points to the different organization
and morphology of spheroids between cell lines and tumor sources. Beyond just
necrotic core development, over this long culture period we see what has been
referred to a spheroid cracking or tearing [139], whereby the spheroid loses its
structure. This is a challenge in comparing controls to treated samples, when
relying on size. The larger the spheroid grows and the more it is thriving, the
sooner this may happen. This was only encountered in the CRC spheroids. What
seems to be occurring is that the spheroid grows so large and the depth at which
nutrients and oxygen infiltrate does not change, while the necrotic core grows
larger. The ultimate structural failure has been theorized to be due to the loss of
volume in necrotic cells while they still maintain adherence to other cells [130,
140]. This has been found to vary among cell types [130], depending on growth
dynamics, which fits well with the differences seen here between the cell lines.
Other indicators that become relevant in 3D culture include density [141] and
refractive index [142].

Consistency is key in the success of any emerging method. In order for
comparative and usable results to come to of 3D culture, full details of methods
and anlayses used are necessary. A step in the right direction for this is the
MIspheroID database [143] which is a repository for such data. Here certain
information must be included to be entered into the database, forcing a minimum
reporting for the purpose of comparison. In their analysis of all the metrics it
becomes clear clear gaps lie in reporting of spheroid size and media formulation
[143]. If detailed methods and variables are known, the effects of these can be
deduced and it becomes more possible to collect quality data on drug response.
This goes for both new drugs, well targeted using mechanism-informed drug
discovery as discussed in the introduction, and for existing approved drugs which
may be repurposed [144, 145] as anti-cancer agents if it can be seen they have
adequate activity in vitro. Finally, with well-established methods, patient cells
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can be introduced in the form of organoids [146] for the most relevant testing.
Organoid cultures available commercially can be used in the method development
stage and to understand any differences in response compared to established cell
lines. Further, great potential lies in the information that can be extracted from
treating samples from a patient’s tumor specifically to understand the clinical
relevance of the system, with the ultimate a goal of becoming a companion
diagnostic tool to relay personal sensitivity to a therapy regimen.

5.4 Metabolic findings have translational potential

The purpose of working in vitro is to study cancer under highly controllable
conditions, but the ultimate goal is to be implement findings for clinical translation.
Modern technology has armed the field with more tools with which to analyse and
interpret metabolism. The insight gained by complex methods is unquestionable
but moving forward these have to be transferred into more usable techniques
and monitoring for use in the clinic. One of the goals of this thesis was to gain
some insight into how simpler biomarkers, such as protein expression, could be
correlated with metabolic phenotype. As was presented here, it needs much
more development and research. In Paper I, GLUT1 expression increased in
both cell lines in physiological glucose conditions compared to high glucose, but
there was no significant change or clear trend upon treatment with metformin.
Thus, GLUT1 was not a indicator of either metabolic phenotype or metformin
response. In Paper II, GLUT1 was too variable between experimental runs to
draw any conclusions. TOMM20 expression was more consistent and decreased
in all spheroid models compared to their 2D counterparts, which does agree with
increased the glycolytic function also demonstrated in spheroids. It may have
potential as a marker of mitochondrial function based on this and others findings
[25, 26, 147]. Finally, MCT may act as a reporter of glycolysis via increased
lactate transport needs. However, the data in Paper II is also quite variable and
it makes it difficult to draw conclusions, especially considering the potential for
MCT1 and MCT4 to be involved in either import or export of lactate [45].

When markers with well documented potential are found, options exist for
clinical transition. The most likely would compound on already existing methods
such as IHC in pathology analysis and biomedical imaging. If specific protein
expression is the most relevant this will have to be through IHC, while flux of
certain compounds like lactate and already standard glucose are best measured
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through radio-labeled imaging.
How the drug response relates to metabolism was an important point to

include in the final research paper. The relationship between the maximum effect
of 5-FU and lower OCR/ECAR ratios, an indication of a more glycolytic metabolic
phenotype, is interesting but was not significant. This is an essential relationship
to investigate in later studies, as this has the most potential for translational
impact from this type of drug screening study. Performing case by case metabolic
phenotyping can enhance precision medicine by offering insight into effective drug
combinations. Based on metabolism, more sensitive phenotypes can be produced.
For example, pre-treatment with metformin could be used to shift the cancer
cells to a more glycolytic phenotype (Paper I), perhaps making it more sensitive
to 5-FU treatment (Paper III), or other drugs where oxidative metabolism relates
to resistance [148, 149], such as proteasome inhibitors [150] and cisplatin [151].
As more glycolytic phenotypes have been found to be resistant to many different
classes of drugs [152], dichloroacetate (DCA) is an alternative to push cancer cells
more towards the oxidative metabolic phenotype [153]. The ability to phenotype
different cancers in this way should also allow better sub-grouping of patients for
analysis of response to metabolic drugs, like metformin, as discussed in Paper I.
Many studies have found no significant affect upon treatment with metformin,
but they also are not selectively treating cancers that may be most sensitive.
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Conclusions and Future
Perspectives

In vitro culture of cancer cell lines are the first line screening in research. Getting
the culture conditions right in this format provides higher quality data and
potentially more transferable results when transitioning to more complex testing.
Cells having different metabolic phenotypes show a clear differential response to
metformin treatment based on glucose concentration (Paper I). This demonstrates
the importance of physiological growth conditions for experiments or clinical
studies involving metabolic drugs such as metformin. Culturing cells in 2D instead
of 3D also have a major effect on metabolic phenotype as well, with significant
differences in glycolysis and oxidative phosphorylation (Paper II). Intuitively,
3D culture is more complex and differs greatly from flat 2D culture, but these
results show that it is not just with respect to morphology and growth dynamics,
but also changes in bioenergetics. Culture method ultimately plays a role in the
different models’ response to anti-cancer drugs (Paper III). In conclusion, both
culture method and nutrient conditions are important consideration for in vitro
cancer models. Based on the results, there is good reason to not maintain in vitro
cultures in artificially high glucose conditions. It can have downstream affects on
drug response and likely other important metrics. Furthermore, assays should
be carried in 3D. If not in everyday assays, at least to validate results. Finally,
metabolism even in this small scope is complex in terms of phenotypic variation.
This shows the importance of metabolic screening in vitro to better understand
the effects of these small changes and be able to model how a specific tumor may
behave based on its complex metabolism.
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From these experiments, the next natural step would be to expand to more
cell lines. Including a wider range of primary tumor types would add more
insight into variation in metabolic phenotypes and drug response, and verify
any correlation between different factors. However, the ability of cell lines to
mimic actual tumor behavior can be questioned. For better understanding of the
actual clinical insight offered by these models, culturing organoids from patient
tumor biopsies is necessary and is an ongoing project in the group. To further
understand the relationship between metabolism and drug response, it would be
interesting to test the metabolism of cultures after treatment as well. Knockdown
of different markers to see how this changes both metabolic function and drug
response is another important experiment to analyze the direct role different
proteins play in these metabolic phenotypes and response profiles. Drug testing
would be better in more complex, physiological system embedded in a matrix
and under continuous media exchange using flow, but then throughput becomes
an issue. With all or just some of these in place, especially a wider range of
samples analysed, using the metrics to create in silico models [117, 128, 139, 154]
offers a further way to analyze the relationship between the different factors and
make predictions on how changes to the system may affect phenotype and drug
responses. Adding different protein markers to the panel and including different
protein expression analysis such as IHC or immunofluorescence would improve
the understanding of protein differences in different conditions and models. As
GLUT1 was not a great marker, another option is GLUT3, also a high affinity
glucose transporter. Sectioning of spheroids would remove the effect of potentially
harsh dissociation on sensitive and dynamic markers. Relevant drug combinations
with 5-FU should be included as well, such as FOLFIRI and FOLFOX, as 5-FU
is rarely used as a monotherapy in the clinic. Finally, compounding on the results
here, pre-treatment of cultures with metabolic drugs based on the metabolic
phenotype to increase response would fulfill the ultimate aim of this thesis. This
could potentially have a large effect for difficult to treat tumors with a high
incidence of chemo-resistance.

Beyond the scope of this thesis, are other important characteristics of cancers,
that potentially have large affect on the drug response and metastasis: epithelial-
to-mesenchymal transition (EMT), biophysical forces [77] and other cells in
the TME such as fibroblasts [155, 156] and immune cells. The first plays into
more fundamental research in how markers of EMT can tell us something about
potential cancer response and how metabolism is related to this as well. The
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latter two would be naturally included in more complex models.
Ultimately, complex in vitro models need to be implemented in a higher-

throughput processes in the same way 2D cultures have. This is the only way
we can achieve the level insight needed to really have the desired impact on the
cancer research landscape. I believe this is possible and will result in much better
personalized treatments for cancer patients due to repurposing and targeting of
current therapies, and improved drug discovery and screening. With the latter,
the drug development process can be transformed, resulting in both therapeutic
and economic benefits.
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Metformin treatment response 
is dependent on glucose growth 
conditions and metabolic 
phenotype in colorectal cancer cells
Abdelnour H. Alhourani1,5, Tia R. Tidwell1,5, Ansooya A. Bokil1, Gro V. Røsland2,3, 
Karl Johan Tronstad2, Kjetil Søreide4 & Hanne R. Hagland1*

Cancer cells exhibit altered metabolism, a phenomenon described a century ago by Otto Warburg. 
However, metabolic drug targeting is considered an underutilized and poorly understood area of 
cancer therapy. Metformin, a metabolic drug commonly used to treat type 2 diabetes, has been 
associated with lower cancer incidence, although studies are inconclusive concerning effectiveness 
of the drug in treatment or cancer prevention. The aim of this study was to determine how glucose 
concentration influences cancer cells’ response to metformin, highlighting why metformin studies 
are inconsistent. We used two colorectal cancer cell lines with different growth rates and clinically 
achievable metformin concentrations. We found that fast growing SW948 are more glycolytic in 
terms of metabolism, while the slower growing SW1116 are reliant on mitochondrial respiration. 
Both cell lines show inhibitory growth after metformin treatment under physiological glucose 
conditions, but not in high glucose conditions. Furthermore, SW1116 converges with SW948 at a more 
glycolytic phenotype after metformin treatment. This metabolic shift is supported by changed GLUT1 
expression. Thus, cells having different metabolic phenotypes, show a clear differential response to 
metformin treatment based on glucose concentration. This demonstrates the importance of growth 
conditions for experiments or clinical studies involving metabolic drugs such as metformin.

Nearly a century ago, Otto Warburg described a commonality among many cancers that is still under intense 
 study1. What Warburg described was the cancer cells’ ability to consume glucose, even in the presence of oxy-
gen, later termed the Warburg effect. Cancer cells that have perfected this ability are avid glucose consumers 
supporting a high proliferation rate, with many cell signalling pathways primed to maintain this rapid  growth2. 
Thus, many studies show that calorie restriction and nutrient deprivation may be both cancer preventative and 
may enhance treatment  response3. However, lowering blood glucose within fasting range (< 5 mmol/L) seems 
to not be enough to prevent cancer growth, as cancer cells express high affinity glucose  receptors4–6, which even 
at fasting glucose levels, as low as 1 mmol/L, are able to import  glucose7. However, lowering glucose levels may 
compromise the metabolic flexibility of these cells under  stress8. Therefore targeting cancer metabolism is an 
interesting avenue to pursue, and has prompted many recent studies testing the efficacy of metabolic drugs for 
cancer  treatment9. One drug that has spurred great interest is metformin, normally used to treat type 2 dia-
betes (T2D). Metformin use in diabetes is associated with lower incidence in many cancer groups worldwide 
compared to diabetic patients not using  metformin10–13. It has since been studied in pre-clinical settings using 
in vitro cancer cell  models14–16, animal  models17–21, and consequently over 300 clinical trials are found when 
searching “metformin AND cancer” in clinicaltrial.gov. The high number of initiated clinical trials reflect both 
the low cost of the drug and the extensive use with minimal side effects reported since it was approved as a 
drug nearly 60 years  ago22,23. However, many of these studies have so far been inconclusive, and have not shown 
major treatment effects nor improved  survival23–26. The low success rate may be due to many reasons, but lack of 
patient stratification, metformin dosage, and mode of delivery seem to be areas to address. A regular metformin 
treatment in diabetic patients starts at 500–850 mg administered orally every 12 h, increasing to, but no more 
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than 2550 mg/day, achieving a steady state concentration of 1.4 mg/L (10.8 µM)27. As an orally ingested drug, its 
highest concentration is found in the gastrointestinal (GI) tract, and GI derived tumours would most likely be 
 affected28, which further indicates that achieved drug concentration play a major role in tumour responses. This 
is recapitulated in its various mode of action ranging from influence on  microbiota29, immune  modulation30, 
and direct intracellular  effect31.

Metformin became an interest in the cancer field due to studies reporting that diabetic colorectal cancer 
(CRC) patients taking metformin had a better overall survival compared to those treated with other glucose 
lowering  drugs14,26,32,33. This effect has largely been tied to the lowering of insulin growth factor and activation 
of  AMPK22,34–36. Hence, the potential anticancer effect of metformin is most likely not due to expected lowering 
of blood glucose, but rather due to intracellular effects of metformin in the tumour  cells37. Once inside the cell, 
the exact target of metformin has been difficult to pinpoint, although a change in mitochondrial function is one 
major effect  seen34–36, attributed to its inhibition of the electron transport chain (ETC)37. Metformin has also been 
shown to reduce GLUT1 expression alongside HIF-1α38. GLUT1 is a rate limiting transporter for glucose metabo-
lism and involved in maintaining higher levels of glycolysis  intermediates39,40. Clinically, its increased expression 
has been correlated with tumour aggressiveness and is correlated with increased proliferation activity and poor 
 survival5. However, this increase could be either due to an oncogenic transformation in cells or indirectly due 
to high glucose consumption of cancer cells and resulting low intracellular glucose  levels40. On the other hand, 
reduced glycolysis due to lower levels of GLUT1 has been associated with less  malignancy40. Monitoring GLUT1 
levels under the previously mentioned conditions could be an indicator of the adaptive mechanisms different 
metabolic phenotypes undergo in their response to glucose levels and metformin treatment.

In the last decades, there have been a few major breakthroughs in cancer drug  discovery41, however a funda-
mental issue for drug development is the discrepancy in drugs’ effects once they reach efficacy testing in humans, 
despite promising results in earlier pre-clinical model  systems42. One major challenge relates to the unphysi-
ological metabolic conditions normally applied in cell cultures, often using supraphysiological levels of glucose 
in the growth medium. Moreover, most studies investigating metformin have applied higher concentrations than 
what is achievable in vivo14,34,37,43. Metformin is administered orally, typically achieving concentrations at up 
to 300 times higher in the GI tract than that found in  plasma44. The aim of this study was therefore to test how 
colorectal cancer cells responded to metformin at a concentration typically found in the GI tract and grown in 
physiological glucose media. We show that using physiologically relevant glucose levels in cell growth media 
could provide a response to metformin that is more representative to in vivo conditions and that GLUT1 may 
be used as a metabolic biomarker for studying these responses.

Results
Glucose concentration in culture media affect cellular proliferation rates. A glucose concentra-
tion of 25 mmol/L is commonly used for in vitro cell culture, and this is from here-on referred to as high glucose 
(HG). The physiological glucose concentration in blood at fasting state is around 5 mmol/L, here referred to as 
low glucose (LG). We found that glucose concentration in the growth media directly affects the proliferation 
rates of two cell lines SW948 (Fig. 1a) and SW1116 (Fig. 1b) with differential metabolic phenotypes (Fig. 3). By 
culturing them in HG and LG over 9 days with two full media changes (day 2 and 7), we found that the doubling 
time of SW948 is 25.1 ± 1.2 h and 25.0 ± 0.4 h in HG and LG, respectively. Whilst for SW1116 the doubling time 
is 74.0 ± 10.1 h in HG and 41.8 ± 2.4 h in LG (p < 0.0001). The glucose effect is not immediate in either cell line, 
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Figure 1.  Cell growth recording of SW948 and SW1116 in HG and LG over 9 days continuous monitoring 
using Incucyte ZOOM. Cell confluency was analyzed in the Incucyte ZOOM software and plotted here as 
confluency (%) over time (hours). (a) SW948, initial seeding density of 10,000 cells/well. (b) SW1116, initial 
seeding density of 20,000 cells/well. Complete growth medium was exchanged at day 2 and 7 of the culture 
period. Grey solid line depicts growth in high glucose (HG) conditions, whereas blue solid line represents 
growth in low glucose conditions (LG). The dotted lines represent standard deviation from the average of N = 8 
for each condition.
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where in SW948 the effect on proliferation becomes apparent only when the stationary growth phase begins, 
thus showing lower cell confluency in LG. In contrast, glucose has a significant effect on the exponential growth 
of SW1116, with low glucose conditions resulting in increased proliferation.

Metformin predominantly suppressed the proliferation of SW948 and SW1116 cells under 
physiological glucose conditions in comparison to high glucose culture conditions. To see if 
the concentration of glucose in the growth media affects the cellular response to metformin treatment, we tested 
a range of metformin concentrations up to the clinically achievable range and higher only achievable in vitro. 
Since many proliferation assays measure metabolic activity (Alamar blue, WST-1), which may be affected by 
metformin treatment directly, the two assays we used were compared to nuclei count for verification of results. 
We found that after 48 h of metformin treatment, the SW948 cells (Fig. 2a) exhibit a concentration-dependent 
reduction in viability in HG up to 42% in 24 mM metformin treatment compared to HG control, which is con-
sistent with corresponding cell counts. However, in LG, the CCK-8 measured viability of SW948 is reduced to 
40% in comparison to LG control, even at the lowest metformin concentration (1.5 mM). At metformin treat-
ments of 6 mM and lower there are discrepancies between the two viability measurements, whereas both cellular 
viability and cell numbers show more than 90% reduction in viability to control during metformin treatment of 
12 mM.

There is no observed reduction in the viability of SW1116 cells (Fig. 2b) in HG using metformin concentra-
tions up to 6 mM, while 12 and 24 mM concentrations result in viabilities of 86% and 72%, respectively. Cell 
numbers are lower than control across all treatments but follow the same trends as the CCK-8 assay results. 
In LG, the metformin effect is again found to be concentration-dependent with a reduction in viability from 
61% (1.5 mM) to 11% (24 mM). The reduction in cell numbers is also consistent in a stepwise fashion with the 
increasing metformin concentrations and corresponds to CCK-8 viability results.

Metabolic phenotype plays a role in response to metformin. Metformin is thought to affect mito-
chondrial function, although its specific target in the mitochondria has been a source of debate. To investigate 
effects of metformin on mitochondrial respiration and glycolysis in the two cell lines, we measured the cellular 
oxygen consumption rate (OCR) and lactate production assessed via extracellular acidification rate (ECAR). 
Specific protocols involving sequential addition of modulators were used to test key functions of oxidative phos-
phorylation in the metabolic flux analyzer Seahorse XFe96 (see “Methods”). In SW948, there is no significant 
change in oxygen consumption rate (OCR) between high (7.953 ± 0.905 pmol  O2/min/µg protein) or low glucose 
(7.791 ± 0.407 pmol  O2/min/µg protein) medium (Fig. 3a). However, 48 h metformin treatment causes a signifi-
cant drop in OCR levels in both glucose conditions (HG: 1.571 ± 0.216 pmol  O2/min/µg protein, p < 0.0001; LG: 
1.862 ± 0.182 pmol  O2/min/µg protein, p < 0.0001) (Fig. 3a). In SW1116 cells there is a significant drop in OCR 
when cells are grown in low glucose compared to high glucose conditions (9.839 ± 0.598 and 7.175 ± 0.522 pmol 
 O2/min/µg protein, respectively, p = 0.0018). Like SW948, the metformin treatment in SW1116 also causes a drop 
in OCR in these cells under both glucose conditions (HG: 1.979 ± 0.342 pmol  O2/min/µg protein, p < 0.0001; LG: 
1.737 ± 0.179  pmol  O2/min/µg protein, p < 0.0001) (Fig.  3a). Both cell lines exhibit similar normalized basal 
respiratory levels in control conditions and after 48 h with metformin treatment (Fig. 3a), when compared to 
one another. The ATP-linked respiration (Fig. 3b), revealed by oligomycin inhibition of ATP-synthase, was not 
significantly affected by high and low glucose concentrations in either cell line. While after metformin treatment, 
this is lower albeit not significant compared to the control. CCCP was used to uncouple the mitochondria and 
measure respiration under mild stress conditions. This CCCP-uncoupled respiration increases in both cell lines 
when grown in low glucose media and is further increased after metformin treatment (Fig. 3c). In SW1116, the 
increase in CCCP-uncoupled respiration (HG: p = 0.0191; LG: p = 0.0314) is significant compared to control. To 
see if HG or LG media and metformin influenced the cells’ ability to use glycolysis, we performed a glycolysis 
stress test. We found that in SW948 there is no significant change in the cells’ ability to use glycolysis under any 
of the conditions nor after metformin treatment (Fig. 3d), while metformin treated SW1116 cells show signifi-
cantly increased glycolysis compared to control (HG: p = 0.0027; LG: p = 0.0083) (Fig. 3d). To see if either cell 
line had spare glycolytic capacity, we added oligomycin to block ATP synthesis in the mitochondria. We found 
that SW948 did not have increased glycolytic capacity, whereas SW1116 cells increased glycolytic capacity by 
over 170% in both high and low glucose control conditions. However, this glycolytic capacity is significantly 
lower after 48 h metformin treatment (HG: p < 0.0001; LG: p < 0.0001) (Fig. 3e). The absolute levels of normal-
ized OCR and ECAR in each condition are included in supplementary information (Supplementary Fig. S2). The 
metabolic profiles based on basal levels of OCR and ECAR (Fig. 3f) show the differences and comparative shift 
of the cell lines in both glucose concentrations and metformin treatment. Untreated, SW948 are more glycolytic, 
while SW1116 are more aerobic. Following metformin treatment, both cell lines are less energetic, but perhaps 
more noteworthy is that SW1116 converges with SW948 at a more glycolytic phenotype.

Glut1 is affected by growth media and metformin treatment. We analyzed protein expression of 
one of the major glucose import proteins, glucose transporter protein 1 (GLUT1), and how it correlates to the 
mitochondrial and glycolytic changes found in the metabolic flux analysis. GLUT1 significantly increases in 
SW948 cells under low glucose conditions compared to high glucose conditions. The corresponding change after 
metformin treatment is, however, not significant in these cells and follows the same pattern as glucose response 
(Fig. 4a). Similarly, in SW1116 grown in low glucose concentration, the GLUT1 expression increases compared 
to high glucose. Furthermore, no further increase is seen after metformin treatment (Fig. 4a). To verify location 
of GLUT1 expression and mitochondrial detection throughout the different growth conditions and metformin 
treatment we performed a multi-stained confocal analysis (Fig. 4b,c) for both cell lines, identifying GLUT1 in 
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the cell plasma membrane during all conditions. We found no apparent change in mitochondrial morphology, 
nor in intracellular localization across the different treatments in either of the cell lines.

Figure 2.  Viability assays of SW948 and SW1116 after metformin treatment for 48 h. The effect on the 
viability of (a) SW948 cells and (b) SW1116 in HG (25 mmol/L) and LG (5 mmol/L) is presented. Viability was 
calculated using CCK-8 (left) and cell counts were scored using fluorescent microscopy on Hoechst stained cells 
(right). CCK-8 absorbance values and the calculated cell numbers for all metformin treatments (1.5–24 mM) 
were compared to high glucose control (25 mmol/L, 0 mM Metformin) to show relative viability and cell 
numbers. Error bars denotes s.e.m, and statistical analysis was calculated using two-way ANOVA (** is p < 0.05) 
in GraphPad Prism (N = 3). C Control, HG high glucose, LG low glucose.
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Discussion
Here we show how growth conditions influence the metformin response in different cell lines, specifically con-
centration of glucose in the cell growth media. Using clinically achievable levels of metformin and changing the 
glucose concentration in the growth media for colorectal cell lines, SW948 and SW1116, resulted in changes in 
cell growth, metabolic flux, and protein expression. The glucose concentration directly influenced the growth 
rate in SW1116, where doubling time decreased in low glucose (5 mmol/L) media compared to high glucose 
(25 mmol/L), suggesting that glucose itself imposes an inhibitory growth effect in these cells. Comparatively, 
for SW948 there was no change in doubling rate between high glucose versus low glucose media. Most standard 
growth medias are formulated with high glucose content to avoid nutrient deprivation over time, however the 
finding that high glucose levels may mask true drug responses is not well considered.

We found that SW948 and SW1116 colon cancer cell lines were distinguishable in their ability to use their 
mitochondria, as shown in results from metabolic flux analysis. SW948 is, under non-stressed conditions (basal), 
running at maximum glycolytic capacity, further supported by our finding that under low glucose growth con-
ditions these cells increased their expression of GLUT1 receptors. This could be a compensatory response for 
keeping up the high glucose flux through glycolysis with the lower amount of glucose available in the media as 
previously  described45, thus supporting rapid proliferation. As SW948 resemble Warburg’s phenotype, i.e. rapid 
proliferation and are avid glucose consumers, they show an inability to maintain rapid proliferation under the 
mitochondrial-inhibiting effects of metformin even with an abundance of glucose, since glycolysis alone can-
not support a high proliferation rate without mitochondrial contribution of  biomolecules2. This is contrary 
to SW1116 cells that utilize their metabolic flexibility to overcome the effects of metformin by upregulating 
glycolysis, supporting their lower proliferation rate. In both glucose concentrations, SW1116 cells exhibit low 
to no additional respiration under CCCP stress; however, when treated with metformin, the relative rates of 
CCCP-uncoupled respiration to basal OCR increases significantly.

The abundance of glucose in culture media seems to affect the way both investigated metabolic phenotypes 
of cancer cells react to metformin. SW948 is more glucose dependent and able to thrive and grow exponentially 
in both glucose concentrations by altering their GLUT1 expression response to adapt to different conditions. 

Figure 3.  OCR and ECAR were measured in the Seahorse XF96 instrument, with injections of sequential 
compounds and concentrations according to the assays detailed in the methods section. Mitochondrial stress 
test assay: (a) Basal respiration, before any injections. (b) ATP-linked respiration, after oligomycin injection, 
shown relative to basal OCR level. (c) CCCP-uncoupled respiration, shown relative to basal OCR level. 
Glycolysis stress test assay: (d) Basal glycolysis, after glucose injection. (e) Glycolytic capacity, after oligomycin 
injection, shown relative to glycolysis level after glucose injection. Error bars denote s.e.m. Statistical analysis 
was performed using one-way ANOVA in GraphPad Prism (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001) 
(N = 2–8) (f) OCR vs ECAR from the mitochondrial stress test assay. Squares: SW948; Circles: SW116. 
Metabolic phenotypes of untreated (open symbols square, circle: control) and treated (closed symbols circle, 
square: 3 mM metformin) samples. Black: high glucose (25 mmol/L); Teal: low glucose (5 mmol/L). Error 
bars denote s.d. OCR Oxygen concentration rate, ECAR  extracellular acidification rate, CTL control 0 mM 
metformin, MET metformin 3 mM pre-treatment for 48h.
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SW1116 is more metabolically adaptable to glucose concentration considering its GLUT1 and metabolic flux 
response. Here we found that after treatment in high glucose concentration, SW1116 show a slight increase in 
GLUT1 which could be due to their attempt to shift their metabolism towards glycolysis upon mitochondrial 
stress induced by metformin. SW948 had reduced GLUT1 expression in high glucose with treatment. Both cell 
lines had increased GLUT1 expression in the low glucose concentration, however SW1116 had a much larger 
increase, in line with their significant increase in basal glycolysis. In general, SW948 keep their glycolytic depend-
ency in low glucose compared to high glucose, but the cell proliferation ultimately slows, which could mean they 
have less adaptability to glucose concentration compared to SW1116. In high glucose and with metformin treat-
ment, there is a significant drop in OCR due to the inhibition of the ETC in both cell lines; similar results have 
been shown  elsewhere46. Inhibition of complex I causes a drop in the ATP-linked respiration under metformin 
treatment. This could mean there is an unmet need of ATP production, which could cause a drop in proliferation 
or an increase in glycolysis. A higher uncoupled respiration in the metformin treated samples points to remaining 
functionality in the mitochondria, but it is reserved for acute stress, as induced by the mitochondrial uncoupler 
CCCP. The SW1116 cells showed a decreased response to metformin when cultured in high glucose media. This 
could be due to a metabolic shift towards glycolysis in a likely attempt to compensate for the metformin-driven 
inhibition of the ETC and TCA and resulting decrease of ATP-production in the mitochondria. However, in 

Figure 4.  Protein expression analysis of GLUT1 in response to metformin treatment under different glucose 
culturing conditions. (a) Bars represent the relative GLUT1 fold inductions, measured by flow cytometry after 
48 h metformin treatment in SW948 and SW1116, compared to respective controls at same glucose culturing 
conditions. Representative confocal images of (b) SW948 and (c) SW1116 using Hoechst for nuclei staining 
in blue, TOMM20 for the mitochondria in green, and GLUT-1 Antibody in red. Error bars denotes s.e.m. and 
statistical analysis was calculated using two-way ANOVA (*p < 0.05, **p < 0.01) (N = 3). MET Metformin, CTL 
control, GLUT1 glucose transporter 1.
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both cell lines physiological glucose levels reveal an underlying concentration-dependent response to metformin. 
Three different assays were used here to assess the metformin response in our cell lines, presented by CCK-8 
assay and direct cell counts (Fig. 2), and an Alamar blue assay (Supplementary Fig. S1). The Alamar blue assay, 
also known as resazurin assay, is commonly used to assess viability, however in our experimental set up did not 
correlate with counted cell numbers from the same assay wells. The CCK-8 assay which also measures metabolic 
activity, however with a different chemical reaction, showed good correlation to actual cell counts. We would 
thus advise caution when using viability assays that rely on metabolic activity to measure responses of metabolic 
treatments, without including a second confirming analysis as presented here by Hoechst cell counts (Fig. 2). This 
is well supported by previous studies who have found the same effect when using  resazurin47,48. The sensitivity 
of cancer cells to drug treatments in different glucose concentrations is not only relevant for in vitro testing, but 
also clinically where many patients may present with T2D and elevated blood glucose levels, which has been 
associated with  chemoresistance49.

Not all cancer cells exhibit Warburg metabolism. This is becoming increasingly documented, both in vitro 
and  clinically50–52. The results we see here of the difference in response of cell lines with different metabolic phe-
notypes, could explain the lack of response in the many clinical trials studying metformin. If only metabolically 
compatible cancers will respond and there are no criteria for treatment based on this, then it is unlikely a clear 
response would be seen when studying a mixed-phenotype clinical cohort. We found that metformin treated 
SW1116 shift toward a more glycolytic profile resembling that of the SW948 cell line. Fast proliferation is what is 
being targeted by cytotoxic chemotherapy drugs and SW948 is documented as being more susceptible to these, 
exhibiting lower IC50 to both 5-fluorouracil and oxaliplatin (GDSC2)53. However, cytotoxic drugs do seem to 
be targeting more than just  proliferation54, with one possible target being metabolic reprogramming. If this is 
the case, the metabolic shift of SW116 to be more like SW948 could then also result in increased vulnerability 
to chemotherapy. In this vein, metformin may be used a neoadjuvant agent in an effort to increase  response55–58. 
If patient tumours are assessed for their metabolic phenotypes, either by metabolic analysis of biopsy  tissue59 
or advanced tumour  imaging60–62, this can be directly translated to the clinic for improved course of treatment.

Methods
Cell culture, proliferation, and viability assessments. SW948 and SW1116 were purchased from 
ETCC and cultured under humidified conditions in a 5%  CO2 incubator at 37 °C. The culture media DMEM 
contained no glucose, (Corning, New York, USA) and was supplemented with 10% fetal bovine serum (FBS) 
(BioWest, Nuaillé, France), 2 mM (0.584 g/L) l-glutamine (Corning, New York, USA), penicillin (100 U/mL) 
and streptomycin (100 µg/mL) (Merck Millipore Corporation, Burlington, USA). For glucose experiments the 
DMEM media was supplemented with 25 mmol/L or 5 mmol/L glucose (Sigma-Aldrich, St. Louis, USA) con-
centrations for high glucose (HG) and low glucose (LG) culture conditions, respectively. The cells were accli-
mated to the glucose levels by being cultured and passaged several times in the respective glucose concentrations 
prior to metformin experiments. Proliferation: Cells were seeded in 96-well plates in 25 mmol/L or 5 mmol/L 
glucose supplemented media at a density of 20,000 cells/well or 10,000 cells/well for SW1116 and SW948, 
respectively. The plates were placed in the Incucyte ZOOM system (Essen Bioscience, Newark, United King-
dom) and monitored for 9 days with phase contrast images captured every 2 h. Media was exchanged on days 2 
and 7. Growth was measured by analyzing the confluence of the cells over time using the Incucyte ZOOM soft-
ware and reported as percent of image area covered. Doubling times were calculated during their respective 
log phases: 24–74 h for SW948 and 50–100 h for SW1116. Statistical analysis was performed as described in 
methods using an unpaired Student’s t-test. Viability: Both cell lines were treated in 96-well plates at an initial 
seeding density of 10,000 cells/well using increasing concentrations of 1.5–24 mM of metformin hydrochloride 
(Sigma-Aldrich, St. Louis, USA) to determine the cellular viability after 48 h. Both Alamar blue (Resorufin) and 
CCK-8 (CCK-8; Dojindo Laboratories, Kumamoto, Japan) assays were carried out according to the manufac-
turer’s protocol to estimate cell viability using fluorescence (Ex: 540 nm, Em:590 nm) and absorbance (450 nm) 
respectively via SpectraMax Paradigm plate reader (Molecular Devices, San Jose, USA). Cells in the Alamar blue 
plates were post-stained with Hoechst 33,342 (5 µg/mL) after fixation using 4% paraformaldehyde for 30 min, 
upon imaging using Leica SP8 Florescence microscope (Leica Microsystems, Mannheim, Germany). Image 
analysis using density counting of the nucleus was performed using  ilastik63. Statistical analysis was calculated 
using two-way ANOVA.

Metabolic analysis. Mitochondrial respiration and glycolysis were measured using the Seahorse XF96e 
flux analyzer (Agilent Technologies, Santa Clara, USA). Cells were seeded in XF96e cell culture plates at a den-
sity of 20,000 cells/well or 10,000 cells/well for SW1116 and SW948, respectively. They were allowed to attach 
overnight before treatment with 3 mM metformin hydrochloride for 48 h. Prior to the mitochondrial respiration 
assay, culture media was exchanged for unbuffered, serum-free DMEM, composed of DMEM 8.3 g/L (D5030, 
Sigma-Aldrich, St. Louis, USA) pH 7.4, NaCl 1.85  g/L (Sigma-Aldrich, St. Louis, USA), 2  mM l-glutamine 
(Corning, New York, USA), and glucose (concentration dependent on condition as described in results) (Sigma-
Aldrich, St. Louis, USA). For the glycolysis assays, the assay media contained no glucose. The plates were then 
incubated at 37 °C in a  CO2-free incubator for 1 h prior to running the assay. Oxygen Consumption Rate (OCR) 
and ExtraCellular Acidification Rate (ECAR) were measured over 100 min (15 mix and measure cycles), with 
compounds being injected every 3 cycles. For the mitochondrial respiration assays, the following compounds 
(Sigma-Aldrich, St. Louis, USA) were injected sequentially (final concentrations in the wells): Oligomycin 
(3 μM), CCCP (0.25 μM), Rotenone (1 μM), and Antimycin A (1 μM). For the glycolysis assays, the following 
compounds (Sigma-Aldrich, St. Louis, USA) were injected sequentially (final concentrations in the wells): glu-
cose (10 mM), oligomycin (3 μM),  CCCP64,65 (0.25 μM), 2-deoxy-d-glucose (100 mM). Protein concentration 
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was measured in each well for normalization using a Pierce BCA assay (ThermoFisher Scientific, Rockford, 
USA) according to manufacturer’s instructions. Statistical analysis was performed using one-way ANOVA.

Flow cytometry quantification of Glut1. SW948 and SW1116 cells were treated with 3 mM of met-
formin for 48 h at a seeding density of 1.0 ×  106 cells per well using HG and LG media. After treatment, cells 
were trypsinized and washed twice with PBS before adding 4% Paraformaldehyde (PFA) fixation and incubating 
on ice. The fixed cells were subsequently incubated with GLUT1 primary antibody (Abcam, Cambridge, United 
Kingdom) at the concentration 1:500 for 1 h at room temperature. GLUT1 labelled cells were washed twice in 
PBS and labelled with Alexa fluor 647 conjugated Donkey anti-rabbit secondary antibody (Abcam, Cambridge, 
United Kingdom) for another 30 min before analysing with Accuri C6 flow cytometer (BD Biosciences, San Jose, 
USA).

Confocal imaging. Both cell lines were seeded in Ibidi µ-Slide 8-well chambered coverslips (Ibidi GmbH, 
Munich, Germany) at a density of 30,000 cells/well and were allowed to attach overnight in HG and LG media. 
3  mM metformin treatment was added for 48  h before the cells were washed with PBS and fixed using 4% 
PFA. After 1 h of incubation with 20% FCS blocking solution, the cells were incubated overnight with GLUT1 
Alexa fluor 647 conjugated antibody (Abcam, Cambridge, United Kingdom) (1:1000 in blocking solution). The 
next day, the wells were washed again and the cells permeabilized using 0.5% triton X in PBS for 15 min at 
room temperature, before another incubation step using TOMM20 antibody (Abcam, Cambridge, United King-
dom) 1:1000 in blocking solution overnight. The next day, cells were counterstained with Hoechst 33342 (Ther-
moFisher Scientific, Rockford, USA) (15 µg/ml solution) for 2 min, then washed 3 times with PBS. The cells were 
then imaged on a Leica TCS SP8 confocal microscope (Leica Microsystems, Mannheim, Germany).

Statistical analysis. Statistical comparisons were made using GraphPad PRISM (version 8, GraphPad 
Software, Inc., USA) software with one-way or two-way ANOVA to determine significant differences between 
several treatment groups. Post-hoc corrections for multiple comparisons were applied according to recommen-
dations by GraphPad for each experimental data set (viability: Dunnett; metabolic analysis: Sidak; flow cytom-
etry: Tukey). A student’s unpaired t-test was employed when only two groups were compared. The number of 
biological replicates (N) are given in the figures and legends. Values that follow ± within the results section are 
standard deviation (s.d.).

Data availability
The datasets generated during the current study are available on figshare, https:// doi. org/ 10. 6084/ m9. figsh are. 
13490 271.
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ABSTRACT: Medical advances made over the last century have increased our lifespan, but age-related diseases 

are a fundamental health burden worldwide. Aging is therefore a major risk factor for cardiovascular disease, 

cancer, diabetes, obesity, and neurodegenerative diseases, all increasing in prevalence. However, huge inter-

individual variations in aging and disease risk exist, which cannot be explained by chronological age, but rather 

physiological age decline initiated even at young age due to lifestyle. At the heart of this lies the metabolic system 

and how this is regulated in each individual. Metabolic turnover of food to energy leads to accumulation of co-

factors, byproducts, and certain proteins, which all influence gene expression through epigenetic regulation. 

How these epigenetic markers accumulate over time is now being investigated as the possible link between aging 

and many diseases, such as cancer.  The relationship between metabolism and cancer was described as early as the 

late 1950s by Dr. Otto Warburg, before the identification of DNA and much earlier than our knowledge of epigenetics. 

However, when the stepwise gene mutation theory of cancer was presented, Warburg’s theories garnered little 

attention. Only in the last decade, with epigenetic discoveries, have Warburg’s data on the metabolic shift in cancers 

been brought back to life.  The stepwise gene mutation theory fails to explain why large animals with more cells, do 

not have a greater cancer incidence than humans, known as Peto’s paradox. The resurgence of research into the 

Warburg effect has given us insight to what may explain Peto’s paradox. In this review, we discuss these connections 

and how age-related changes in metabolism are tightly linked to cancer development, which is further affected 

by lifestyle choices modulating the risk of aging and cancer through epigenetic control. 

Key words: Cancer, aging, mitochondria, metabolism, Warburg effect, Peto’s paradox, epigenetics. 

Human evolution has selected for somatic maintenance 

strategies that maximize reproductive success. However, 

the last century has provided us with a challenge where 

technology and lifestyle adjustments are outpacing natural 

evolutionary adaptation. Many of the previously life-

shortening diseases, such as bacterial infections and viral 

diseases, can now effectively be treated, but other 

lifestyle-related diseases are increasing. Normal 

physiological responses are influenced by lifestyle habits 

such as high caloric diets, dysregulated sleep patterns, and 

toxic environmental factors; all common in modern 

Western civilization and known risk factors for 
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developing cancer. The increase in life expectancy due to 

improved living standards and medical advances 

introduces the additional challenge of finding new 

treatments to treat the accumulation of age-associated 

diseases, including cancer. 

As the aging population grows, cancer remains a 

fundamental health issue. Therefore, understanding its 

etiology and weaknesses to improve treatment is a major 

research focus worldwide. The lifetime risk of cancer has 

been associated with the number of stem cell divisions 

needed to maintain that tissue’s homeostasis, suggesting 

that acquired somatic nuclear mutations over time due to 

“bad luck” are the primary causes of cancers in these 

tissues. However, such a model fails to account for key 

observations of early-life mutation accumulation (50% 

before full body maturation) [1], the size and scaling of 

cancer incidence with the lifespans of various animals 

(Peto’s paradox) [2], and epidemiological research 

showing cancers of human populations differ based on 

geographical areas [3]. A more fitting model would be to 

ascribe the high incidence of cancers in tissues with more 

stem cell divisions to a buildup of bioenergetic 

dysfunction over time, which may confer a selective 

growth advantage in an aging tissue microenvironment. 

This could be affected, not only by inherited “bad luck” 

nuclear mutations, but more importantly, or external 

factors such as acquired epigenetic modifications, 

mtDNA mutations, or intrinsic asymmetric segregation of 

cargo during cell division. 

 

Aging and metabolic control 

 

Aging is defined as a physiological decline that leads to 

the loss of major organ function, ultimately leading to 

death. The question remains as to what is the cause of 

aging as, from an evolutionary perspective, an organism 

would benefit most from extended reproductive ability 

and lifespan. A possible answer is that aging is but a side 

effect of life progression and not a programmed 

occurrence. Supporting this is the fact that rates of aging are 

not fixed; for example, lower body temperatures tend to 

result in extended lifespan [4], possibly due to metabolic 

adaptations. Considering the environmental effects on 

rates of aging, it has become increasingly relevant in aging 

research to differentiate between physiological age and 

chronological age [5]. It is possible for two humans of 

identical or similar years of life, or even same genetic 

background as with monozygotic twins, to have very 

divergent states of health and lifespans [6]. The last 

decade of scientific research has dramatically improved 

our understanding of the aging process and that it is 

closely regulated by key metabolic proteins such as 

mechanistic target of rapamycin (mTOR), AMP-activated 

protein kinase (AMPK), and insulin/insulin growth factor 

(IGF) [7, 8], which are associated with age-related 

metabolic syndrome [9] and common to those found 

dysregulated in cancer [10]. The long-term causative 

effect of aging and how this relates to increased cancer 

risk therefore seems to be linked through metabolic 

control.  

Alternative to the mutational theory of cancer, the 

metabolic theory of cancer development is that small 

undetected changes in genes regulating metabolism, or 

mitochondrial genome mutations, can reach a threshold 

over time whereby it effects whole cell metabolism and 

confers a selective advantage for growth of that cell in an 

aging tissue environment [11]. Aging is linked to both the 

accumulation of genomic defects and that of defective 

proteins and organelles such as mitochondria [12, 13]. 

Consequently, mitochondrial defects can become 

prevalent in dividing stem cells by asymmetrical 

segregation of cell cargo. On the other hand, inheritance 

of “good” cargoes can enhance cell health and 

responsiveness, whereby more of the dysfunctional cargo 

is delivered to the daughter cell, which will go on to 

terminal differentiation, thus protecting the original stem 

cell [12]. Both internal and external factors may affect the 

growing number of dysfunctional mitochondria, speeding 

up the physiological aging process and cancer risk (Figure 

1).  However, while chronological age is immutable, 

physiological age depends on lifestyle choices and can be 

shifted to exert a beneficial effect by extending length of 

life and reducing disease risk.  

Discoveries made in the last decade showing that 

most of the known oncogenes and tumor suppressor genes 

are metabolic regulators has rekindled Warburg’s 

discoveries made over a lifetime ago, highlighting the 

importance of metabolic control in any cell. The 

understanding that proteins and metabolites may be the 

instigators of aging and cancer development through 

epigenetic regulation is now a renewed research topic. 

This non-static mechanism of aging and cancer is 

gradually being accepted and helps explain why large 

long-lived animals with slow metabolism have a lower 

risk of developing cancer than humans. Of course, 

exposure to environmental factors are associated with 

increased cancer risk and can also contribute to changes 

in an aging system. However, these events will not be the 

primary focus here, since even in their complete absence, 

aging and cancer would occur. Therefore, this review 

focuses on the intrinsic events that may lead to aging and 

how they relate to cancer development, with a focus on 

the role of mitochondria and metabolism.  

 

Mitochondrial role in cell metabolism 

 

Mitochondria are remnants of an aerobic prokaryote that 

brought the selective advantage of using respiration for 
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higher yield energy production to a cell dependent on 

rudimentary substrate fermentation. The endosymbiotic 

event that occurred some two billion years ago is thought 

to only have happened once to give rise to all advanced 

lifeforms known today.  

Mitochondria have retained some features of a 

prokaryote such as double membranes and their own 

DNA (mtDNA), which encodes for proteins and RNAs that 

are mostly involved in assembling components of the electron 

transport chain (ETC) [14]. Mitochondrial DNA mutations, 

deletions, and copy number changes can result in ETC 

dysfunction and are believed to accumulate with aging. 

The increase in dysfunction of energy homeostasis with 

age and increase in reactive oxygen species (ROS) has 

been the center of the free radical theory of aging [15]. 

Reactive oxygen species (ROS) have also been shown to 

affect ETC indirectly. In C. elegans, repression of the 

PRDX-3 gene, involved in the detoxification of 

mitochondrial hydrogen peroxide in the ETC, did not alter 

the level of ROS or life length, but instead caused 

mitochondrial uncoupling and decreased adenosine 

triphosphate (ATP) production [16], suggesting an 

induced compensatory response. Continuous ROS 

exposure has been shown to affect mitochondrial 

oxidative phosphorylation (OXPHOS) and ATP 

production by lipid peroxidation of cardiolipins [17].  

Cristae invaginations caused by the unique properties of 

cardiolipins is essential for efficient oxidative energy 

production and mitochondrial function [18, 19].  Defects 

in the cristae formation (i.e. lipid peroxidation due to 

ROS) can increase the leakiness of the inner 

mitochondrial membrane, consequently reducing the 

mitochondrial ATP production [20]. Alterations of 

cardiolipin through years of ROS exposure may lead to 

gradually reduced membrane potential and consequently 

depolarized mitochondria with less efficient ATP 

production. Another consequence is an imbalance in the 

metabolite levels in the aging cell which could affect gene 

regulation and transcription epigenetically. This nuclear-

mitochondrial retrograde signaling, where gene 

expression is regulated by metabolic substrate levels, is 

important to respond appropriately to metabolic stress for 

restoration of cell homeostasis [21, 22]. One responder to 

this retro-grade signaling is the evolutionarily conserved 

human polymerase delta (POLD1) gene, which is 

involved in multiple forms of DNA repair, and found 

mutated in tumors and aging [23]. The expression of this 

protein is further dysregulated in diabetes [24] and can be 

modulated by enzymes involved in metabolism such as 

lactate dehydrogenase and 3-phosphoglycerate [25]. This 

retrograde signaling from mitochondria to nuclei is 

triggered in normal cells by changes in metabolite levels 

or altered proteostasis [22, 26, 27]. Response mechanisms 

can include upregulation of metabolic pathways 

producing more metabolites, including reactive oxygen 

species, to act as second messengers to tune signaling 

pathways in the cytoplasm or directly affect gene 

regulation through epigenetic events. Thus, the energy 

status of the cell is directly linked to its replicative and 

reparative functions, demonstrating how metabolic 

substrates and enzymes regulate cell turnover [28]. In 

support of dysfunctional metabolism controlling cell 

growth, laser capture of cancer cells from colon tissue, 

selected by the expression of a metabolic biomarker, were 

deep sequenced and shown to contain mtDNA mutations 

from the same lineage and progenitor cell [29]. This 

suggests that the cancer stem cell could be traced solely 

by mtDNA mutations, independent of any nuclear DNA 

mutations. However, tumors are functionally 

heterogeneous and harbor subsets of cancer cells with 

stem-like features. Consequently, mutations of the 

mitochondrial genome have been tightly linked to 

impairment of cellular energy conversion and tissue 

function [30-32], and further implicated in the 

pathophysiology of age-associated diseases and aging 

itself [33, 34].  

 

Energy sensing mechanisms 

 

Life is a physical system that maintains structure and 

avoids decay by feeding on negative entropy through 

metabolism [35]. Changes in metabolites and substrate 

availability are reflected in the energy output of the whole 

cell system in the form of the ATP and adenosine 

monophosphate (AMP) ratio, or other reducing 

equivalents such as nicotinamide adenine dinucleotide 

(NAD+) vs NADH, which are detected by energy sensing 

mechanisms. Maintaining a constant ATP level within the 

cell is crucial, to the extent that all cells maintain a 

∆G’ATP of approximately -56 kJ/mol [36], and any 

disruption of this energy balance will compromise cell 

function and viability [37].   

Therefore, one of the central regulators of cellular and 

organismal metabolism in eukaryotes, and evolutionarily 

conserved across a multitude of species, is the AMPK 

[38], which acts as an integrator and mediator of several 

pathways and processes linking energetics to longevity. 

AMPK is activated by a high AMP to ATP ratio and then 

initiates energy producing reactions while inhibiting 

energy-consuming reactions as a rescue mechanism [38]. 

In  C. elegans, changing the catalytic subunit of AMPK 

by increased expression, led to a lifespan increase of 13% 

[39], while a constitutively active truncated form of the 

protein increased life extension by 37.5 % [40]. In 

mammals, AMPK has a specialized function in 

metabolically active tissue such as the liver, adipose tissue 

and muscle, where it acts to integrate nutritional and 

hormonal signals to food intake, body weight, and 
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substrate homeostasis [41]. AMPK activation is further 

associated with inhibition of cell proliferation and is an 

attractive target in cancer treatment, as it shuts off 

metabolic cell processes needed to maintain cell 

proliferation [42]. A positive regulator of AMPK is the 

serine/threonine kinase LKB1, a known tumor suppressor, 

which phosphorylates the Thr172 in the activation loop of 

AMPK, thus inducing the downstream effects of AMPK. [43]. 

The Peutz-Jegher cancer syndrome involves an inherited 

mutant form of LKB1 and is one of the most commonly 

known mutations in sporadic human lung cancer [44],  and 

more recently identified in 20% of cervical carcinomas 

[45]. The loss of LKB1 may therefore facilitate tumor 

growth under energetically unfavorable conditions. As an 

example, AMPK activation acutely inhibits fatty acid and 

cholesterol synthesis through direct phosphorylation of 

the metabolic enzymes Acetyl-CoA carboxylase (ACC) 

and HMG-CoA reductase (HMGR) involved in lipid 

production [46], whereas a defective AMPK sensor system 

would allow for lipid production even under low energy 

stress. Increased levels of enzymes such as fatty acid 

synthase (FASN) involved in cell lipid production have 

shown to be essential for the survival of a number of 

cultured tumor cell lines [47-49].  

Beyond the lipogenic enzymes, AMPK can acutely 

modulate glycolysis through phosphorylation of multiple 

isoforms of phosphofructo-2 kinase (PFK2), a rate-

limiting enzyme of glycolysis. PFK2 phosphorylation 

synthesizes fructose 2,6-bisphosphate, which is a potent 

stimulator of glycolysis [50], thus increasing the glucose 

demand. This is seen in  response to hypoxic conditions 

[51], where ATP production from mitochondria drops and 

AMP levels increase activating AMPK. However, under 

normoxic conditions, a compensatory increase in 

mitochondrial volume could strengthen the mitochondrial 

capacity to produce more ATP. This is supported by findings 

that AMPK can regulate mitochondrial biogenesis via the 

p38-PGC-1α axis, maintaining cancer cell survival under 

glucose-limiting normoxic conditions [52]. Getting the 

cell back on track energetically may be the ultimate goal 

of AMPK, but also makes this pathway a crucial mediator 

involved in both cell proliferation and longevity. 

Metabolic drugs, such as metformin, resveratrol, and 5-

aminoimidazole-4-carboxamide-1-D-ribo-furanoside 

(AICAR), that directly or indirectly activate the AMPK 

pathway, have been associated with pro-longevity and a 

reduced risk of developing cancer [53-58].  

 

 

 
 

Figure 1. As animals age, there is an accumulation of dysfunction. This affects the mitochondria to a great extent 

and a higher metabolic rate provides further amplification, reflected by the slope in this line. Once the dysfunction passes 

a threshold and the cell can no longer compensate, a cancerous transition may occur. The difference in resting metabolic 

rate (RMR) and their relative cancer development can be seen between large and small animals, with large animals 

having a low RMR and late or nonexistent cancer development. While RMR may not increase in larger individuals 

within species, metabolic stress accumulates at a faster rate and the individual can reach the dysfunctional threshold at 

an earlier timepoint, as exemplified here by the obese human figure having a shifted cancer risk.  
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Theories of carcinogenesis and Peto’s paradox 

 

Aging and cancer involve many of the same cellular 

pathways in their progression, suggesting they are closely 

related in pathology. However, instead of following this 

lead, there is an ongoing pursuit to define cancers based 

on largely their mutational patterns. Meanwhile, the 

heterogenous gene expression pattern found in nearly all 

cancers begs the question of how critical each individual 

nuclear gene mutation is in the progression of the disease. 

Several theories exist to explain carcinogenesis, with the 

most prevalent being the mutation-centric theory stating 

that somatic nuclear mutations acquired over time 

eventually leads to a cancerous transition. Yet, this theory 

alone is unable to explain why a discrepancy exists 

between high cancer incidence in small, short-lived 

animals (i.e. few cells and less mutational events) 

compared to a low cancer incidence in larger, long-lived 

animals (i.e. many cells and more mutational events) 

(visualized in Fig. 1). This observation was named “Peto’s 

paradox” after the epidemiologist Sir Richard Peto [2]. It 

highlights the discrepancy that if cancers are initiated by 

a series of somatic mutations acquired over time and cell 

number, then organisms with larger body size (more cells) 

and longer lifespans (more cell divisions) should have a 

cancer risk that is orders of magnitude greater than 

organisms of smaller size and shorter lifespan. Thus, in 

theory, humans should have a higher cancer incidence 

than mice. However, this is not confirmed in nature, as 

mice have a higher risk of cancer in their relatively short 

lifespan (about 4 years) [59], when compared to humans. 

The mutation-centric theory is established on a belief that 

there is a linear increase in mutations during cell division 

as we age. This is in contradiction to data that shows that 

a substantial portion of somatic mutations (up to 50%) 

accumulate early in life before full body maturation [1] and 

seem to slow when stem cells convert from body building 

to body maintenance [60]. A further challenge with 

mutagenesis models is the assumption that any mutation 

can affect cellular fitness, which is not supported by 

evolutionary theory. From an evolutionary perspective, 

only mutations that enhance cellular fitness above others 

in relation to the growth environment will be 

advantageous [61]. Thus, both mutations and the tissue 

microenvironment play a role in cell growth. Early-

acquired mutations may stay latent and not provide a 

growth advantage to cells until the tissue 

microenvironment changes in aging organisms, further 

enhancing the relationship between aging and cancer risk. 

This was recently shown by using a computational 

stochastic model integrating real data on age dependent 

dynamics of hematopoietic stem cell division. The model 

demonstrated that previously acquired mutations only 

became advantageous in an aging microenvironment 

according to non-cell-autonomous mechanisms [11]. 

Identification of the most prevalent mutations in cancer 

and their clear link to metabolic regulations [62] therefore 

confers that they may be providing the cells with a 

selective advantage for growth in a changing 

microenvironment.  

 

The Warburg effect and relation to Peto’s paradox 

 

Direct signals from mitochondria in the form of 

substrates, ROS, and other intermediates can affect 

cellular physiology via genetic and epigenetic 

mechanisms, and form the foundation for cancer 

development. The interplay between these metabolic 

changes, aging, and cancer development is illustrated in 

Figure 2. In support of the age-associated risk of cancer, 

tumors rarely occur following acute injury to cellular 

respiration and considerable time is required for non-

oxidative energy metabolism (i.e. glycolysis, TCA cycle 

via substrate-level phosphorylation) to replace OXPHOS 

as the dominant energy generator of the cell. Substrate-

level phosphorylation can compensate gradually for 

minor OXPHOS damages accumulated over time. 

Consequently, expansion of mtDNA mutations affecting 

ATP production can happen gradually [63] or by 

asymmetric segregation of cellular content during cell 

division [12]. This compensatory effect by the continued 

adaptation by substrate-level phosphorylation for energy 

production (i.e. increasing the uptake of glucose and 

glutamine to be broken down for ATP production) is a 

well-known hallmark of cancer called “the Warburg 

effect”. Cells that undergo a Warburg transition and 

switch their metabolism to glycolysis and glutaminolysis 

produce increased levels of substrates, such as lactate from 

glycolysis, and succinate, alanine, and aspartate from 

glutamine or amino acid fermentation [64], that can 

regulate gene expression epigenetically. 

Otto Warburg described the change in cancer 

metabolism as early as the 1950s [65]. He postulated that the 

change to this metabolic preference was due to defective 

mitochondria incapable of producing enough ATP to support 

cell growth. However, this may not be entirely true as 

proliferating normal cells, such as activated lymphocytes, 

also revert to aerobic glycolysis upon growth activation 

without showing any mitochondrial dysfunction [66]. The 

current understanding is that rapidly proliferating cells, 

both normal and cancer, revert to aerobic glycolysis to 

support the need for new biomass when producing a 

daughter cell [67]. Thus, in proliferating cells, the 

metabolic substrate turnover rate increases to support the 

cell with new cell components. If one considers 

Warburg’s observations of increased metabolic substrate 

turnover in cells that are proliferating, it suggests that 

reduced metabolism should slow cell turnover, be cancer 
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preventative, and halt cell aging. Hence, in relation to 

Peto’s paradox, larger animals may have evolved a slower 

metabolic rate that is both cancer preventative and 

increases longevity. Indeed, the “metabolic rate 

hypothesis” suggests that cellular metabolic rate and 

subsequently, oxidative stress, decreases with increasing 

body size and is protective for larger animals [68]. Slower 

metabolic rates have been found in large, long-lived 

animals such as whales and elephants [59, 69-71], compared 

with smaller animals. A common factor among long-lived 

animals is that they have no natural enemies and are at 

reduced risk of predation or death by other external 

factors, thus the “need for speed” is reduced and more 

energy can be put into maintaining protective somatic cell 

maintenance [72, 73].   

 

 

 
 
Figure 2. Tumors rarely occur following acute injury to cellular respiration and considerable time is required for non-

oxidative energy metabolism (i.e. glycolysis, TCA cycle via substrate-level phosphorylation) to replace oxidative 

phosphorylation (OXPHOS) as the dominant energy generator of the cell. As minor OXPHOS damages accumulated over time, 

the cell uses substrate-level phosphorylation to compensate gradually for the energy debt. This compensatory effect, by increasing 

the uptake of glucose and glutamine to be broken down for ATP production, is a well-known hallmark of cancer called “the Warburg 

effect”. Cells that undergo a Warburg transition and switch their metabolism to glycolysis and glutaminolysis produce increased 

levels of substrates that can have many downstream effects. Only glucose metabolism is highlighted here, with the solid arrows 

denoting the increased reliance on glycolysis and production of lactate, and dotted arrows denoting decreased activity in the 

remainder of the pathway. This translates to lowered production of acetyl-coenzyme-A (acetyl-CoA) from pyruvate, activity of the 

TCA cycle, and production of precursors necessary to carry out OXPHOS. Also, mutations of key TCA cycle enzymes commonly 

found in cancer are shown, such as isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH), 

as well as substrates accumulated due to their alterations. Abbreviations: ECM, extracellular matrix; IGF, insulin growth factor; 

SAM, s-adenosylmethionine; UDP-GlcNAc, uridine diphosphate N-acetylglucosamine; ATP, adenosine triphosphate; AMPK, 

AMP-activated protein kinase. 
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Cellular maintenance in an aging system 

 

The influence of metabolism on overall life span is still 

controversial. However, there must be an evolutionary 

trade-off to lower metabolic rates in larger animals to 

avoid cellular harm and increase life span. A possible 

answer is “somatic maintenance” [74], where the 

investment in gene repair will increase or decrease to 

maximize reproductive success in a changing 

environment. Therefore, lifespans of animals have 

evolved to maintain fitness and invest in somatic 

maintenance until reproduction is most likely to be 

achieved. This explains why most wild animals do not 

develop cancer, as they do not survive beyond 

reproductive age in the wild. Humans are the only species 

that have developed technological advances and designed 

their living environment to extend their lifespan far 

beyond reproductive age, thus exposing themselves to a 

variety of diseases associated with old age. This also holds 

true for animals kept in captivity, which live beyond their 

normal lifespan in the wild, and do develop cancer [75, 76]. 

The low cancer incidence in larger species could also 

relate to cell size. The difference in cell size among 

species has been well documented, with blood cell sizes 

ranging from 78 to 110 to 170 and 215 µm2 in shrews, 

rats, humans, and whales, respectively [77, 78]. If cell size 

is considered when modeling cancer rates between 

species, then this skewed cancer risk almost disappears 

[68].  More importantly, in addition to the association of 

drop in cancer rate, larger cells exhibit a lower metabolic 

rate [79] and prioritize slow growth over division [80]. 

Furthermore, cell volume and metabolic rate scale with 

body mass in 13 different cell types [81], supporting the 

model in which metabolic rate and somatic maintenance 

play a crucial role in cancer development [82]. This 

phenomenon is only found between species and not within, 

as obese humans have an increased cancer risk [83] (Fig. 

1).  Nature’s way of combating the inherent risk of living 

larger is exemplified in elephants which have an increased 

copy number of the tumor suppressor P53 [84], leading to 

an improved gene maintenance system with reduced 

cancer risk and a longer lifespan [69]. Some exceptions to 

the rule do exist. For example, the naked mole rat – a 

small, subterranean rodent – has been found to live over 

30 years, while exhibiting no documented cases of cancer 

[85]. As with elephants, it was recently found that the 

naked mole rat had fibroblasts producing a type of high-

molecular-mass glycosaminoglycan, which increase 

extracellular matrix tension and further signals to a cell 

cycle checkpoint p16INK4a that inhibits cell cycle 

progression [86]; thus supporting the notion that the tissue 

microenvironment plays a major role in cell cycle 

regulation.  

Since continual growth and aging seem to be linked, 

with aging perhaps being directed by this unnecessary 

growth [87], evidence points to energy partitioning away 

from biogenesis and to cell maintenance as a way to 

extend lifespan [88]. Cellular maintenance is carried out 

in various ways and exists to combat the inherent mistakes 

our cells accumulate as they age. The main contributors 

of these are gene and protein errors, and while gene 

instability is hallmark of cancer, we are exploring factors 

beyond genetics in aging and cancer. Protein homeostasis 

(proteostasis) is vital for quality control of the cell 

proteome in an aging system.  Altered proteostasis can 

occur upon the accumulation of dysfunctional proteins 

due to mutations and misfolded of proteins from lack of 

necessary enzymes or chaperones, incorrect 

compartmentalization, and problems in degradation 

systems for the clearing of these proteins, such as 

autophagy-lysosomal and ubiquitin-proteasome systems 

[89]. Cell-stress-signaling pathways regulate the 

proteostasis network and prevent the toxicity associated 

with misfolded proteins that could aggregate in 

subcellular compartments and tissues. The efficiency of 

the proteostasis network declines with age and this failure 

in protein homeostasis has been proposed to underlie the 

basis of common age-related human disorders [90].  

Autophagy is a major driver of this housekeeping role 

whereby unwanted, excess, or damaged cytosolic 

components are self-degraded by the cell through 

lysosomal digestion. Autophagy is one of the programmed 

self-degradative processes that is important for balancing 

sources of energy at critical times in development and in 

response to cellular stress [91]. Many pathways are in place 

to detect nutrient stress (AMPK, mTOR, FOXO), hypoxia 

(HIF), misfolded proteins (unfolded protein response), 

immune response (NF-kB, MAPK), DNA damage (P53), 

mitochondrial stress (MMP, PINK) [92]. The selective 

removal of damaged mitochondria in particular has been 

termed mitophagy and dysregulation of this clearance is a 

risk factor for cancer development [93]. With decreased 

mitophagy, a slow accumulation of dysfunctional 

mitochondria may lead to accumulation of metabolic 

substrates causing epigenetic signaling changes and 

altered gene expression.  In lifestyle diseases such as 

obesity and type 2 diabetes [94], dysfunctional 

mitochondria may not be cleared due to a constant excess 

of nutrient availability inhibiting the autophagic response 

mechanisms. Meanwhile, the strengthening of other 

metabolic pathways such as glycolysis to compensate for 

energy deficit provides the foundation for cancer cell 

transformation [95]. In mammals, one of AMPK’s many 

targets is the UNC-51-like kinase 1 (ULK1), which 

regulates the formation of the autophagosome in response 

to energetic stress. This regulation is thought to be an 

important mediator of organismal aging [96]. Most 

longevity-promoting interventions require an intact 
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autophagic machinery; furthermore, reduced autophagic 

activity is associated with aging while evidence suggests 

that enhanced autophagy promotes longevity and delays 

age-related phenotypes [97].  

 

Metabolism and epigenetic changes drive aging and 

cancer 

 

Deregulation and loss of homeostasis is a driver of 

damage and dysfunction frequently encountered in aging 

and cancer, affecting all functions of the cell. Normal 

systemic operation requires the proper flexibility and 

functioning of gene and protein expression to respond 

adequately to intracellular and extracellular signals. This 

flexibility is made possible by epigenetic control over 

how the primary DNA sequence is expressed. Besides 

changes in bioenergetics and creation of cellular building 

blocks, metabolism can affect function through control of 

gene expression. Much of the enzymatic maintenance of 

epigenetic patterns occurs through information provided 

by metabolic substrates and metabolites, signaling when 

to grow and trigger transcription based on nutrient 

availability. The crucial role they hold in the support of 

cancer growth has been proven in elegant experiments in 

which enucleated normal cells were fused with nuclei 

from tumor cells to form cybrids. These cybrid cells did 

not form malignant cells, whereas tumor cells infused 

with normal cytoplasm had their tumorigenic potential in 

mice reduced from 92% to 51%  [98]. The important 

feature of their study was that the non-transformed and 

transformed cells all originated from a cloned progenitor 

cell with a common nuclear and cytoplasmic background. 

When the experiments were conducted, the authors did not 

identify the nature of the observed effects, but with 

experimental results from a more recent study focusing on 

the role of mitochondria in this situation [99], it is highly 

likely that substrates and intermediates of metabolism 

could drive this effect via epigenetic regulation. These 

experiments and the increasing data showing that most of 

the common mutations found in cancers are related to 

changes in metabolism [62], demonstrate that there is 

more than just gene mutations driving cancer and aging. 

Compounds directly essential to the function of epigenetic 

enzymes are produced during metabolism, such as S-

adenosylmethionine (SAM) and alpha-ketoglutarate (α-

KG), nicotinamide adenine dinucleotide (NAD) and 

acetyl coenzyme-A (acetyl-CoA), and uridine 

diphosphate N-acetylglucosamine (UDP-GlcNAc). ATP 

is also vital for proper function but not rate limiting for 

these enzymatic reactions due to its relative abundance 

[100].  

 

 

 

Methylation  

 

SAM is produced in the cell from glycolytic intermediates 

shuttled to serine metabolism [101] and by addition of 

adenosyl to methionine from ATP. Histone 

methyltransferases (HMTs) and DNA methyltransferases 

(DNMTs) both use SAM as a methyl donor for transfer to 

the 5' carbon on cytosine, lysine or arginine residues of 

histones, respectively. α-KG is formed both in the TCA 

cycle from glucose-derived isocitrate by isocitrate 

dehydrogenase (IDH) and by transamination of glutamate 

[102] and is essential to the demethylation functions of 

lysine-specific histone demethylase 1 (LSD1) and JmjC-

domain containing histone demethylase (JHDM) on 

histones, and ten-eleven translocation (TET) demethylase 

on DNA [103]. The effect of histone methylation depends 

on the specific proteins modified, and can have either 

repressive or enhancing effects on transcription [104], 

while DNA methylation results in reduced expression. 

There is a documented trend of methylation changes in 

aging, termed epigenetic drift [105], but it is difficult to 

tie it with specific functional implications absent of 

pathological symptoms. However, in a differential 

analysis of methylation in islet cells, genes associated 

with mitochondrial function and diabetes are targeted in 

this aging phenomenon [106].  In a study of 58 cancer cell 

types, DNA enhancer methylation was a strong predictor 

of cancer-related gene expression and of the 207 of 

hypomethylated/upregulated genes, two-thirds had 

function in metabolic processes [107].  Conversely, 

reduced expression of IDH and TET have been associated 

with decreased survival in chronic lymphocytic leukemia 

(CLL), but did not correlate with any measured change in 

global methylation [108].  

 

Acetylation 

 

One of the clearest links between metabolism and 

epigenetics is through acetyl-CoA. Acetyl-CoA plays a 

major role in cellular nutrient sensing is generated during 

oxidation of pyruvate and fatty acids in the mitochondria 

and from citrate in the cytosol and nucleus [109], and also 

serves as a substrate for lipogenesis in the cytosol. Acetyl-

CoA levels directly affect the activity of histone 

acetyltransferases (HAT) as acetyl donors, and can act 

indirectly on histone deacetylation by Sirtuins due to its 

role in modulating NAD+/NADH by availability to the 

TCA cycle [110]. Histone acetylation and demethylation 

generally result in an open structure allowing for 

expression of the region, while deacetylation produces a 

tighter chromatin structure and reduced expression [111]. 

Acetyl-CoA is dynamically regulated by glucose 

availability in cancer cells and the ratio of acetyl-CoA: 

coenzyme A within the nucleus modulates global histone 
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acetylation levels. Reduced sirtuin (SIRT7) activity 

(increased acetylation) is associated with stem cell 

senescence and mitochondrial unfolded protein response 

[112]. Additionally, expression of ATG autophagy genes 

are tightly controlled by acetylation and thus dependent 

upon acetyl-coA levels and nutrient sensing by the cell 

with the reduction of acetyl-coA synthesis, promoting 

autophagy and extending lifespan in drosophila [113]. 

Testing in vitro and confirmation in vivo has shown 

histone acetylation to be controlled by glucose availability 

and AKT-activation of ATP-citrate lyase (ACLY), the 

enzyme responsible for production of acetyl-CoA from 

citrate [114]. 

 

TCA Cycle Intermediates 

 

In the TCA cycle, metabolites such as succinate and 

fumarate are essential for completion of the cycle, but 

they may also accumulate due to altered expression of 

succinate dehydrogenase (SDH) and fumarate hydratase 

(FH) inhibiting prolyl hydroxylases (PHD) and increasing 

HIF levels [115]. IDH mutants produce 2-

hydroxyglutarate, similar in structure to α-KG, which 

interferes with the normal TCA cycle and other enzymatic 

reactions, such as demethylation, that depend on α-KG as 

a substrate [116]. Mutations in IDH, FH, and SDH are 

common in cancer and these metabolites contribute to 

cancer growth and survival by reduced expression of 

tumor suppression genes [117].  

 

Chromatin modifications 

 

Indirectly, modifications of enzymes responsible for these 

epigenetic changes can increase or decrease their activity. 

This occurs mainly through phosphorylation and O-linked 

N-acetylglucosamine (O-GlcNAc) glycosylation. 

Modification of histones can occur by the activity of 

AMPK through phosphorylation of histone protein H2B, 

resulting in expression of genes important to the cellular 

energy homeostasis [118]. Changes in histones by 

glycosylation (formation of O-GlcNAc) are catalyzed by 

O-GlcNAc transferase, but little is established on the 

function or consequence of this histone modification type. 

Recently, it has been shown to have a role in H3.3-histone 

cell cycle regulator mediated nucleosome assembly for 

transcription and also cellular senescence through its 

regulation of chromatin dynamics [119]. The O-GlcNAc 

glycosylations are directly affected by nutrient 

availability signals and activity is reliant upon UDP-

GlcNAc as a donor substrate, a product of the hexosamine 

biosynthesis pathway (fed by 2-5% of imported glucose), 

upregulated in cancer [120]. Modification of histones 

through phosphorylation and O-GlcNAc glycosylation 

are implicated in cell cycle control [121, 122] with the two 

exhibiting inverse relationships during different cell cycle 

phases. Phosphorylation of histones has been found to be 

a significant marker of tumor grade and mitotic index in 

breast cancer [123] and proliferative marker in bladder 

cancer [124]. Increased O-GlcNAc glycosylation is 

consistently found in cancer as well (breast [125, 126], 

prostate [127], lung [128], colorectal [128, 129], liver 

[130], and nonsolid cancers such as chronic lymphocytic 

leukemia [131]) and has been correlated with increased 

metastatic potential. Unique modifications of histones for 

degradation also reveal the importance of histone turnover 

and homeostasis (and proteostasis) in epigenetic 

regulation [132].  In aging cells with DNA-damage signal 

activation, histone synthesis is reduced, demonstrating 

other ways in which histone control can affect cell 

homeostasis [133].  

 

Lifestyle modulates longevity and cancer development 

 

Cellular dysfunction and stress are recurring themes 

presented in this review for their likely role in accelerating 

aging and induction of cancer. This is largely due to 

increased metabolic activity, abnormal metabolism 

through diet or genetic/epigenetic modification, and 

inhibition of healthy cellular maintenance. These 

conditions are all capable of improvement through 

lifestyles changes.  

In the developed world, food sources are constantly 

available and reduction of metabolic activity by prolonged 

fasting is rarely achieved. We no longer experience 

seasonal or periodic fluctuations in nutrient availability 

like our ancestors, but still have a vital and complex 

nutrient sensing system that can be severely affected by 

our modern diets. Reducing this excess consumed energy 

should result in a longer and healthier lifespan by 

decreasing metabolic activity and energy partitioning, 

ROS, and epigenetic-affecting metabolites.  Calorie 

restriction was one of the first diets to show a direct 

relationship between metabolism and lifespan extension 

[134], and continues to be lauded as the best option for life 

extension and health [135]. The consumption of reduced 

calories, but not below nutritional levels, has been shown 

to reduce resting metabolic rate [136], and depends on 

mitochondrial function for its beneficial outcomes [137]. 

Calorie restriction and associated dietary restriction seem 

to exert their effects specifically through mTOR, AMPK, 

and glucose handling (IGF/insulin) pathways [138, 139] 

with outcomes such as lifespan extension, reduced 

inflammation and cancer. Taking the restriction further to 

a pure ketogenic diet has been shown in mice to reduce 

metabolic activity and increase uncoupling protein 2 and 

the ketone, beta-hydroxybutyrate [140]. Ketone bodies 

are important compounds in the body’s response to 

restricted nutrients; as a precursor to acetyl-CoA it serves 
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as an energy source and donor for epigenetic 

modifications [141].  For more information on lifestyle 

modulations such as calorie and dietary restrictions, 

micro/macronutrients, and meal timing, Fontana et al. 

[142] provides a complete review. Diet is not the only 

negative modern lifestyle factor we have altered, 

however; sleep and circadian alignment are adjusted to fit 

societal norms and they also have large effects on 

metabolism and cell recovery. Most research in this area 

is performed on shift workers or through short-term sleep 

deprivation. While only shift work results in circadian 

misalignment, even a single night of sleep restriction can 

mimic its effects and both have been related to increased 

insulin resistance [143, 144].  

Calorie and dietary restrictions in combination with 

regular sleeping patterns can lead to a more normal 

metabolism primarily through direct influx of nutrients 

and also regulation of cellular processes through healthy 

maintenance. The mild stress on mitochondria by 

preserving short periods of low-nutrients can induce 

retrograde stress responses and actually enhance cellular 

function by retaining the activity of autophagic processes. 

As mentioned before in relation to obesity and diabetes II, 

such activation of unfolded protein response and IGF has 

been induced by redox stress to mitochondria 

(mitohormesis) in muscle of Drosophila, resulting in 

increased mitophagy and lifespan [94]. These changes in 

lifestyle have persistent effects in major metabolic 

pathways, ROS, mitochondrial turnover, immune 

regulation, epigenetic control, and DNA repair; related to 

both aging and cancer.  

 

Concluding remarks 

 

Further investigation into the differentiating genetic or 

metabolic factors between species is a key to 

understanding the source of neoplasms and the 

mechanisms nature has adapted to fight them. With the 

explanations given here and even the outliers of Peto’s 

paradox, a need to explain cancer formation using only the 

multi-stage mutational model lessens. The refitting of the 

model with respect to cell size and volume, differential 

tissue behavior, and the presence of long-living organisms 

with no cancer at all could have a unifying relationship 

within cell metabolism. Larger cells, less proliferating 

tissues, and long-living organisms all have slow 

metabolism and consequently slower cell growth.  Upon 

analysis, carcinogenesis may be driven by a forced change 

in metabolism that is not tolerated by an organism or tissue 

and its adapted mechanisms.  

To further expand the knowledge of how these factors 

are regulating aging and cancer development, there is a 

need to share and compare the accumulated evidence that 

underlies these mechanisms. The close relationship 

between aging, cancer, and metabolism across species can 

be addressed using accessible databases depositing 

published data. The era of computer science and 

technology which in many aspects seem to be outpacing 

our evolutionary adaptation to lifestyle changes, could 

very well be the technology that will help solve this 

puzzle. The ability to completely prevent aging and cancer 

is doubtful, but as said by Stauch et al., “Aging is not 

necessarily pathogenic, and in healthy aging, organs, cells 

and subcellular organelles can respond to gradual age-

associated stress'' [145]. Armed with knowledge that our 

diet and behavior matter on a molecular level, we can 

make healthy lifestyle choices and allow our bodies to 

combat this gradual stress, while attempting to alleviate 

the modern prevalence of aging pathology and 

tumorigenesis.  
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