Signal Processing for Newborn Survival from labour to resuscitation

Authors

Jarle Urdal

Synopsis

Stillbirths are a worldwide challenge, with an estimated 2.6 million stillbirths in 2015, of these 1.3 million are estimated to have died during labour and birth, i.e. fresh stillbirth. In addition to the 2.6 million, one million newborns die within their first and only day of life. Complications due to birth asphyxia are the primary cause of these deaths. The vast majority, 98%, of stillbirths and early neonatal deaths are found in low resource settings.

 This thesis investigates two main challenges related to neonatal deaths, 1) fetal heart rate (FHR) and labour analysis, and 2) improving newborn resuscitation. The FHR is known to be important for effectively assessing the well-being of the fetus during labour. In high resource countries, the FHR is measured using cardiotocography for all high-risk labours. While in low income countries, assessment of the FHR is often done manually using a Pinard. With the use of continuous FHR monitoring in low income countries, abnormalities in FHR could potentially be identified at an earlier stage. In this thesis, we facilitate for further analysis of FHR signals by proposing a method to remove less trustworthy time periods of the measured signal, such as noise. And how missing data can be estimated using dictionary learning to allow for continuous analysis. The FHR signals should be interpreted in combination with the uterine activity. We therefore propose a method for detecting uterine contractions using an accelerometer mounted together with the Doppler ultrasound FHR sensor. Finally, we explore how FHR develops during labour and how this trend differs for labours with a normal and adverse outcomes.

 For newborns who are unable to start breathing themselves after birth, immediate help from the healthcare workers are crucial. We therefore explore which parameters during newborn resuscitation are important for the resuscitation outcome. One of the identified parameters is the amount of stimulation, i.e. rubbing the back of the newborn. To get a greater understanding of how stimulation affects newborn resuscitation, and how it should be applied, a large number of annotated resuscitation episodes are required. Manual annotation is both a time consuming and challenging process for the reviewer. We have proposed a complete system for automatically annotating stimulation by using ECG and accelerometer signals measured on the abdomen of the newborn.

Author Biography

Jarle Urdal

University Lecturer
Department of Computer and Electrical Technology
University of Stavanger
jarle.urdal@uis.no

References

Joy E Lawn, Hannah Blencowe, Peter Waiswa, Agbessi Amouzou, Colin Mathers, Dan Hogan, Vicki Flenady, J Frederik Frøen, Zeshan U Qureshi, Claire Calderwood, et al. Stillbirths: rates, risk factors, and acceleration towards 2030. The Lancet, 387(10018):587-603, 2016.

Hannah Blencowe, Simon Cousens, Fiorella Bianchi Jassir, Lale Say, Doris Chou, Colin Mathers, Dan Hogan, Suhail Shiekh, Zeshan U Qureshi, Danzhen You, et al. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis. The Lancet Global Health, 4(2):e98-e108, 2016.

https://doi.org/10.1016/S2214-109X(15)00275-2

Diogo Ayres-de Campos, Catherine Y Spong, Edwin Chandraharan, and FIGO Intrapartum Fetal Monitoring Expert Consensus Panel. Figo consensus guidelines on intrapartum fetal monitoring: Cardiotocography. International Journal of Gynecology & Obstetrics, 131(1):13-24, 2015.

https://doi.org/10.1016/j.ijgo.2015.06.020

World Health Organization et al. WHO recommendations: intrapartum care for a positive childbirth experience. 2018.

Debrah Lewis, Soo Downe, and FIGO Intrapartum Fetal Monitoring Expert Consensus Panel. Figo consensus guidelines on intrapartum fetal monitoring: Intermittent auscultation. International Journal of Gynecology & Obstetrics, 131(1):9-12, 2015. https://doi.org/10.1016/j.ijgo.2015.06.019

John C Morrison, Bonnie F Chez, Ivory D Davis, Rick W Martin, William E Roberts, James N Martin Jr, and Randall C Floyd. Intrapartum fetal heart rate assessment: monitoring by auscultation or electronic means. American journal of obstetrics and gynecology, 168(1):63-66, 1993.

https://doi.org/10.1016/S0002-9378(12)90886-8

WHO. Guidelines on basic newborn resuscitation, 2012.

Jeffrey M Perlman et al. Part 7: neonatal resuscitation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation, 132(16_suppl_1):S204-S241, 2015. https://doi.org/10.1161/CIR.0000000000000276

Hege Langli Ersdal, Estomih Mduma, Erling Svensen, and Jeffrey M. Perlman. Early initiation of basic resuscitation interventions including face mask ventilation may reduce birth asphyxia related mortality in low-income countries: A prospective descriptive observational study. Resuscitation, 83(7):869 - 873, 2012.

https://doi.org/10.1016/j.resuscitation.2011.12.011

M Iriondo, M Thió, E Burón, E Salguero, J Aguayo, M Vento, and Neonatal Resuscitation Group (NRG) of the Spanish Neonatal Society (SEN). A survey of neonatal resuscitation in spain: gaps between guidelines and practice. Acta paediatrica, 98(5):786-791, 2009. https://doi.org/10.1111/j.1651-2227.2009.01233.x

Acog practice bulletin no. 106: Intrapartum fetal heart rate monitoring: Nomenclature, interpratation, and general management principles, 2009.

NICE. Intrapartum care for healthy women and babies: Clinical guideline, 2017.

WHO recommendation on intermittent fetal heart rate auscultation during labour. page 13, 2018.

Vicky Chapman and Cathy Charles. The midwife's labour and birth handbook. John Wiley & Sons, 2018.

https://doi.org/10.1002/9781119235064

Tammy Y Euliano, Minh Tam Nguyen, Shalom Darmanjian, Susan P Mc- Gorray, Neil Euliano, Allison Onkala, and Anthony R Gregg. Monitoring uterine activity during labor: a comparison of 3 methods. American journal of obstetrics and gynecology, 208(1):66-e1, 2013. https://doi.org/10.1016/j.ajog.2012.10.873

Gabi Haran, Michal Elbaz, Moshe D Fejgin, and Tal Biron-Shental. A comparison of surface acquired uterine electromyography and intrauterine pressure catheter to assess uterine activity. American journal of obstetrics and gynecology, 206(5):412-e1, 2012. https://doi.org/10.1016/j.ajog.2011.12.015

Tammy Y Euliano, Minh Tam Nguyen, Shalom Darmanjian, John D Busowski, Neil Euliano, and Anthony R Gregg. Monitoring uterine activity during labor: clinician interpretation of electrohysterography versus intrauterine pressure catheter and tocodynamometry. American journal of perinatology, 33(09):831-838, 2016.

https://doi.org/10.1055/s-0036-1572425

Jørgen Linde. Normal heart rate transition after birth and heart rate responses and newborn outcome after resuscitation. PhD thesis, University of Stavanger, November 2018.

C Omar F Kamlin, Jennifer A Dawson, Colm PF O'Donnell, Colin J Morley, Susan M Donath, Jasbir Sekhon, and Peter G Davis. Accuracy of pulse oximetry measurement of heart rate of newborn infants in the delivery room. The Journal of pediatrics, 152(6):756-760, 2008. https://doi.org/10.1016/j.jpeds.2008.01.002

Myra H Wyckoff, Khalid Aziz, Marilyn B Escobedo, Vishal S Kapadia, John Kattwinkel, Jeffrey M Perlman, Wendy M Simon, Gary M Weiner, and Jeanette G Zaichkin. Part 13: neonatal resuscitation: 2015 american heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, 132(18_suppl_2):S543-S560, 2015. https://doi.org/10.1161/CIR.0000000000000267

Anup Katheria, Wade Rich, and Neil Finer. Electrocardiogram provides a continuous heart rate faster than oximetry during neonatal resuscitation. Pediatrics, 130(5):e1177-e1181, 2012.

https://doi.org/10.1542/peds.2012-0784

Jørgen Erland Linde, Jörn Schulz, Jeffrey M Perlman, Knut Øymar, Fortunata Francis, Joar Eilevstjønn, and Hege Langli Ersdal. Normal newborn heart rate in the first five minutes of life assessed by dry-electrode electrocardiography.

Neonatology, 110(3):231-237, 2016.

https://doi.org/10.1159/000445930

Janusz Jezewski, Tomasz Kupka, and Krzysztof Horoba. Extraction of fetal heart-rate signal as the time event series from evenly sampled data acquired using doppler ultrasound technique. IEEE Transactions on Biomedical Engineering, 55(2):805-810, 2008.

https://doi.org/10.1109/TBME.2007.903532

Saeed Abdulrahman Alnuaimi, Shihab Jimaa, and Ahsan H Khandoker. Fetal cardiac doppler signal processing techniques: challenges and future research directions. Frontiers in bioengineering and biotechnology, 5:82, 2017.

https://doi.org/10.3389/fbioe.2017.00082

Alain Rakotomamonjy. Direct optimization of the dictionary learning problem. IEEE Transactions on Signal Processing, 61(22):5495-5506, 2013.

https://doi.org/10.1109/TSP.2013.2278158

Chenglong Bao, Hui Ji, Yuhui Quan, and Zuowei Shen. Dictionary learning for sparse coding: Algorithms and convergence analysis. IEEE transactions on pattern analysis and machine intelligence, 38(7):1356-1369, 2015.

https://doi.org/10.1109/TPAMI.2015.2487966

J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Transactions on Image Processing, 17(1):53-69, Jan 2008.

https://doi.org/10.1109/TIP.2007.911828

A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D. Plumbley. Audio inpainting. IEEE Transactions on Audio, Speech, and Language Processing, 20(3):922-932, March 2012.

https://doi.org/10.1109/TASL.2011.2168211

V. P. Oikonomou, J. Spilka, C. Stylios, and L. Lhostka. An adaptive method for the recovery of missing samples from fhr time series. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pages 337-342, June 2013.

https://doi.org/10.1109/CBMS.2013.6627812

K. Engan, S.O. Aase, and J. Håkon Husøy. Method of optimal directions for frame design. In Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on, volume 5, pages 2443-2446 vol.5, 1999. https://doi.org/10.1109/ICASSP.1999.760624

M. Aharon, M. Elad, and A. Bruckstein. K -SVD: An algorithm for designing overcomplete dictionaries for sparse representation. Signal Processing, IEEE Transactions on, 54(11):4311-4322, Nov 2006.

https://doi.org/10.1109/TSP.2006.881199

Sharat Chikkerur, Alexander N Cartwright, and Venu Govindaraju. Fingerprint enhancement using stft analysis. Pattern recognition, 40(1):198-211, 2007.

https://doi.org/10.1016/j.patcog.2006.05.036

Jingshan Huang, Binqiang Chen, Bin Yao, and Wangpeng He. Ecg arrhythmia classification using stft-based spectrogram and convolutional neural network. IEEE Access, 7:92871-92880, 2019.

https://doi.org/10.1109/ACCESS.2019.2928017

Bryan E Usevitch. A tutorial on modern lossy wavelet image compression: foundations of jpeg 2000. IEEE signal processing magazine, 18(5):22-35, 2001.

https://doi.org/10.1109/79.952803

Hasan Demirel and Gholamreza Anbarjafari. Discrete wavelet transformbased satellite image resolution enhancement. IEEE transactions on geoscience and remote sensing, 49(6):1997-2004, 2011.

https://doi.org/10.1109/TGRS.2010.2100401

Murugappan Murugappan, Nagarajan Ramachandran, Yaacob Sazali, et al. Classification of human emotion from eeg using discrete wavelet transform. Journal of biomedical science and engineering, 3(04):390, 2010.

https://doi.org/10.4236/jbise.2010.34054

Khalid Sayood. Introduction to data compression. Morgan Kaufmann, 2017.

https://doi.org/10.1016/B978-0-12-809474-7.00019-7

Cuiwei Li, Chongxun Zheng, and Changfeng Tai. Detection of ecg characteristic points using wavelet transforms. IEEE Transactions on biomedical Engineering, 42(1):21-28, 1995.

https://doi.org/10.1109/10.362922

Kyriaki K Spyridou and Leontios J Hadjileontiadis. Analysis of fetal heart rate in healthy and pathological pregnancies using wavelet-based features. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1908-1911. IEEE, 2007.

https://doi.org/10.1109/IEMBS.2007.4352689

Agnese Sbrollini, Annachiara Strazza, Manila Caragiuli, Claudia Mozzoni, Selene Tomassini, Angela Agostinelli, Micaela Morettini, Sandro Fioretti, Francesco Di Nardo, and Laura Burattini. Fetal phonocardiogram denoising by wavelet transformation: robustness to noise. In 2017 Computing in Cardiology (CinC), pages 1-4. IEEE, 2017.

https://doi.org/10.22489/CinC.2017.331-075

Madhur Srivastava, C Lindsay Anderson, and Jack H Freed. A new wavelet denoising method for selecting decomposition levels and noise thresholds. IEEE access, 4:3862-3877, 2016.

https://doi.org/10.1109/ACCESS.2016.2587581

C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano. Rusboost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(1):185- 197, Jan 2010.

https://doi.org/10.1109/TSMCA.2009.2029559

G. M. Weiss. Mining with rarity: A unifying framework. SIGKDD Explor. Newsl., 6(1):7-19, June 2004.

https://doi.org/10.1145/1007730.1007734

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and an application to boosting. In European conference on computational learning theory, pages 23-37. Springer, 1995.

https://doi.org/10.1007/3-540-59119-2_166

N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. Smoteboost: improving prediction of the minority class in boosting. In In Proceedings of the Principles of Knowledge Discovery in Databases, PKDD-2003, pages 107-119, 2003.

https://doi.org/10.1007/978-3-540-39804-2_12

Sergios Theodoridis. Machine learning: a Bayesian and optimization perspective. Academic Press, 2015.

https://doi.org/10.1016/B978-0-12-801522-3.00012-4

Sudhir Varma and Richard Simon. Bias in error estimation when using cross-validation for model selection. BMC bioinformatics, 7(1):91, 2006.

https://doi.org/10.1186/1471-2105-7-91

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of machine learning research, 3(Mar):1157-1182, 2003.

Moyo fetal heart rate monitor, user guide. 20-08388/00026151 Rev E.

Paschal Francis Mdoe. Improving Fetal Heart Rate Monitoring in Low Resource Settings. PhD thesis, University of Stavanger, April 2019.

Benjamin Anathory Kamala. Assessment of foetal heart rate monitoring devices in referral hospitals in Tanzania. PhD thesis, University of Stavanger, November 2019.

Huyen Vu, Trygve Eftestøl, Kjersti Engan, Joar Eilevstjønn, Ladislaus Blacy Yarrot, Jørgen E Linde, and Hege Ersdal. Detection of activities during newborn resuscitation based on short-time energy of acceleration signal. In International Conference on Image and Signal Processing, pages 262-270. Springer, 2016.

https://doi.org/10.1007/978-3-319-33618-3_27

G Dawes, YJ Meir, and GP Mandruzzato. Computerized evaluation of fetal heart-rate patterns. Journal of perinatal medicine, 22(6):491-499, 1994.

Zarko Alfirevic, Gillian ML Gyte, Anna Cuthbert, and Declan Devane. Continuous cardiotocography (ctg) as a form of electronic fetal monitoring (efm) for fetal assessment during labour. Cochrane database of systematic reviews, (2), 2017.

https://doi.org/10.1002/14651858.CD006066.pub3

Amir Sweha, Trevor W Hacker, and Jim Nuovo. Interpretation of the electronic fetal heart rate during labor. American family physician, 59(9):2487, 1999.

Ruth Martis, Ova Emilia, Detty S Nurdiati, and Julie Brown. Intermittent auscultation (ia) of fetal heart rate in labour for fetal well-being. Cochrane Database of Systematic Reviews, (2), 2017.

https://doi.org/10.1002/14651858.CD008680.pub2

Antoniya Georgieva, Patrice Abry, Václav Chudácek, Petar M Djuric, Martin G Frasch, René Kok, Christopher A Lear, Sebastiaan N Lemmens, Inês Nunes, Aris T Papageorghiou, et al. Computer-based intrapartum fetal monitoring and beyond: A review of the 2nd workshop on signal processing and monitoring in labor (october 2017, oxford, uk). Acta obstetricia et gynecologica Scandinavica, 98(9):1207-1217, 2019.

https://doi.org/10.1111/aogs.13639

Diogo Ayres-de Campos, Mariana Rei, Inês Nunes, Paulo Sousa, and Joao Bernardes. Sisporto 4.0-computer analysis following the 2015 figo guidelines for intrapartum fetal monitoring. The Journal of Maternal-Fetal & Neonatal Medicine, 30(1):62-67, 2017.

https://doi.org/10.3109/14767058.2016.1161750

Antoniya Georgieva, Christopher WG Redman, and Aris T Papageorghiou. Computerized data-driven interpretation of the intrapartum cardiotocogram: a cohort study. Acta obstetricia et gynecologica Scandinavica, 96(7):883-891, 2017.

https://doi.org/10.1111/aogs.13136

A Georgieva, AT Papageorghiou, SJ Payne, M Moulden, and CWG Redman. Phase-rectified signal averaging for intrapartum electronic fetal heart rate monitoring is related to acidaemia at birth. BJOG: An International Journal of Obstetrics & Gynaecology, 121(7):889-894, 2014.

https://doi.org/10.1111/1471-0528.12568

Jirí Spilka, V Chudácek, Michal Kouck'y, Lenka Lhotská, Michal Huptych, P Janku, George Georgoulas, and Chrysostomos Stylios. Using nonlinear features for fetal heart rate classification. Biomedical Signal Processing and Control, 7(4):350-357, 2012.

https://doi.org/10.1016/j.bspc.2011.06.008

Jirí Spilka, George K Georgoulas, Petros S Karvelis, Václav Chudácek, Chrysostomos D Stylios, and Lenka Lhotská. Discriminating normal from" abnormal" pregnancy cases using an automated fhr evaluation method. In SETN, pages 521-531. Springer, 2014.

https://doi.org/10.1007/978-3-319-07064-3_45

Guanchao Feng, J Gerald Quirk, and Petar M Djuric. Recovery of missing samples in fetal heart rate recordings with gaussian processes. In Signal Processing Conference (EUSIPCO), 2017 25th European, pages 261-265. IEEE, 2017.

https://doi.org/10.23919/EUSIPCO.2017.8081209

Shunji Suzuki, Yuuri Sensu, and Mayumi Ueda. Maternal heart rate mistaken for the fetal heart rate during delivery. Journal of Clinical Gynecology and Obstetrics, 5(2):74-76, 2016.

https://doi.org/10.14740/jcgo402e

U Rajendra Acharya, Hamido Fujita, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, and Muhammad Adam. Application of deep convolutional neural network for automated detection of myocardial infarction using ecg signals. Information Sciences, 415:190-198, 2017.

https://doi.org/10.1016/j.ins.2017.06.027

U Rajendra Acharya, Hamido Fujita, Oh Shu Lih, Yuki Hagiwara, Jen Hong Tan, and Muhammad Adam. Automated detection of arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network. Information sciences, 405:81-90, 2017.

https://doi.org/10.1016/j.ins.2017.04.012

Alessio Petrozziello, Ivan Jordanov, T Aris Papageorghiou, WG Christopher Redman, and Antoniya Georgieva. Deep learning for continuous electronic fetal monitoring in labor. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5866-5869. IEEE, 2018.

https://doi.org/10.1109/EMBC.2018.8513625

Antoniya Georgieva, Stephen J Payne, Mary Moulden, and Christopher WG Redman. Artificial neural networks applied to fetal monitoring in labour. Neural Computing and Applications, 22(1):85-93, 2013.

https://doi.org/10.1007/s00521-011-0743-y

Steven L Clark, Emily F Hamilton, Thomas J Garite, Audra Timmins, Philip A Warrick, and Samuel Smith. The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. American journal of obstetrics and gynecology, 216(2):163-e1, 2017.

https://doi.org/10.1016/j.ajog.2016.10.009

Antoniya Georgieva, Mary Moulden, and Christopher WG Redman. Umbilical cord gases in relation to the neonatal condition: the everest plot. European Journal of Obstetrics & Gynecology and Reproductive Biology, 168(2):155-160, 2013.

https://doi.org/10.1016/j.ejogrb.2013.01.003

D Preethi and RS Valarmathi. Classification and suppression of noises in fetal heart rate monitoring: A survey. In Microelectronics, Electromagnetics and Telecommunications, pages 607-615. Springer, 2019.

https://doi.org/10.1007/978-981-13-1906-8_62

Rik Vullings, Chris Peters, Massimo Mischi, Guid Oei, and Jan Bergmans. Maternal ecg removal from non-invasive fetal ecg recordings. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1394-1397. IEEE, 2006.

https://doi.org/10.1109/IEMBS.2006.259675

Faraz Barzideh, Jarle Urdal, Kidanto Hussein, Kjersti Engan, Karl Skretting, Paschal Mdoe, Benjamin Kamala, and Sara Brunner. Estimation of missing data in fetal heart rate signals using shift-invariant dictionary. In 2018 26th European Signal Processing Conference (EUSIPCO), pages 762-766. IEEE, 2018.

https://doi.org/10.23919/EUSIPCO.2018.8553110

Chang Su Lee, Martin Masek, Chiou Peng Lam, and Keng T Tan. Towards higher accuracy and better noise-tolerance for fetal heart rate monitoring using doppler ultrasound. In TENCON 2009-2009 IEEE Region 10 Conference, pages 1-6. IEEE, 2009.

Michelle L Murray. Maternal or fetal heart rate? avoiding intrapartum misidentification. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 33(1):93-104, 2004.

https://doi.org/10.1177/0884217503261161

Joscha Reinhard, Barrie Hayes-Gill, Sven Schiermeier, Hendrike Hatzmann, Tomas M Heinrich, and Frank Louwen. Intrapartum heart rate ambiguity: a comparison of cardiotocogram and abdominal fetal electrocardiogram with maternal electrocardiogram. Gynecologic and obstetric investigation, 75 2:101-8, 2013.

https://doi.org/10.1159/000345059

M Watakabe, K Mita, K Akataki, and K Ito. Reliability of the mechanomyogram detected with an accelerometer during voluntary contractions. Medical and Biological Engineering and Computing, 41(2):198-202, 2003.

https://doi.org/10.1007/BF02344888

M Tarata, A Spaepen, and R Puers. The accelerometer mmg measurement approach, in monitoring the muscular fatigue. Measurement Science Review, 1(1):47-50, 2001.

Hinke de Lau, Chiara Rabotti, Nicole Haazen, S Guid Oei, and Massimo Mischi. Towards improving uterine electrical activity modeling and electrohysterography: ultrasonic quantification of uterine movements during labor. Acta obstetricia et gynecologica Scandinavica, 92(11):1323-1326, 2013.

https://doi.org/10.1111/aogs.12233

Faraz Barzideh, Karl Skretting, and Kjersti Engan. Imposing shift-invariance using flexible structure dictionary learning (fsdl). Digital Signal Processing, 69(Supplement C):162 - 173, 2017.

https://doi.org/10.1016/j.dsp.2017.06.023

S. H. Lee et al. A study on the activity classification using a triaxial accelerometer. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), volume 3, pages 2941-2943 Vol.3, Sept 2003.

P. Gupta and T. Dallas. Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Transactions on Biomedical Engineering, 61(6):1780-1786, June 2014.

https://doi.org/10.1109/TBME.2014.2307069

F. Yang and L. Zhang. Real-time human activity classification by accelerometer embedded wearable devices. In 2017 4th International Conference on Systems and Informatics (ICSAI), pages 469-473, Nov 2017.

https://doi.org/10.1109/ICSAI.2017.8248338

Huyen Vu, Trygve Eftestol, Kjersti Engan, Joar Eilevstjonn, Ladislaus Yarrot, Jorgen Linde, and Hege Ersdal. Automatic detection and parameterization of manual bag-mask ventilation on newborns. IEEE journal of biomedical and health informatics, 2016.

Huyen Vu, Kjersti Engan, Trygve Eftestøl, Aggelos Katsaggelos, Samwel Jatosh, Simeon Kusulla, Estomih Mduma, Hussein Kidanto, and Hege Ersdal. Automatic classification of resuscitation activities on birth-asphyxiated newborns using acceleration and ECG signals. Biomedical Signal Processing and Control, 36:20 - 26, 2017.

https://doi.org/10.1016/j.bspc.2017.03.004

Øyvind Meinich-Bache, Kjersti Engan, Ivar Austvoll, Trygve Eftestøl, Helge Myklebust, Ladislaus Yarrot, Hussein Kidanto, and Hege Ersdal. Object detection during newborn resuscitation activities. IEEE journal of biomedical and health informatics, 2019.

https://doi.org/10.1109/JBHI.2019.2924808

O Meinich-Bache, SL Austnes, K Engan, I Austvoll, T Eftestol, H Myklebust, S Kusulla, H Kidanto, and H Ersdal. Activity recognition from newborn resuscitation videos. IEEE journal of biomedical and health informatics, 2020.

https://doi.org/10.1109/JBHI.2020.2978252

Khalid Aziz, Mairi Chadwick, Mary Baker, and Wayne Andrews. Ante- and intra-partum factors that predict increased need for neonatal resuscitation. Resuscitation, 79(3):444 - 452, 2008.

https://doi.org/10.1016/j.resuscitation.2008.08.004

Huyen Vu, Trygve Eftestøl, Kjersti Engan, Joar Eilevstjønn, Ladislaus Blacy Yarrot, Jørgen E Linde, and Hege Ersdal. Exploring the relationship between characteristics of ventilation performance and response of newborns during resuscitation. In International Joint Conference on Biomedical Engineering

Systems and Technologies, pages 275-290. Springer, 2015.

Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273 - 324, 1997. Relevance.

https://doi.org/10.1016/S0004-3702(97)00043-X

Jarle Urdal, Kjersti Engan, Trygve Eftestøl, Valery Naranjo, Ingunn Anda Haug, Anita Yeconia, Hussein Kidanto, and Hege Ersdal. Automatic identification of stimulation activities during newborn resuscitation using ecg and accelerometer signals. Computer Methods and Programs in Biomedicine, page 105445, 2020.

https://doi.org/10.1016/j.cmpb.2020.105445

Hege L Ersdal, Joar Eilevstjønn, Jørgen E Linde, Anita Yeconia, Estomih R Mduma, Hussein Kidanto, and Jeffrey Perlman. Fresh stillborn and severely asphyxiated neonates share a common hypoxic-ischemic pathway. International Journal of Gynecology & Obstetrics, 141(2):171-180, 2018.

https://doi.org/10.1002/ijgo.12430

Vangelis P Oikonomou, Jiri Spilka, Chrysostomos Stylios, and Lenka Lhostka. An adaptive method for the recovery of missing samples from fhr time series. In Proceedings of the 26th IEEE International Symposium on Computer- Based Medical Systems, pages 337-342. IEEE, 2013.

https://doi.org/10.1109/CBMS.2013.6627812

Laerdal Global Health. Moyo fetal heart rate monitor. Accessed 27 August 2019.

J. Sulam and M. Elad. Large inpainting of face images with trainlets. IEEE Signal Processing Letters, 23(12):1839-1843, Dec 2016.

https://doi.org/10.1109/LSP.2016.2616354

Michael Elad. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. springer, 2010.

https://doi.org/10.1007/978-1-4419-7011-4

Jarle Urdal, Kjersti Engan, Trygve Eftestøl, Ladislaus Blacy Yarrot, Hussein Kidanto, and Hege Ersdal. Noise and contraction detection using fetal heart rate and accelerometer signals during labour. In Paper from the Scandinavian Conference on Health Informatics,. Linköping University Electronic Press., 2018.

Philip A Warrick, Emily F Hamilton, Doina Precup, and Robert E Kearney. Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography. IEEE Transactions on Biomedical Engineering, 57(4):771-779, 2010.

https://doi.org/10.1109/TBME.2009.2035818

Philip A Warrick, Emily F Hamilton, Doina Precup, and Robert E Kearney. Identification of the dynamic relationship between intrapartum uterine pressure and fetal heart rate for normal and hypoxic fetuses. IEEE Transactions on Biomedical Engineering, 56(6):1587-1597, 2009.

https://doi.org/10.1109/TBME.2009.2014878

Janusz Jezewski, Janusz Wrobel, and Krzysztof Horoba. Comparison of doppler ultrasound and direct electrocardiography acquisition techniquesfor quantification of fetal heart rate variability. IEEE Transactions on Biomedical Engineering, 53(5):855-864, 2006.

https://doi.org/10.1109/TBME.2005.863945

S. Wright, K. Matheieson, L. Brearley, S. Jacobs, L Holly, and R. Wickremasinghe. Save the children: Ending newborn deaths: Ensuring every baby survives, 2014.

Haidong Wang, Chelsea A Liddell, Matthew M Coates, Meghan D Mooney, Carly E Levitz, Austin E Schumacher, Henry Apfel, Marissa Iannarone, Bryan Phillips, Katherine T Lofgren, et al. Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990-2013: a systematic analysis for the global burden of disease study 2013. The Lancet, 384(9947):957-979, 2014.

Jeffrey M Perlman, Jonathan Wyllie, John Kattwinkel, Dianne L Atkins, Leon Chameides, Jay P Goldsmith, Ruth Guinsburg, Mary Fran Hazinski, Colin Morley, Sam Richmond, et al. Neonatal resuscitation: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Pediatrics, 126(5):e1319-e1344, 2010.

https://doi.org/10.1542/peds.2010-2972B

Tobias Scheffer. Error estimation and model selection. PhD thesis, Technischen Universitat Berlin, School of Computer Science, 1999.

Sandrine Dudoit and Mark J. van der Laan. Asymptotics of cross-validated risk estimation in estimator selection and performance assessment. Statistical Methodology, 2(2):131 - 154, 2005.

https://doi.org/10.1016/j.stamet.2005.02.003

Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition, Fourth Edition. Academic Press, 4th edition, 2008.

J. Urdal et al. Signal processing and classification for identification of clinically important parameters during neonatal resuscitation. In 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pages 547-552, Sept 2017.

https://doi.org/10.1109/ICSIPA.2017.8120672

Antoni Bayés De Luna, Velislav N Batchvarov, and Marek Malik. The morphology of the electrocardiogram. The ESC Textbook of Cardiovascular Medicine Blackwell Publishing, pages 1-35, 2006.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.

https://doi.org/10.1007/BF00994018

Isabelle Guyon and André Elisseeff. An introduction to feature extraction. In Feature extraction, pages 1-25. Springer, 2006.

https://doi.org/10.1007/978-3-540-35488-8_1

Cover for Signal Processing for Newborn Survival  from labour to resuscitation
Published
August 19, 2020