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Preface
This thesis is submitted as partial fulfilment of the requirements for the
degree of Philosophiae Doctor at the University of Stavanger, Norway. The
research has been carried out at the Department of Electrical Engineering
and Computer Science at the University of Stavanger. A period of three
months, from March 2018 to June 2018, was spent at the Computer Vision
and Behaviour Analysis Lab, Universitat Politècnica de València, Spain.

This thesis is based on a collection of five papers, four published and one
currently under review. For increased readability, the papers have been
reformatted for alignment with the format of the thesis and are included
as chapters.

Jarle Urdal, April 2020
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Abstract
Stillbirths are a worldwide challenge, with an estimated 2.6 million stillbirths
in 2015, of these 1.3 million are estimated to have died during labour and
birth, i.e. fresh stillbirth. In addition to the 2.6 million, one million
newborns die within their first and only day of life. Complications due to
birth asphyxia are the primary cause of these deaths. The vast majority,
98%, of stillbirths and early neonatal deaths are found in low resource
settings.

This thesis investigates two main challenges related to neonatal deaths,
1) fetal heart rate (FHR) and labour analysis, and 2) improving newborn
resuscitation. The FHR is known to be important for effectively assessing
the well-being of the fetus during labour. In high resource countries, the
FHR is measured using cardiotocography for all high-risk labours. While
in low income countries, assessment of the FHR is often done manually
using a Pinard. With the use of continuous FHR monitoring in low income
countries, abnormalities in FHR could potentially be identified at an earlier
stage. In this thesis, we facilitate for further analysis of FHR signals
by proposing a method to remove less trustworthy time periods of the
measured signal, such as noise. And how missing data can be estimated
using dictionary learning to allow for continuous analysis. The FHR signals
should be interpreted in combination with the uterine activity. We therefore
propose a method for detecting uterine contractions using an accelerometer
mounted together with the Doppler ultrasound FHR sensor. Finally, we
explore how FHR develops during labour and how this trend differs for
labours with a normal and adverse outcomes.
For newborns who are unable to start breathing themselves after birth,

immediate help from the healthcare workers are crucial. We therefore
explore which parameters during newborn resuscitation are important
for the resuscitation outcome. One of the identified parameters is the
amount of stimulation, i.e. rubbing the back of the newborn. To get a
greater understanding of how stimulation affects newborn resuscitation,
and how it should be applied, a large number of annotated resuscitation
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episodes are required. Manual annotation is both a time consuming and
challenging process for the reviewer. We have proposed a complete system
for automatically annotating stimulation by using ECG and accelerometer
signals measured on the abdomen of the newborn.
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Chapter 1

Introduction
Stillbirths are a worldwide challenge, with an estimated 2.6 million [uncer-
tainty range 2.4-3.0] stillbirths in 2015 [1], of these 1.3 million are estimated
to have died during labour and birth, i.e. fresh stillbirth (FSB). In addition
to the 2.6 million, one million newborns die within their first and only day
of life [1, 2]. Birth asphyxia is the primary cause of these very early deaths.
The vast majority, 98%, of stillbirths and neonatal deaths (4 weeks) are
found in low resource settings [1]. Using a world map, shown in Figure 1.1,
where each country is scaled to indicate the number of newborns who die
during their first 4 weeks of life, we see that most of these deaths occur
in Africa and Asia. These are regions where access to healthcare may be
limited.

Figure 1.1: Scaled world map illustration the proportion of countries where newborns
died during the first 4 weeks of life. Credit: https://worldmapper.org/maps/neonatal-
deaths-2015/ No changes were made. License: CC BY-NC-SA 4.01

1https://creativecommons.org/licenses/by-nc-sa/4.0/
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1. Introduction

The Safer Births research and innovation project, which this PhD project
has been a part of, aim to reduce fresh stillbirths and newborn mortality (i.e.
perinatal mortality) through establishing new knowledge and developing
new innovative products to save lives at birth.
Reducing perinatal mortality can be divided into two main challenges:

1) improving fetal assessment to reduce the number of stillbirths and to
reduce the need of resuscitation, and 2) improving the resuscitation process.

1.1 Challenge 1: Improving fetal assessment

Fetal heart rate (FHR) monitoring is a widely used method to assess the
status of the fetus during pregnancy, labour, and birth. In high resource
countries, continuous monitoring of the FHR is done using cardiotocography
(CTG) for labours categorized as high risk. In low- and middle-income
countries (LMIC), an intermittent auscultation is the norm for all labours.
Current guidelines state that the FHR should be within 110-160 beats

per minute (bpm) during labour [3, 4], and that auscultation of FHR should
be conducted every 15-30 minutes during the first stage of labour, and
every 5-15 minutes during the second stage of labour. Each auscultation
should last for at least one minute [5]. These auscultation intervals are
not possible without a nurse:patient ratio of 1:1 [6] and are a challenge to
follow in LMIC where the ratio of healthcare workers to the number of
labours is much lower.

A limitation of intermittent auscultations used in LMIC, independent of
the device used, is that the status of the fetus is only checked at specific
points in time. When the time between each auscultation increases, the
possibility of detecting an abnormal FHR may be reduced. To improve
assessment of the fetal well-being in LMIC, a system with continuous
monitoring of FHR is highly desired. With the introduction of a continuous
monitoring system, it is possible to add functionality, such as an alarm, to
alert the healthcare personnel if a manual assessment is required. It may
also be possible to recognize new elements of risk with the use of machine
learning techniques.
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1. Introduction

1.2 Challenge 2: Improving newborn resuscita-
tion

Guidelines on newborn resuscitation are published by both the World
Health Organization and others [7, 8]. The general guideline is to start
resuscitation within the first minute after birth if the newborn is unable
to start breathing [9]. A gap between the medical guidelines and what is
performed has been observed [10].
The therapeutic activities performed during newborn resuscitation in-

cludes stimulation, such as firmly rubbing the back of the baby and drying,
removal of mucus and obstructions in the airway by suction, and bag mask
ventilation. While resuscitation immediately after birth is a crucial part of
saving newborn lives, the full understanding of how to best apply thera-
peutic activities has not been reached. To reduce the perinatal mortality,
it is crucial to ensure that the optimal treatment is available and provided
during labour, delivery, and immediately after birth when the mortality
risk is highest.

1.3 Safer Births research and innovation project

Safer Births is a collaborative research and innovation project between
multiple Norwegian and international research institutions, as well as
hospitals in Tanzania. Within the Safer Births project, observational and
signal data describing labours and the newborn have been collected from
the first FHR assessment on admission until 24 hours after the time of birth.
An overview of the entire data collection period is shown in Figure 1.2.

Birth weight, apgar score, etc

Information of the newborn 24-hour

outcome

Figure 1.2: A brief overview of a labour from admission and until 24-hours after birth.

When the mother was admitted, an initial FHR assessment was per-
formed and additional data were collected. During labour, the FHR was
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1. Introduction

continuously measured using a FHR monitor developed by Laerdal Global
Health for use in this project. If the newborn was in need of resuscita-
tion immediately after birth, signal data of the newborns heart rate and
any ventilation were collected using a resuscitation monitor developed by
Laerdal Global Health. Dedicated research assistants were observing and
timing important aspects of the resuscitation, such as the time from birth
to start of bag-mask ventilation. Status of the newborn 24 hours after birth
was set as the final end point.

1.4 Thesis objectives

The main objectives of this thesis can be summarized by:

O1: Build the foundation for assessment of the fetal well-being using FHR
data collected in the Safer Births project.

O2: Identify important parameters during newborn resuscitation and
propose a complete system to automatically describe the therapeutic
activities.

Related to objective 1, FHR data is collected by the Safer Births project
from labours assessed as normal on admission from hospitals in a low-income
country (LIC). The information contained in this data can potentially be
used to improve fetal assessment. It may give us valuable information of the
labour process and why labours assessed as normal on admission can get
adverse outcomes. To bridge the gap between established signal analysis
techniques and field collected data, several signal preprocessing techniques
are investigated.
With an automatic description of the therapeutic activities performed

during newborn resuscitation it will be possible to evaluate a large number
of episodes to identify which resuscitation activities are improving the state
of the newborn. Description of the therapeutic activities can be visualized
using a timeline, shown in Figure 1.3. In the timeline example, we can
see that the resuscitation was started a fixed time after birth, and that
both stimulation and ventilation were performed. These timelines can also
be used as a debriefing tool, and to identify if the current guidelines are
followed.

4



1. Introduction

Birth

Ventilation

Stimulation Stimulation

Resuscitation
started

Timeline

Figure 1.3: One of the objectives in this thesis is to generate timelines describing when
stimulation and ventilation are performed during newborn resuscitation.

1.5 Main contribution

The contribution of this thesis consists of three papers on FHR monitoring
and two papers on newborn resuscitation. Of the five papers, four are pub-
lished and the remaining paper is currently under review. The relationship
between all five papers is shown in Figure 1.4.
The left half of Figure 1.4 illustrates the work that has been proposed

on fetal monitoring. In paper 1, we propose a method for indicating
when contractions occur based on accelerometer signals and a method
for identification of noise segments in the FHR signal. To facilitate for
continuous time series analysis of the FHR signals, a method is proposed
in paper 2 for filling time periods with missing data in the measured FHR
signal. Finally, in paper 3, we study how the FHR changes during labour
for newborns with a normal and with an adverse outcome. The dashed
lines indicate a part not yet implemented but are considered an important
future work in our goal for increasing the perinatal survival.

The right half of Figure 1.4 illustrates the work done on newborn resus-
citation. In paper 4, we explore which parameters are important for the
resuscitation outcome. One of the important parameters is the amount
of time stimulation activities were performed during the resuscitation. To
aid in the work of understanding how stimulation affects the resuscitation,
we propose a system in paper 5 for automatically annotating when stimu-
lation activities are being performed using acceleration and ECG signals.
This automatic annotation can in turn be used to create useful timelines
describing the resuscitation event.

1.5.1 Thesis outline

An introduction to the medical background for fetal monitoring and newborn
resuscitation is presented in chapter 2 and the technical background in

5



1. Introduction

Fetal monitoring Resuscitation

Birth weight, apgar score, etc

Information of the newborn 24-hour

outcome

Figure 1.4: An overview of the contributions and relationship between the parts of
this thesis. We proposed a method to detect noise in the measured FHR signal, as
well as estimating missing data to facilitate for a continuous analysis in the future. We
also propose a method to indicate when uterine contractions occur using accelerometer
signals, and we explore how FHR changes during labour based on the newborn outcome
24 hours after birth. For newborns that need resuscitation immediately after birth, we
explore which parameters are important for the resuscitation outcome, and we propose a
complete system for automatically annotating stimulation during newborn resuscitation
using ECG and accelerometer signals.
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1. Introduction

chapter 3. The data material and various data subsets, as well as the devices
used for the data collection are presented in chapter 4. Previous work, and
the contributions related to FHR monitoring is presented in chapter 5. The
chapter include a method of identifying noise, and a method for identifying
contractions using an accelerometer. This is followed by an approach for
estimating missing data in FHR signals, and finally an observational study
of how the FHR changes during labour based on the perinatal outcome.
Previous work, and the contributions related to newborn resuscitation is
presented in chapter 6. The chapter first includes an analysis of identifying
clinically important parameters during newborn resuscitation, followed by a
system for creating timelines describing the resuscitation by automatically
annotating stimulation using acceleration and ECG signals. A discussion of
the contribution to both topics, conclusion and further work are presented
in chapter 7. Finally, all five original papers are reformatted to fit in the
thesis layout and presented in the remaining chapters.

7
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Chapter 2

Medical background
In this chapter, an introduction to FHR monitoring, with focus on guidelines
and measurement techniques, is first presented. In the following section,
the technique for measuring heart rate after birth is presented.

2.1 Fetal heart rate monitoring

Assessment of FHR is known to be an effective method to identify the fetal
well-being during labour. While FHR is measured and used to assess the
fetal well-being in most countries, the techniques and interpretation varies.
In this section, current guidelines for interpretation of FHR, as well as
measurement techniques for FHR will be presented.

2.1.1 Guidelines for fetal heart rate interpretation

Guidelines for interpretation of the FHR during labour is in active use
throughout the world. Three of the most used guidelines are defined by
the International Federation of Gynecology and Obstetrics (FIGO) [3],
the American College of Obstetrics and Gynecology (ACOG) [11], and
the National Institute for Health and Care Excellence (NICE) [12]. In
addition, the World Health Organization (WHO) has recommendations on
intermittent [13] and continuous FHR monitoring [4].

The guidelines define how CTG features such as baseline, variability, and
decelerations should be interpreted. An introduction of these features are
given next.

9



2. Medical background

160

140
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180
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R
 [
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m
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-204 -200 -196 -192 -188

Time before birth [minutes]

Figure 2.1: Example of FHR signal. The FHR is shown in blue and the dashed lines
indicate the normal region of FHR. The green lines indicate a baseline in the normal
regions. The six time periods with a reduced FHR are known as decelerations.

Baseline

The FHR baseline is the mean level in the most horizontal time periods and
is estimated in 10-minute intervals. In the FIGO guidelines [3], the normal
baseline is defined to be in the region of 110-160 bpm. If the heart rate
stays above 160 bpm for for than 10 minutes, it is known as tachycardia,
and a rate lower than 110 for 10 minutes is known as bradycardia. It is
important to notice that values in the 100-110 regions can occur for all
labours. In the FHR example, shown in Figure 2.1, the baseline is indicated
as the green lines in the flat regions.

Variability

The variability describes average bandwidth amplitude of the oscillations
in the FHR signal, and is evaluated in 1-minute segments. The FIGO
guidelines [3] defines a normal variability to be in the range of 5-25 bpm.
If the variability stays below 5 bpm for at least 50 minutes, or for at least
3 minutes during a deceleration it is defined as reduced. If the variability is
> 25 bpm for at least 30 minutes, it is defined as increased.

Decelerations

Decelerations are temporary decreases of > 15 bpm in the FHR for at
least 15 seconds [3]. They are typically seen in correlation with uterine
contractions and are believed to be caused by compression of the fetal
head [3].

10



2. Medical background

2.1.2 Measuring techniques

Different approaches for measuring the FHR is used throughout the world.
These differences are likely a result of the cost and power requirement of
the more advanced methods. An overview of the three most used methods
are described in the following subsections.

Pinard

The Pinard horn, shown in Figure 2.2, is a simple device used for manual
auscultation of FHR. The Pinard is placed on the maternal abdomen
and the healthcare worker can then listen and count the heartbeats for a
defined time, i.e. 30 seconds, to obtain the FHR. As the device is simple
to manufacture, and does not require any power to operate, it is still the
primary instrument for midwifes in low income countries. An effective
use, does however, require training of the healthcare personnel. The
pressure applied to the maternal abdomen could also make the auscultation
uncomfortable for the mother [14]. While manual auscultation may be
sufficient in determining the FHR baseline, it is challenging to determine
the FHR variability.

Figure 2.2: Pinard fetoscope License: CC0 1.0 Universal (CC0 1.0) 1

1https://creativecommons.org/publicdomain/zero/1.0/deed.en
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2. Medical background

Figure 2.3: The Sonoline B by Baby Doppler, used for intermittent FHR assessment.
No changes made. License: CC BY-SA 4.0 2

Doppler Ultrasound

Doppler ultrasound based fetal monitoring is the most common non-invasive
approach for measuring FHR. Doppler ultrasound devices commonly provide
a simulated sound to allow the healthcare workers to listen to the heartbeats.
The monitors utilize an ultrasound sensor attached to the maternal abdomen
and the Doppler principle to detect movements in the fetus to compute
the heart rate. The ultrasound frequency is usually in the 2-3MHz range.
Lower frequencies are less sensitive early in the pregnancy but is often
sufficient closer to term. Frequencies in the 3MHz range can be used to
detect FHR earlier in the pregnancy. Even higher frequencies can be used
for location of blood vessels, or other vessels. A technical introduction to
Doppler ultrasound can be found in section 3.1.

2https://creativecommons.org/licenses/by-sa/4.0/deed.en
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2. Medical background

Doppler based fetal monitoring can be divided into two main categories,
intermittent- and continuous monitoring, where the main difference is the
duration of time the device is used. For intermittent use, a Doppler monitor
device can replace manual auscultation. An example of an intermittent
monitor is shown in Figure 2.3. When used as a continuous monitor, the
device can be attached to the maternal abdomen during the entire labour,
i.e. using elastic bands. It can then give the midwifes immediate feedback
of the FHR. More advanced devices also include a display where the heart
rate can be shown for a defined period of time, i.e. 30 minutes. This allows
midwifes to take baseline and variability changes over time into account
when assessing the fetal well-being.

Due to the nature of the Doppler principle, it is susceptible to both
halving and doubling of the true rate. If the sensor is placed incorrectly on
the maternal abdomen, the device can also incorrectly pick up the maternal
heart rate instead of the FHR. If this happens while no midwifes are present,
it can be challenging to assess what has happened.

Cardiotocography

In high income countries, cardiotocography (CTG) is used to monitor high
risk labours. A CTG device can measure the uterine activity using a toco
sensor in addition to the FHR measurement found in simpler devices. An
example of a CTG monitor is shown in Figure 2.4. The large display
provides information of the current FHR and uterine activity, as well as an
overview of the history for both measurements.
FHR in CTG is normally measured using a Doppler based ultrasound

probe. The probe is attached to the maternal abdomen using elastic bands,
illustrated in Figure 2.1.2. If the healthcare providers are unable to get
good signal quality during labour, an electrode can be attached directly
on the fetus scalp to obtain better measurements. The uterine activity is
measured using a strain gauge sensor, attached to the maternal abdomen.
This allows us to measure both the frequency and duration, but not the
strength of the uterine activity [15]. To obtain information of the strength,
an intrauterine catheter (IUPC) can be placed in the uterus. While IUPC
is considered the gold standard for measuring uterine activity [15, 16, 17],
it requires a ruptured membrane and a cervical dilation of at least 1-2
cm [15].
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Figure 2.4: Illustration of CTG monitoring during labour. The large display gives the
healthcare personnel easy access of the current FHR and uterine activity measurements.
It can also show how both measurements develop over time. Credit: rumruay/Shutter-
stock.com

2.2 Heart rate during newborn resuscitation

The state of the newborn at birth can effectively be evaluated by assessing
the heart rate [8], and changes in observed heart rate may be a result of
resuscitation activities.

The most commonly used methods to measure the heart rate immediately
after birth is by auscultation, palpation of the cord, using pulse oximetry
(PO), or electrocardiogram (ECG) [8, 18, 19]. The use of ECG to measure
the heart rate does, however, not reduce the need for PO, as ECG does
not evaluate the oxygenation of the newborn. The use of PO is, however,
shown to underestimate the newborns heart rate immediately after birth,
and may therefore cause unneeded interventions [20].

The principle of ECG is to record the electric activity of the heart from
multiple locations on the body. The central electrical activity in the heart is
the depolarization of the heart cells. When this happens, the depolarization
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propagates and create an electrical wave out in the body that can be
measured. The ECG is found by computing the difference, known as
lead, between these measurements. A common approach of measuring the
heart rate is using 3-leads, placed in the Einthoven triangle, illustrated in
Figure 2.5. A simpler technique, using only 1-lead ECG is normally used
for basic heart monitoring.

Lead I

L
e
a
d
 I
I

L
e
a
d
 III

Figure 2.5: Illustration of the sensor placement for 3-lead ECG using Einthoven’s
triangle. License of body illustration: Public domain

While measurement of the heart rate using ECG is the norm, the Interna-
tional Liaison Committee on Resuscitation (ILCOR) expect that acquiring
methods to rapidly apply the ECG leads in the delivery room will take
time [8]. A study found the median time from the newborn was placed on
the resuscitation table, to the last sensor on a 3-lead ECG was attached
was 26 seconds, while placement of pulse oximetry took 38 seconds [21].
After the sensors were attached, it took another 2 seconds for the ECG and
24 seconds for pulse oximetry to obtain a heart rate signal [21]. A study
using 1-lead ECG sensor in the NeoBeat prototype, used in the Safer Birth,
reduced the median time for sensor placement down to 3 seconds [22]. This
reduced time to attach the sensor may be crucial in a resuscitation event.
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Chapter 3

Technical background
In this chapter, an introduction to Doppler ultrasound is first presented.
In the following section, the short-time Fourier transform and wavelet
transform are presented. Finally, we give an introduction to classification
and feature selection.

3.1 Doppler Ultrasound

Doppler ultrasound is a commonly used technique to measure flow and
movement in application where a non-invasive method is required. The
principle is to study a frequency shift, known as Doppler shift, of ultrasound
waves reflected from an object.

Ultrasound

transducer
Object

Emitted waves

with frequency:     

Reflected waves

with frequency:      fe fr

velocity,  v

Figure 3.1: Illustration of the Doppler shift. A transducer emits ultrasound waves, the
waves hit an object and are reflected. If the object moves towards the transducer, the
reflected waves will have a higher frequency than the signal emitted from the transducer.
The velocity of the object can then be found based using this shifted frequency.

An illustration of the Doppler shift principle is shown in Figure 3.1.
Waves are emitted from the ultrasound transducer. When the waves hit
a reflective object, the frequency of the reflected waves will be affected
by the movement of the object, known as the Doppler shift. If the object
moves towards the transducer, the frequency of the reflected waves will be
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3. Technical background

increased. The frequency will correspondingly decrease if the object moves
away from the transducer.

The reflected frequency, fr, is computed using the emitted frequency, fe,
the speed of sound in the medium, c, and the velocity, v, of the reflecting
object.

fr = v

c
fe sinα (3.1)

An additional parameter, α, is used if the object is located on an angle to
the ultrasound axis.
Doppler ultrasound measurements are performed by emitting either a

continuous wave, or a pulsed wave from the transducer. Both approaches
have their advantages and disadvantages. A continuous-wave Doppler can
record higher velocities but suffers from lack of depth information. The use
of a pulsed-wave Doppler gains information of the depth, but at the cost
of aliasing [23, 24]. If the object has a periodic movement, the frequency
of this movement can be extracted using a time-frequency analysis. In
cases where the measurement contain noise, the first harmonic may have a
higher peak than the base frequency, resulting in falsely detecting a doubled
frequency of the movement.

3.2 Dictionary learning

Sparse representation and dictionary learning are based on the idea that
it is possible to represent a signal class sparsely in a domain and that a
learned dictionary can represent this domain. Given a N × 1 signal, x,
its approximation x̂ can be found using a sparse representation, Dw, of a
dictionary, D.

x̂ = Dw (3.2)

where D is a matrix of size N×K, with the columns (di) forming dictionary
atoms. and w, K × 1, is the vector of sparse coefficients. An illustration
of this estimation is shown in Figure 3.2. The darker boxes in the sparse
coefficient corresponds to the non-zero elements.

The dictionary learning problem is formulated as follows:

W,D = argmin
W,D

‖X −DW‖2F s.t

wi is sparse
||di||22 = 1.

(3.3)
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=

D

Signal Dictionary

Sparse coefficient

x

w

Figure 3.2: Illustration of signal estimation using a spare dictionary representation.
The darker boxes in the sparse coefficient corresponds to the non-zero elements.

where W and X are formed from concatenation of coefficient wi and signal
vectors xi, respectively, and ‖ · ‖F is the frobenius norm . Since equation
3.3 is not tractable, it is usually broken into two steps:

(i) sparse coding: find a sparse W while keeping D fixed.

(ii) dictionary update: D is found while keeping W constant.

The two steps are then alternated until a set criteria or similarity is
achieved [25, 26]. An overview of a dictionary learning framework is
shown in Figure 3.3.

Figure 3.3: A dictionary learning framework. The sparse coefficient vector, W , is first
found while keeping the dictionary, D, fixed. The dictionary can then be updated while
keeping W fixed. The two steps are alternated until a set similarity is achieved.

Dictionary learning and sparse approximation have been shown to pro-
duce state of the art results in estimation of missing data [27, 28, 29].
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
?0 0 ∗0 0 0 α0 0
?1 ?0 ∗1 ∗0 0 α1 0
?2 ?1 0 ∗1 ∗0 0 α0

0 ?2 0 0 ∗1 0 α1


Figure 3.4: A simple shift-invariant dictionary with 3 shift-invariant atoms (SIAs). The
first two SIAs have 1 shift while the last one has 2 shifts.

A learned dictionary introduces less artefacts during processing, feature
extraction, and time-frequency analysis.
When estimating large gaps in missing data, unstructured dictionaries

produced by general dictionary learning methods such as Method of optimal
directions (MOD) [30] or K-SVD [31] require large atom lengths. Resulting
in a large number of free variables. This leads to slow training and usage,
as well as the possibility of overfitting.

3.2.1 SI-FSDL

The shift-invariant flexible structure dictionary learning (SI-FSDL) imposes
a shift-invariant structure onto a FSDL dictionary. This allows estimation
of larger gaps by using larger shift-invariant atoms than a general dictionary
while keeping the number of free variables fixed.

An example of a small shift-invariant dictionary with three shift-invariant
atoms (SIA), is shown in Figure 3.4. This example does not have circular
shifts, i.e. the shifting ends as the last non-zero element of a SIA reaches
the bottom row of the dictionary matrix. SI-FSDL handles variable length
and variable shift atoms as Figure 3.4 illustrates.

3.3 Time-frequency analysis

A time-frequency analysis is often used to characterize or manipulate a signal
where the signal statistics change over time. In the following subsections,
an introduction will be given to the short-time fourier transform and the
wavelet transform.
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3.3.1 Short-time Fourier transform

The short-Time Fourier transform (STFT) is used to analyze the frequency
content over time using a sliding window in non-stationary signals. The
STFT of a signal, x, at time n is found by computing the discrete Fourier
transform, F , on a sliding window, g of length L.

X(w) = F(x(n))

=
∞∑

n=−∞
x(n)g(n− L)e−iwn

The i denotes the imaginary unit and w the frequency in radians. The
window function, g, is often tapered at the edges to avoid spectral ringing.

An example signal with a sine wave of increasing frequency from 0 to 40
Hz is shown in Figure 3.5. In the example, the DFT is computed for the
first and last 150 samples of the signal, illustrating how we can detect that
the main frequency components changes over time.
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Figure 3.5: Example of STFT using a sine wave with an increasing frequency from 0 to
40 Hz. The STFT is computed for the first and last 150 samples of the signal. The STFT
of the first 150 samples shows a peak frequency of approximately 0 Hz, and the STFT of
the last 150 samples of the signal shows a peak frequency of approximately 40 Hz.

Features extracted from the STFT have previously been used with promis-
ing results in multiple fields ranging from fingerprint enhancement [32] to
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Figure 3.6: Example of common wavelets. License for both figures: CC BY-SA 3.01,
no changes were made.

ECG arrhythmia classification [33].

3.3.2 Wavelet transform

A limitation of the STFT is that the window size is predefined, and therefore
equal for all frequencies. A widely used and popular alternative is the
wavelet transform [34, 35, 36]. In the wavelet transform, the signal is
analyzed in relation to the scale. Longer intervals are used to describe
the lower frequency information and shorter intervals are used to describe
the high frequency information. The principle is to decompose a signal,
x(n), using a small oscillating wave known as a wavelet. Using scaled and
translated versions of this wavelet, all signals can be represented. Two
examples of well-known wavelets, namely the Mexican hat and the Morlet
wavelet, are shown in Figure 3.6.

Scaling and translation are performed using a scaling function, φ,

φj,k(t) = 2
j
2φ(2jt− k) (3.4)

The scaling parameter, j, indicates the width of the wavelet and the
translation, k, gives its position.

The wavelet function, ψ, is a short oscillating wave starting and ending
at zero, it has a zero mean and a square norm of 1. The wavelet function,
ψ, using coefficients, wk, is given by

ψ(t) =
∑

k

wk

√
2φ(2t− k) (3.5)

1https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 3.7: Multiresolution wavelet decomposition. At each level in decomposition, the
signal is split into a low-frequency approximation part (c) using a low-pass filter h(n)
and high frequency details (d) using a high-pass filter w(n). The signal is downsampled
by a factor of two in each level.

A popular approach when implementing the discrete wavelet transform
(DWT) is using a hierarchical filter structure [37]. Figure 3.7 illustrates
a 2-level hierarchical structure generating a 2-level decomposition. This
allows for multi-resolution analyses, as the signal is decomposed into several
sub-bands. The approximation, c is found using a low-pass filter, h(n),
such as

cj,k =
∑

l

hl−2kcj+1,l (3.6)

Details in the signal are found using a high-pass filter, w(n), such as

dj,k =
∑

l

wl−2kcj+1,l (3.7)

The wavelet function can be tailored specifically for an application. An
example, where it has performed well is in identifying specific segments
in ECG signals [38]. The wavelet transform has been utilized in analysis
of pathological pregnancies [39] and denoising applications [40, 41] with
promising results.

3.4 Classification

The principle of classification is to distinguish new observations into different
sub populations based on known models. While different methods have been
proposed over the years, training a classifier where the number of samples
in one class greatly outnumbers another class can be challenging, known as

23



3. Technical background

class imbalance. In cases with class imbalance, traditional methods tend
to create models favouring the largest class [42]. Multiple algorithms have
been proposed to alleviate this challenge. Some common techniques include
data sampling, boosting, or a combination of the two [43].

3.4.1 Boosting and data sampling

Boosting [44] is the process of creating a collection of models, where all
models are better than random guessing. The models can in turn be
combined to create a strong classifier to distinguish the different classes.
An example where we use 3 weak learners to create the strong learner is
shown in Figure 3.8.

Strong

classifier

Weak learners

Figure 3.8: An example of boosting where we use 3 weak learners to create a strong
learner.

By combining boosting with under- or oversampling, we can use the
boosting principle on unbalanced data sets. One approach was proposed
by Chawla et al. [45] with SMOTEBoost, using synthetic data sampling in
combination with AdaBoost [44]. In SMOTE, new synthetic data points
are created by upsampling the smaller class based on the existing points.
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A drawback of SMOTEBoost is the increased computational cost due to its
oversampling technique. As an alternative, Seiffert et al. proposed RUS-
Boost [42], a hybrid approach using random undersampling in combination
with AdaBoost to alleviate a class imbalance. The random undersampling
is performed by eliminating data points in the large class until class balance
is achieved. The primary drawback of using undersamling is the loss of
information. The combination of undersampling and boosting overcome
this, as the removed examples are likely to be used in other iterations of
the boosting technique. While RUSBoost is a simpler and faster technique
it performs comparably to SMOTEBoost [42].

3.4.2 Model evaluation

Evaluation of classifier models are normally conducted using a set of
performance metrics. For a two-class problem we can construct a confusion
matrix indicating the amount of correct and incorrect classifications of both
classes, illustrated in table 3.1.

Predicted
Predicted condition
positive

Predicted condition
negative

True

Condition
positive True positive (TP) False negative (FN)

Condition
negative False positive (FP) True negative (TN)

Table 3.1: Confusion matrix

Using the confusion matrix, accuracy for a model can easily be computed
using:

Accuracy = TP + TN

TP + FP + TN + FN
(3.8)

where TP is the true positive, FP the false positive, FN the false negative,
and TN the true negative. For models where the performance of each class
is of interest, the true positive rate, known as sensitivity, and true negative
rate, known as specificity, are often used. The sensitivity is given by:

Sensitivity = TP

TP + FN
(3.9)
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And the specificity by:

Specificity = TN

TN + FP
(3.10)

These metrics are ideal when working on two-class problems but suffers
from interpretation challenges when the number of classes increases. An
alternative approach is therefore to utilize precision and recall. Where
precision is the percentage of correct classified observations in the group of
observations classified as the given class, given by:

Precision =
∑

True positive∑
Predicted condition positive (3.11)

And recall is the percentage of a true class which has been correctly
classified.

Recall =
∑

True positive∑
Condition positive (3.12)

Precision and recall are then computed and evaluated for each class in the
model.

To avoid bias of the computed performance metrics, the data set should
be separated into designated train, validation and test subsets. In cases
where this is not feasible due to the data size, an alternative approach is
the use of cross-validation, described in section 3.4.3.

3.4.3 Cross-validation

In cases where dividing the data set into dedicated train, validation and
tests sets are not feasible due to the size of the data set, cross-validation
(CV) is an often used alternative [46]. This is often the case in the medical
field where data collection can be challenging. With CV, it is possible to
test on the entire data set, over multiple folds, or iterations.
Two implementations of CV are typically used, Leave-one-out cross-

validation (LOOCV) and K-fold CV. The main difference is the amount of
data used for testing in each iteration. Given a data set of size N, LOOCV
will in each iteration train using N-1 observations and test using the last
observation, thus requiring a total of N iterations for the CV. K-fold on the
other hand uses N/K of the data set for testing in each iteration, reducing
the required amounts of iterations down to K.
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Figure 3.9: An example of K-fold cross-validation. The data set is divided into K-sets,
in this example K=4. For each iteration, the model is trained on K-1 sets, and then
evaluated using the final set. This is repeated until the entire data set has been used for
testing.

An example of a 4-fold cross-validation is shown in Figure 3.9. It is
important to notice that a new section of the data set is used for testing in
each iteration.

While cross-validation has its advantages, it is crucial to ensure no model
decision is conducted based on the system performance found using the CV
scheme as this will introduce bias in the system.

3.4.4 Nested cross-validation

By nesting two cross-validation methods, we can determine the possible
system performance that is achievable [47]. The approach is often used to
test feature subset, hyper parameters, or different models. An illustration
of nested CV with a 4-fold CV in each layer is shown in Figure 3.10.

The principle states that the inner loop of the CV is used to test parame-
ters and feature sets. When the inner CV is finished, we can collect success
measures and then identify the best classifier model. A new model is then
trained on the outer loop training set, based on the found classifier model
and tested on a new part of the data set. A limitation of nested CV is that
the optimal model in the inner loop can change between iterations in the
outer loop. The performance is therefore computed using different models
in each fold of the outer loop. It is therefore challenging to identify the
optimal model using this approach. The found performance can, however,
identify what is possible to achieve when using the given feature set or
models tested.
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Figure 3.10: An example of nested cross-validation. By testing different models,
parameters and features sets, an optimal classification model can be found using the
inner cross-validation. The performance is then evaluated by training and testing the
found model using outer loop. As the trained model may change for each validation in
the outer loop, the use of nested CV will only give an estimation of the performance that
is possible to achieve using a feature subset.

3.5 Feature selection

Feature selection identifies the optimal features, which allows us to re-
move any redundant and irrelevant features as they do not contribute to
distinguishing between the classes [48].

In a wrapper-based feature selection [48], shown in Figure 3.11, feature
subsets are generated and tested to identify the best set available. As
the number of features increase, the number of possible subsets increase
and thus the computational complexity. To overcome this, a forward or
backward greedy selection is often used. In a greedy forward selection, only
the best feature is found in the first iteration. In the next iteration, the
best feature complementing the first feature is found. When the order of
all features is found, we can identify the number, and the features, which
gives the best performance. In a backward feature selection, all features are
used in the first iteration. The least important feature is then identified,
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and removed in each iteration.

All features Performance

Selecting the best feature subset

Learning

algorithm

Feature

subset

Test different subsets

Figure 3.11: Wrapper based feature selection. Feature subsets is generated and used
in combination with a learning algorithm to identify the best feature subset. The system
performance can then be computed.
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Chapter 4

Data material
The data used throughout this thesis was collected as a part of the large
collaborative research project Safer Births. In this chapter, an introduction
to the project is given, followed by a description of the devices used for
data collection. Finally, an overview of the data sets used in the work is
presented.

4.1 Safer Births

Safer Births1 is a large and collaborative research and innovation project
between multiple Norwegian and international research institutions, as well
as hospitals in Tanzania. The overall goal of Safer Births is to establish
new knowledge, and to develop new innovative products to save lives at
birth.
The data collection has been conducted at three hospitals in Tanzania,

all partners in the Safer Births project. Haydom Lutheran Hospital (HLH)
is in the Manyara region, a rural part of Tanzania. The two other hospitals,
Muhimbili National Hospital (MNH) and Temeke Regional Referral Hospital
(TRRH), are both located in the city of Dar-es-Salaam.

The Safer Births project was approved by the Regional Committee for
Medical and Health Research Ethics (REK) in Norway (2013/110/REK
vest), and National Institute for Medical Research (NIMR) in Tanzania
(NIMR/HQ/R.8a/Vol. IX/1434). Parental verbal consent was obtained
for monitoring of both fetal and resuscitated episodes at HLH. Parenteral
written consent was obtained for all fetal monitoring episodes at MNH
and TRRH. Within the Safer Births project, different subprojects have
been subject to randomized trials. However, for the work presented in this
thesis, the data collection has been part of an observational study, not an
intervention study.

1http://www.saferbirths.com/
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Figure 4.1: Illustration of the Moyo fetal heart rate monitor, Laerdal Global Health
AS, Norway. The monitor consist of a sensor device, which can be attached to the
maternal abdomen using an elastic band, and a display unit. Illustration reproduced
with permission [49]

4.2 Data collection devices

The data has been collected using two devices. The Moyo fetal heart
rate monitor (Moyo) has been used to collect data during labour, and the
Laerdal newborn resuscitation monitor (LNRM), has been used to collect
data during newborn resuscitation. The following subsections describe the
two devices.

4.2.1 Moyo fetal heart rate monitor

The Moyo fetal heart rate monitor, illustrated in Figure 4.1, measures
FHR using a 9-crystal pulsed wave Doppler ultrasound sensor. The sensor
operates at a frequency of 1MHz, with an intensity of less than 5mW/cm2.
The heart rate is computed and logged twice per second, equivalent of
a sampling rate of 2Hz. The device is equipped with an accelerometer,
sampled at 50Hz, and a temperature sensor, both mounted in proximity of
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Table 4.1: Comparison between Moyo fetal heart rate monitor and conventional CTG

Moyo CTG Comments
FHR Doppler Doppler

Contractions No* Yes *We propose a method to
Accelerometer Yes* No estimate contractions using

Moveable Yes No an accelerometer
Maternal HR Yes No

the Doppler ultrasound sensor. Dry-electrode ECG sensors for intermittent
measurement of the maternal heart rate (MHR) is mounted on the display
unit of the device. The ECG sensor, used to measure the MHR, require the
mother to keep one finger from each hand on the monitor. It is therefore
only suitable to intermittently assess the MHR and can be used to determine
if the Doppler measurement captures the true FHR or if it falsely detects
the MHR.
An example of a segment from the signals collected using Moyo during

labour is shown in Figure 4.2. The top plot shows FHR and MHR, in blue
and orange correspondingly, in relation to the time of birth. The normal
region for FHR, i.e. 110− 160 bpm, is indicated by red dashed lines. The
second subplot shows movement captured by the three axis accelerometer.
The MHR, in the top plot, is computed using the ECG signal shown in the
third subplot.
The use of the Moyo FHR monitor is similar to conventional CTG

using external Doppler for measurement of the FHR. The most noticeable
difference is the lack of uterine activity measurements. An overview of the
main similarities and differences between Moyo fetal heart rate monitor
and conventional CTG are shown in Table 4.1. One of the contributions in
this thesis, is a method to estimate the time of uterine contractions during
labour using accelerometer signals.

4.2.2 Laerdal Newborn Resuscitation Monitor

The LNRM, shown in Figure 4.3, was used to collect data during newborn
resuscitation. The resuscitation monitor consists of a main processing unit
with a display to show the measured heart rate, as well as a heart rate
sensor and a bag-mask resuscitator (BMR). The green heart rate sensor is
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Figure 4.2: Example signals from the Moyo fetal heart rate monitor. The top plot
includes the FHR, shown in blue, and MHR, shown in orange. The red dashed lines
indicate the normal region for FHR. The MHR, in the top plot, is computed based on
the measured ECG, shown in the bottom plot. The second plot shows the movement
captured by the three-axis accelerometer.
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Figure 4.3: Laerdal newborn resuscitation monitor with the various sensors indicated.
The measured heart rate is shown on the display to give immediate feedback to the
healthcare personnel. The green buckle with accelerometer and dry-electrode ECG is
a prototype of the NeoBeat. The bag-mask resuscitator includes sensors for measuring
pressure, flow, and CO2.

a prototype of the now available product, Laerdal NeoBeat2, designed as a
part of the Safer Births project. The prototype contains dry-electrode ECG,
sampled at 500Hz, and a three-axis accelerometer to monitor movement of
the newborn, sampled at 100Hz. The heart rate sensor is designed to be
placed over the abdomen of the newborn. This design allows the healthcare
personnel to quickly attach the ECG sensor to the newborn and monitor
the heart rate. The healthcare personnel can therefore focus on giving
the best treatment possible without struggling with gel and placement of
traditional ECG sensors. The BMR include sensors for measurement of the
pressure and flow, sampled at 100Hz, as well as a sensor for measurement
of the CO2, sampled at 20Hz. An example of ECG, accelerometer and
ventilator signals measured using the NeoBeat prototype and the BMR is
shown in Figure 4.4. Due to the combination of dry-electrode ECG sensors
and an environment with a lot of movement, the ECG signal contains more
noise than what is seen when using traditional ECG sensors in settings
with less movement.

4.3 Data material

The signal data material was collected between October 2013 and June
2018 by the Safer Births project. All data were pseudonymized using a key
before transfer to researchers. The key is kept at the hospitals in Tanzania.
The healthcare workers involved in clinical care using the equipment

(i.e. Moyo and LNRM) were trained to follow the existing Helping Babies
2https://laerdalglobalhealth.com/products/moyo-fetal-heart-rate-monitor/
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Figure 4.4: Example signals of ECG (50 Hz filtered), acceleration in three axis,
ventilation, pressure, flow, and volume (integrated from flow). A magnified section of the
ECG is included to illustrate the dynamic range of measurements with little noise. An
intervention from the healthcare workers are seen during the first 15 seconds, followed
by a movement of the newborn. A ventilation sequence is seen from 135 to 165 seconds,
followed immediately by a new intervention from the healthcare workers.
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Breathe (HBB) guideline3 for newborn resuscitation. The HBB guideline
states what should be assessed and what action to perform if a newborn is
asphyxiated and need help to start breathing. A poster with the guideline
was posted on the wall above each resuscitation table. A limitation of the
guideline is that it only define which activities to perform, and not the
amount, or how long the activities should be performed.
Additional clinical data related to the labour and resuscitation process

was observed and recorded continuously by designated research assistants
present at the labour ward. This data includes information from:

• Admission, such as gestational age and maternal age.

• Labour, such as presence of abnormal FHR and any interventions.

• Birth, such as weight of the newborn, sex, and 1- and 5-minute Apgar
score.

• Outcome, such as newborn status 30 minutes and 24 hours after birth.

A full overview of the additional collected data in HLH can be found in
Mdoe et al- [50], and the additional data collected at MNH and TRRH in
Kamala et al. [51].
The prospective data collection was ongoing during the time period of

this PhD work, and as a result of this, the data sets were updated between
the various publications. Details of the data collection and differences of
data sets between the papers are described in the following subsections.

4.3.1 Fetal heart rate data set, Moyo

The FHR data consists of labour episodes all measured using Moyo, pre-
sented in section 4.1. In addition, data is collected at admission and birth,
including maternal age, duration of the stages of labour, any interventions,
30-minute and 24-hour outcome.

Data from 1087 labours were collected at TRRH, from 669 labours at
MNH, and from 1617 labours at HLH. Only labours assessed as normal on
admission were included in the study. An overview of the collected data
and used data sets are shown in Figure 4.5.

3https://shop.aap.org/helping-babies-breathe-2nd-ed-action-plan-wall-poster-
paperback/
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The data collection has been an ongoing process, and as a result of this,
the amount of data available for analysis was expanded throughout this
work. In Paper 2, 1399 episodes in FD2 were available. This data set
consisted of all data from TRRH (n=1087), 227 episodes from MNH and
85 episodes from HLH. In Paper 1 all data (n=3807), FD1, were included.
For Paper 3, all collected data was used. However, data from 96 episodes
were excluded as the measured data could not be matched to a specific
labour. The data set used in paper 3, FD3, is further divided into the
following four outcome groups based on the newborn status 24 hours after
birth:

• Normal

• Newborn care unit (NCU)

• Early neonatal death (END)

• Fresh stillbirth (FSB)

6 episodes were excluded as they were annotated as seizures, referred or
the outcome was missing. An overview of the data sets, and number of
episodes are shown in table 4.2.

4.3.2 Resuscitation data set

The resuscitation data consists of resuscitation episodes all measured at
HLH using the LNRM, presented in section 4.3. This data consists of
synchronized measurements of the ECG, heart rate, pressure, flow, CO2,
and accelerometer. In addition, data was collected at admission and at
birth, including information of the maternal age, duration of the stages
of labour, any interventions, as well as 30-minute and 24-hour outcomes.
Videos overlooking the resuscitation table were also collected to facilitate
for manual annotation of the resuscitation episodes at a later time. The
resuscitations have been grouped based on the newborn status 24 hours
after birth:

• Normal

• Still in neonatal care unit (NCU)

• Death

38



4. Data material

96 episodes

could not be matched

to a labour

6 episodes

in other outcome

groups

Figure 4.5: Overview of the Moyo data. A total of 3807 episodes were collected from the
three hospitals, used in Paper 1. 96 episodes were excluded as they could not be matched
to a specific labour. In the remaining 3711 episodes, used in Paper 3, 6 episodes were
excluded as they did not belong in the four defined outcome groups: normal, neonatal
care unit (NCU), early neonatal death (END), and fresh stillbirth (FSB). A smaller
subset consisting of 1399 episodes were used in Paper 2 as this was the data available at
the given time.
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Table 4.2: Summary of data sets

Name Episodes Comment

FH
R

FD1 3807 Paper 1
FD2 1399 Paper 2
FD3 3711 Paper 3
FD3s1 3490 Newborns from FD3 with a normal

outcome
FD3s2 185 Newborns from FD3 admitted to

NCU at 24 hours
FD3s3 30 Newborns from FD3 which died dur-

ing the first 24 hours

R
es
us
ci
ta
tio

n RD1 530 Paper 4
RD2 74 Paper 5

RD2blk Block subset of RD2
RD2win Sliding window subset of RD2

A total of 916 resuscitation episodes were recorded between October 2013
and August 2016 at HLH. Outcome at 24 hours included 617 labelled as
normal, 194 still admitted to NCU, 48 deaths, and 57 episodes classified as
fresh stillborn. Heart rate is however observed on 27 episodes (mis)classified
as fresh stillborn by the midwife. Resuscitation was attempted in these
episodes and are therefore reclassified and included in the study as death,
thus the death group includes (48 + 27 =)75 episodes. An overview of the
data collection and used data sets are shown in Figure 4.6.

Manually annotated data

A subset of 76 episodes were selected and annotated by carefully watching
the corresponding videos and making a timeline synchronized with all the
collected signals for the episode. The subset consists of all resuscitation
episodes ending in death at the time of annotation, as well as randomly
selected cases from episodes where the newborn survived.

The resuscitation episodes were annotated by two independent reviewers
watching the videos; one neonatologist and one human factor engineer. If
the resuscitation lasted longer than seven minutes, only the first seven
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328 episodes:

missing features

Randomly

selected

2 episodes

excluded

due to 

corrupt videos

55 episodes:

no ventilation or

useable HR signal

3 episodes:

Initial HR > 250

Figure 4.6: Overview of the resuscitation data. A total of 916 resuscitation episodes
were collected. 55 episodes were excluded as they did not include any ventilation or had
a usable heart rate signal, 3 episodes were excluded as the initial heart rate was above
250 beats per minute, and 328 episodes were excluded as the defined features could not
be computed. Of the collected 916 resuscitation episodes, 76 episodes were randomly
selected and manually annotated. 2 of these episodes were excluded due to corrupt video
files, resulting in a total of 74 episodes with manually annotated timeline data.
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minutes were annotated. In cases with agreement score less than 80%, the
two reviewers sat together and obtained consensus. The following activities
and/or categories were annotated: 1) stimulation, 2) suction, 3) uncovered,
4) other, 5) obscured view, and 6) start/stop of resuscitation. Stimulation
and suction are considered two of the three primary treatment events
performed during resuscitation in addition to ventilation of the newborn.
Uncovered describes how much of the newborn that is covered by a blanket.
This is considered important information, as covering the newborn will
result in a lower heat loss. The fourth category includes other activities
that are considered relevant for the treatment, for example clamping of the
umbilical cord and injections.

The heart rate sensor was observed to be detached and later reattached
during a resuscitation episode. As this will contribute to errors and missing
data in the data set, attachment of the heart rate sensor was annotated.
When classifying stimulation, only time periods where the heart rate sensor
is fully attached to the newborn were used.

Data set to identify clinically important parameters

A data subset, RD1, was created to indicate which parameters were clinically
important for the resuscitation outcome. Features describing the initial
condition of the newborn, the given treatment, and early response were
defined. More details of the defined features can be found in section 6.3.

When determining which of the features are important, we only included
episodes where all features could be extracted. 55 of the recorded episodes
were excluded, as they did not contain any ventilation or a usable heart rate
signal. 3 episodes were excluded as they contain an initial heart rate above
250, and 328 episodes were excluded as not all features can be extracted.
An overview of the exclusions are shown in table 4.3. Of the 328 excluded
episodes, 83 episodes were missing 1 feature, 46 episodes were missing two
features, and 199 episodes were missing 3 or more features. The largest
contributors were heart rate 30 and 60 seconds after the first ventilation
which were missing in 238 of the 328 excluded episodes.

An overview of the newborn outcomes for the 530 episodes in RD1 is
shown in Figure 4.6.
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Table 4.3: Exclusion of resuscitation episodes in creation of the data subset RD1.

# episodes
Original data set 916
Episodes without useful heart rate signal or ventilation 55
Episodes with first heart rate > 250 3
Episodes with missing features 328
Final data set 530

Annotated data set

A smaller data set, RD2, was defined based on the manually annotated
data. This data set was used to train and validate a system for automatic
annotation of resuscitation episodes. The trained system can in turn be used
to annotate new resuscitation episodes. Two of the manually annotated
episodes were excluded as the video files were corrupt and could therefore
not be used to annotate when the sensor was attached. The data set used
in this work therefore consists of 74 episodes of newborn resuscitation.
Newborn resuscitation can involve the effort of multiple healthcare

providers, resulting in more than one therapeutic activity being performed
at the same point in time. While most of the resuscitations were observed
to be performed by a single healthcare provider, time periods with multiple
healthcare providers will introduce challenges in distinguishing between
the therapeutic activities. A data subset is therefore created with all time
periods where some activity is being performed, and only stimulation or no
therapeutic activity is manually annotated. Time periods with an activity
is found using VuDetector [52], further details of this method is presented
in section 6.1.1. Using a sliding window of 1 second, and 900ms overlap,
the subset, RD2win, consists of 15,958 time points of stimulation and 3,653
time points of non-therapeutic activities. Grouping these based on the
manual annotations, we obtained RD2blk with 464 regions with stimulation,
and 357 regions with non-therapeutic activities. An overview of the data
sets is shown in table 4.2.
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Chapter 5

Fetal heart rate and labour
analysis
In the following chapter, previous work on FHR and labour analysis is first
presented, followed by our contribution to the topic.

5.1 Previous work

Assessment of the FHR is known to be an effective method to determine
the fetal well-being during labour, but a visual interpretation of the FHR
obtained in CTG is shown to be insufficient [53]. CTG is the usual method
of monitoring labours at risk in high income countries, and the method
is associated with a reduction in the number of neonatal seizures and an
increased number of caesarean sections. But there is no clear association
with improved mortality rate [54]. Any potential intervention based on
the assessed FHR should also consider the maternal condition [55]. A
study in LMIC using intermittent auscultation found no evidence that
higher detection rates of abnormal FHR having any impact on the perinatal
outcome [56].
While CTG cannot be considered a therapeutic device, it can be used

as a screening tool to identify risk [57]. Several systems for continuous
analysis of the CTG are under development, including Sisporto [58] and
OXSYS [59, 60]. With the use of computerized systems for assisting
in the analysis of CTG from fetuses at risk, two main approaches have
surfaced: 1) Mimicking what the clinicians are doing, and 2) data-driven
interpretation [57].
As measurements of FHR using Doppler ultrasound is susceptible to

signal dropouts, described in section 2.1.2, any missing data should be
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estimated prior to any automated analyses. Simple methods such as lin-
ear interpolation[61] and cubic Hermite spline interpolation[62], and more
complex methods such as Gaussian processes [63] and K-SVD [29] have
previously been used to estimate the missing samples on FHR recorded
through CTG. However, depending on the length of the gaps, these meth-
ods can affect computation of the traditional heart rate features such as
variability. It is also important to ensure that the MHR is not mistaken for
the FHR during the labour [64].

Deep learning has emerged in the later years with promising results using
ECG signals for detecting myocardial infarction [65] and arrhythmias [66].
Using data from 35,429 deliveries, Petrozziello et al. [67] showed that a
convolutional neural network (CNN) could also be used on CTG data. The
system outperformed long short-term memory (LSTM), clinical practice
and Oxsys 1.5 when distinguishing between normal and compromised
labours with a sensitivity of 42%. An artificial neural network consisting
of extracted signal features and clinical features has also shown promising
results to identify the outcome based on pH [68].

A challenge in many of the current studies, is the lack of adverse outcomes,
such as stillbirths, brain damage or deaths [57]. This creates a challenge in
how the endpoint of intrapartum monitoring should be defined for these
analyses. In the literature, single cord gas parameters, such as pH or base
deficit, or hypoxic-ischemic encephalopathy (HIE) is often used as the
endpoint. But a low pH or high base deficit do not always indicate that
the newborn would require any special care [69, 70].

5.2 Contribution overview

In the following sections, the contribution of the methods illustrated in each
of the blocks in Figure 5.1 will be presented. Noise detection and removal
in FHR signals are presented in section 5.3. Followed by an analysis of
the MHR and MHR/FHR ambiguity in section 5.4, estimation of when
contractions occur based on analysis of the acceleration signal in section 5.5,
and estimation of missing data in section 5.6. Finally, an analysis of how
the FHR develops during labour for newborns with normal and adverse
outcome is presented in section 5.7.
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Figure 5.1: Overview and relationship of the contributions related to fetal and heart
rate and labour analysis presented in this work.

5.3 Noise detection (Paper 1)

In this section, the contribution in the pink Detection and removal of noise
block in Figure 5.2 is presented. Full details of this method can be found
in paper 1.

The use of Moyo, section 4.2.1, at several hospitals in Tanzania, provides
the opportunity to study the FHR changes and patterns without relying
on human interventions to conduct periodic measurements. Well-known
problems with continuous Doppler ultrasound devices, section 2.1.2, like
traditional CTG, are that they are susceptible to noise and missing signal
data. While the noise may be the result of not detecting the fetus correctly,
it may also be caused by a doubling and halving of the FHR signal due to
the Doppler principle. Missing data can be caused by sensor movement and
suboptimal placement of the sensor. Any artefacts due to noise may affect
the interpretability and should be removed for both visual interpretation
and further digital analysis. Methods for classification and suppression
of noise [71], and removal of the MHR [72] have previously been used on
fetal ECG. In the following section, we propose a method to identify this
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Figure 5.2: Overview and relationship of the contributions related to fetal and heart
rate and labour analysis presented in this work. This is a repetition of Figure 5.1 with
the part presented in this section, detection and removal of noise, marked in pink

noise using only the sampled heart rate. This allows for use on low-cost
continuous FHR monitoring devices, where the ECG is not available.

5.3.1 Method

The FHR collected using Moyo does not contain information of which
samples can be regarded as noise, or which samples are affected by doubling
or halving. Due to this lack of truth data, a conservative approach is used
to only correct or remove measurements which cannot be explained from a
physiological perspective.

To identify the time periods, hereafter called segments, where variations
in the FHR cannot be explained from a physiological perspective, we first
fill missing data in the FHR using forward replication, given by

fhrrep(n+ 1) = fhr(n) : fhr(n+ 1) = 0 ∀n (5.1)

In practice, any missing samples is filled using the last known sample
before the gap, also known as zero-order-hold. An illustration of forward
replication is shown in Figure 5.3. The black dots indicate measurements of
the heart rate, and the red crosses indicate samples inserted using forward
replication.
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Figure 5.3: Example of forward replication, also known as zero-order-hold. Black dots
indicate measurements of the heart rate, and red crosses indicate missing samples filled
in using forward replication.

Let s be a pair of time indexes (ts, k) representing the start time and
length of a segment. Let A be a set of s,

A = {s : | ˙fhrrep(ts)| > c ∩ | ˙fhrrep(ts + k)| > c ∩ k < Tk} (5.2)

As the measured FHR is a result of a biological process, physiological
limitations exist for how fast the heart rate can change. The threshold c is
therefore set to 30 beats per minute. The threshold Tk is set to 25 seconds
based on Barzideh et al. [73].

The segments are checked in order from the shortest to the largest to see
if the large signal variation is a doubling or halving caused by a Doppler
shift error. Let fhrh(n) and fhrd(n) denote the intersample variation for
halving and doubling corresponding to:

fhrh(n) = |2 · fhr(n)− fhr(n− 1)| (5.3)

fhrd(n) = |0.5 · fhr(n)− fhr(n− 1)| (5.4)

And the cleaned signal, fhrc, be defined as:

fhrc(n) = fhr(n) (5.5)

The shift errors are identified by comparing the intersample variation to a
threshold TD , allowing for some intersample variability. The shift errors
are then corrected using:

fhrc(n) = 2 · fhr(n) : fhrh(n) < TD (5.6)

fhrc(n) = 0.5 · fhr(n) : fhrd(n) < TD (5.7)
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The threshold TD is set to 5 based on empirical observation. If the sharp
variations do not correspond to doubling or halving, the segment is consid-
ered as noise and removed:

fhrc(i) = 0 : | ˙fhr(i)| > TD (5.8)

When all segments of length < TK are checked, the process is repeated
using backward replication. This is done as some segments can be > TK

due to replication of missing data in the end of the segment. A cleaned
FHR signal is finally returned. An overview of the method is shown in
Algorithm 1: Noise detection.

5.3.2 Results

An example FHR signal with artefacts, and the resulting signal after the
noisy regions are removed is shown in Figure 5.4. The method successfully
identifies many of the outliers as noise, while some segments in the 75bpm
region are kept. As it is difficult to determine with certainty which part of
the measured FHR signal is noise, only time periods where the signal is
very unlikely to contain information of the fetal status are removed. This
conservative approach may result in some time periods containing noise
being kept.
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Figure 5.4: Example of noise detection and removal. Original signal on top, with some
artefacts. Filtered signal on the bottom.
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Algorithm 1: Noise detection
Input: fetal heart rate, fhr

Variation threshold, c
Maximum length of segment, TK

Doubling/halving variation threshold, TD

Output: cleaned fetal heart rate, fhrc

fhrc = fhr
for direction ∈ {forward, backward} do

fhrrep(n) = fillGaps(fhrc(n), direction)
/* Note: ˙fhr denotes the derivative of fhr */
A = {s : | ˙fhrrep(ts)| > c ∩ | ˙fhrrep(ts + k)| > c ∩ k < Tk}
for all s ∈ A sorted from smallest k do

for all i ∈ {ts, ts + k} do
fhrd(n) = |2 · fhr(n)− fhr(n− 1)|
fhrd(n) = |0.5 · fhr(n)− fhr(n− 1)|
fhrc(n) = 2 · fhr(n) : fhrh(n) < TD

fhrc(n) = 0.5 · fhr(n) : fhrd(n) < TD

fhrc(i) = 0 : | ˙fhr(i)| > TD

fhrrep(n) = fillGaps(fhrc(n), direction)

return fhrc

def fillGaps(fhrrep, direction):
if direction = forward then

fhrrep(n+ 1) = fhr(n) : fhr(n+ 1) = 0 ∀n
else

fhrrep(n− 1) = fhr(n) : fhr(n− 1) = 0 ∀n
return fhrgaps

Doppler shift were detected and corrected in 0.22 percent of the samples
in the data set FD1. Overall, 2.73 percent of all samples were identified as
noise and removed, as shown in table 5.1.
The method identifies many small sections of the FHR signal as noise,

as seen in Figure 5.4. By removing these sections, a cleaner version of the
FHR signal, better suited for further analysis can be obtained. This results
in improved visual interpretation as well as it opens up for automated
signal analysis and feature extraction in future work.
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Table 5.1: Overview of the detected noise in FD1.

Number of episodes 3807

Total duration of all episodes 14201 hours

Percentage of all samples with detected,
and corrected, Doppler shift error

0.22

Percentage of all samples removed 2.73

5.4 FHR ambiguity (Paper 3)

In this section, the contribution in the pink FHR/MHR ambiguity block in
Figure 5.5 is presented. Full details of this method can be found in paper 3.

Figure 5.5: Overview and relationship of the contributions related to fetal and heart
rate and labour analysis presented in this work. This is a repetition of Figure 5.1 with
the part presented in this section, FHR/MHR ambiguity, marked in pink.

Doppler based FHR measurements, presented in section 2.1.2, are sus-
ceptible of incorrectly picking up the MHR due to sub-optimal sensor
placement [74]. The MHR can also mimic an expected FHR, making it
challenging to distinguish true MHR from true FHR signals [75]. If the
measured FHR is within 5 bpm of the measured MHR, it can be classified
as an MHR/FHR ambiguity [76]. The amount of MHR/FHR ambiguity in
Doppler CTG has been found to be 1.22± 1.9 percent during the first stage
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of labour and 6.2± 9.0 percent during the second stage of labour [76]. As
measurements of MHR using Moyo is intended to be intermittent and not
continuous, the amount of MHR varies from labour to labour. Thus, the
possibility of verifying whether the measured heart rate from the Doppler
ultrasound is maternal or fetal at a given time point is therefore limited.

5.4.1 Method

Computation of MHR/FHR ambiguity on Moyo data is performed using
all time points where both the cleaned FHR signal, fhr(n), and MHR
signal,mhr(m), are present. Let ht be heart rate pairs of the measured
FHR and MHR, sampled at the same time point, t, but with different
sampling rate.

ht = [fhr(nt),mhr(mt)] (5.9)
Let H be the set of all such matching heart rate pairs, ht

H = {ht : fhr(nt) > 0 ∩mhr(mt) > 0} (5.10)

The ambiguity for each of the pairs, ht, can be defined using the indicator
function I(ht)

I(ht) =

1; if |ht(1)− ht(2)| =< Tmhr

0; if |ht(1)− ht(2)| > Tmhr

(5.11)

where Tmhr is a threshold to allow some inequalities due to the different
measurement techniques. The similarity threshold, Tmhr, is set to 5 when
computing the ambiguity, according to the study of Reinhard et al. [76].

The MHR/FHR ambiguity, mhramb, in an episode is then calculated as
a fraction of the time where both signals are present, defined as

mhramb = 1
#H

∑
ht∈H

I(ht) (5.12)

where #H is the number of heart rate pairs.

5.4.2 Result

The dry-electrode ECG sensor for MHR is used in 30.54% of the episodes in
the data set, FD3. In these episodes, the MHR is measured in 0.412± 0.542
percent of the episode duration.

The average MHR/FHR ambiguity in time points where both heart rates
are measured is 3.29± 8.95 percent.
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5.5 Contractions (Paper 1)

In this section, the contribution in the pink indicate contractions block in
Figure 5.6 is presented. Full details of this method can be found in paper 1.

Figure 5.6: Overview and relationship of the contributions related to fetal and heart
rate and labour analysis presented in this work. This is a repetition of Figure 5.1 with
the part presented in this section, indicate contractions, marked in pink.

In CTG, presented in section 2.1.2, both the FHR (cardio) and uterine
activity (toco) is measured. Interpretation of the measured FHR signal is
normally conducted in relation to the corresponding uterine contraction
(UC). Simple Doppler based monitors typically lack dedicated sensors for
measuring UC, but accelerometers may be available, i.e. in the Moyo.
Accelerometers have previously been used to monitor muscle contraction of
the quadriceps muscle, a large muscle on the front of the thigh [77]. Ac-
celerometers in mechanomyogram have also been used to monitor muscular
behaviour of the biceps under fatiguing exercises [78]. In a step towards
removing movement-induced artefacts in electrohysterogram, the signal
from an accelerometer mounted on the maternal abdomen was shown to
correlate with the uterine movement [79]. Encouraged by the findings
using accelerometer for muscle contraction detection [77, 78], and corre-
lation to uterine movement [79], we explored the possibility of using the
accelerometer in the Moyo for detecting uterine contractions.
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5.5.1 Method

The FHR signal can often be used to identify the location of UC based
on observations of the decelerations. However, as the FHR signal quality
acquired using Doppler ultrasound often contains a lot of noise and missing
samples, a more robust approach is desired. With the use of accelerometer
signals for indicating UC, the missing data challenge is eliminated. As the
data set, FD1, is collected using Moyo, truth data for when contractions
occur is not available. We have therefore chosen to indicate the time for
when UC occur based on the accelerometer signal, and then verify using
decelerations in the FHR signals.

The accelerometer captures small movements in the abdomen muscles as
well as larger movements due to the mother changing positions. The ampli-
tude of the acceleration signal for these movements is, however, typically
vastly different. As the sensor location and orientation may be different
between each labour, a trend describing the movement is computed using
the acceleration energy, AccE(n), given by:

AccE(n) =
√
Acc2

x(n) +Acc2
y(n) +Acc2

z(n) (5.13)

As the acceleration energy signal contains high frequency components, an
upper envelope is computed to obtain the movement trend. The envelope of
the acceleration energy, Accenv(n), is computed using a 20 second window.
A set of positions, C, indicating contractions at time points, tc, are found
as local peaks of the envelope, given by

C = {tc : ˙Accenv(tc) = 0 ∩ T1 < Accenv(tc) < T2} (5.14)

The thresholds T1 and T2 are set to 10−2 and 10−1 standard gravity,
g0, correspondingly. The thresholds are chosen to avoid detecting small
movements, as well as larger movements due to the mother changing
position, as contractions. The FIGO guidelines for intrapartum fetal
monitoring [3] states that < 5 contractions per 10-minute window averaged
over 30 minutes is considered normal. We therefore require the onset of
two consecutive indicated contractions to occur at least 2 minutes apart.
The indicated contractions are hereafter called detected contractions. A
pseudocode of the proposed contraction detection is depicted in Algorithm
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2.
Algorithm 2: contractions
Input: Acceleration signals, Accx,Accy,Accz

Output: Set positions for detected contractions, C
AccE(n) =

√
Acc2

x +Acc2
y +Acc2

z

Accenv(n) = envelope(AccE(n))
C = {tc : ˙Accenv(tc) = 0 ∩ T1 < Accenv(tc) < T2}

5.5.2 Result

The proposed method to detect contractions using an accelerometer attached
in proximity of the Doppler ultrasound sensor was run on the entire data
set, FD1. An overview of the amount of detected contractions are shown
in table 5.2. The proposed algorithm was also run on signals with low-
, medium-, and high energy in the acceleration signal to determine the
performance in the different scenarios.

Table 5.2: Overview of the detected uterine contractions in FD1. Values are given as
median [q1, q3].

Episodes with detected contractions 3753

Episodes without detected contractions 54

Median number of detected contractions
per episode

29 [14, 51]

Median length of episode [minutes] 171 [90, 304]

Mean time between contractions [minutes] 6.27

1) Contractions on signals with low energy in the acceleration
signal

An example of a recording with low amount of energy in the acceleration sig-
nal was chosen from FD1. The original signal and detected contractions are
shown in Figure 5.7. Decelerations, which typically occur as a fetal response
to a contraction are clearly visible in the FHR. Time points of detected
contractions are shown using red markers. Contractions corresponding to
the 6 largest decelerations are detected. The contraction associated to
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Figure 5.7: Detected contractions on a signal with low energy in the acceleration signal.
The red dashed lines indicate the normal range of the FHR. The red crosses indicate the
detected contractions.

the deceleration with a smaller drop in heart rate, at approximately 86
minutes before birth, is not considered to be caused by a contraction as
it is too close to the previous detected contraction. An additional uterine
contraction is detected at approximately 95 minutes before birth, without
a corresponding deceleration in the FHR.

2) Contractions on signals with medium energy in the accelera-
tion signal

An example of a recording with medium amount of energy in the acceler-
ation signal was chosen from FD1. The original signal and the detected
contractions are shown in Figure 5.8. Contractions are detected periodically
in the first half of the signal, while only one contraction are detected in
the second half. Due to the quality of the FHR signal, it is challenging to
assess if these are actual uterine contractions.
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Figure 5.8: Detected contractions on a signal with a medium energy in the acceleration
signal. The red dashed lines indicate the normal range of the FHR. The red crosses
indicate the detected contractions.

3) Contractions on signals with high energy in the acceleration
signal

An example of a recording with high amount of energy in the acceleration
signal was chosen from FD1. The original signal, and the detected contrac-
tions are shown in Figure 5.9. Four uterine contractions are detected in
the 25-minute window, but it is challenging to assess if these are actual
contractions due to the poor FHR signal quality.

5.6 Estimation of missing data (Paper 2)

In this section, the contribution in the pink Estimation of missing data
block in Figure 5.10 is presented. Full details of this method can be found
in paper 2.
A well-known problem of measuring FHR using Doppler ultrasound is

signal dropouts due to both fetal and maternal movements in addition
to sensor displacement, see section 2.1.2. The use of wearable devices for
monitoring FHR allows the mother to move freely, but it can increase
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Figure 5.9: Detected contractions on a signal with a high energy in the acceleration
signal. The red dashed lines indicate the normal range of the FHR. The red crosses
indicate the detected contractions.

both the number of signal dropouts as well as their length. These signal
dropouts are a challenge when determining traditional features to assess
the fetal well-being, such as the short- and long-time variability of the FHR.
It will also create challenges when doing time-frequency analysis on the
FHR signal.
Dictionary learning and sparse approximation have been shown to pro-

duce state of the art results in estimation of missing data [27, 28, 29].
An important advantage of using dictionary learning over methods such
as linear or spline interpolation is that it introduces less artefacts during
processing, feature extraction, and time-frequency analysis.
We propose to use shift-invariant dictionary by utilizing SI-FSDL, sec-

tion 3.2.1 , a dictionary learning method for shift invariant dictionaries
recently proposed by our group [80] to estimate the missing data in FHR
signals.

5.6.1 Method

The measured FHR signal, and the location of missing samples differ from
patient to patient. Looking at these analyses in retrospect, we wish to
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Figure 5.10: Overview and relationship of the contributions related to fetal and heart
rate and labour analysis presented in this work. This is a repetition of Figure 5.1 with
the part presented in this section, estimation of missing data, marked in pink.

learn a dictionary on the signals with missing data. The dictionary can
then be tailored to the patient, before performing the reconstruction. For
this reason, the information about the missing samples is built into a mask
matrix. One possible mask matrix is an identity matrix with its rows
removed on locations where the data is missing. This means that applying
it to a vector or a matrix, removes the rows corresponding to missing
samples.

To reconstruct the FHR signal, a shift-invariant dictionary SI-FSDL [80]
is used. One of the benefits of using this dictionary is that larger gaps
can be addressed, by using larger shift-invariant atoms, than a general
dictionary while keeping the number of free variables fixed.

To incorporate the mask information, the approach presented by Oikonomou
et al. [29] is used, which only requires a change to the sparse coding step.
The altered steps can be summarized by

(i) Keep the dictionary, D, fixed. Remove the rows of the dictionary
and the signal vectors corresponding to the missing samples for each
signal vectors.

(ii) Normalize the dictionary columns to 1.

(iii) Find the coefficients, w.

60



5. Fetal heart rate and labour analysis

(iv) Find the signal estimate, x̂ = Dw.

(v) Reconstruct the signal, x, by replacing the missing samples with the
estimates, x̂.

(vi) Update the dictionary, D, and normalize the columns to 1.

5.6.2 Result

Examples of signal segments without missing samples were chosen from the
data set FD2. Parts of these signals were randomly removed to make up a set
of test signals. To measure the performance, SI-FSDL was compared with
the traditional dictionary learning techniques MOD [30] and K-SVD [31],
as well as spline and linear interpolation.

During the experiments, the number of free variables in the dictionaries
are kept constant at approximately 3000. The ratio of non-zeros coefficients
to the number of elements in the signal is 0.1. Signal blocks are chosen in
an overlapping fashion for the dictionary learning methods. Block lengths,
N , of 30, 40 and 50 are used for MOD and K-SVD, and 500 for SI-FSDL.
Estimation of missing data was done by varying the gap length of the

missing segments, while keeping the amount of missing data fixed at 10%,
Figure 5.11, and 30%, Figure 5.12. Performance of the tested methods for
30% missing data are shown in Figure 5.12. All methods achieve similar
performance for short interval lengths. When the amount of missing data
increase to 30%, the performance for MOD and K-SVD for all segment
lengths decrease faster than the case of 10%. The performance of linear
interpolation and SI-FSDL, remains almost the same regardless of the
missing sample length.
Both SI-FSDL and linear interpolation achieve a high signal to noise

ratio (SNR) for the case where 30% of the data is missing. A visual
assessment of the signal reconstruction was performed using continuous
wavelet transform on the reconstructed signals to see how similar the
time-frequency distribution of the reconstructed signal is to the original
signal. The time-frequency response for a short section of FHR where 3
time periods of the signal has been removed are shown in Figure 5.13. In
close-ups of the signal around each mask, the original signal is shown in
blue, estimations using linear interpolation in dotted red, and SI-FSDL
in dashed black. By visual inspection of the three blocks with estimated
signals in Figure 5.13, it is apparent that the SI-FSDL reconstruction
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Figure 5.11: Recovery performance for different methods when the missing intervals
are increased from 1 to 50 samples, but the total missing percentage is kept fixed at 10%

0 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

gap length (Samples)

S
N
R
(d
B
)

SI-FSDL

interp(spline)

interp(linear)
MOD-40x76
KSVD-40x76
MOD-50x60
KSVD-50x60
MOD-30x100
KSVD-30x100

1

Figure 5.12: Recovery performance for different methods when the missing intervals
are increased from 1 to 50 samples, but the total missing percentage is kept fixed at 30%
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restores the time-frequency properties better than the linear interpolation,
even though the latter has a higher SNR. Based on this, the computed
SNR is not considered to be a good measure to describe the reconstructed
signal quality.
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Figure 5.13: Continuous wavelet transform over a short signal with 3 time periods of
the signal removed. The original signal is shown in blue, linear interpolation shown as a
dotted red line, and SI-FSDL shown as dashed black line.

5.7 Fetal heart rate development (Paper 3)

In this section, the contribution in the pink FHR development block in
Figure 5.14 is presented. Full details of this method can be found in paper
3.

Continuous FHR measurement of labours with different outcomes can
give valuable information on both normal and abnormal FHR patterns.
In high income settings, continuous FHR monitoring is primarily used for
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Figure 5.14: Overview and relationship of the contributions related to fetal and heart
rate and labour analysis presented in this work. This is a repetition of Figure 5.1 with
the part presented in this section, FHR development, marked in pink.

high risk labours. This study, does however, only include labours assessed
as low risk with normal FHR on admission. This inclusion criteria gives us
the possibility to study the FHR development for labours with a normal
outcome.

The heart rate of newborns is reported to increase shortly after birth [22].
But to the authors knowledge, a corresponding trend in how the FHR
changes just before birth has not been reported. With the use of continuous
FHR monitoring in many labours, it is possible to determine how the
FHR typically develops during labour, and to make a model of a normal
development vs a development with adverse outcome. These models can in
turn be useful to determine progress in future labours.

5.7.1 Method

The time period where the FHR is measured varies from labour to labour.
To compare different episodes, they are compared relative to time of birth,
tob. The sample index, n, is defined in the measured FHR signal based
on the measured FHR with sample rate, 2 Hz, the elapsed time, t, and a
defined start point before birth, t0, so that tob − t0 is constant, such as

n = 2(t+ t0) (5.15)
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Table 5.3: Overview of the data subsets in FD3, and the removed noise from FHR
signal in each labour outcome group.

Outcome #episodes Subset Missing Removed
data [%] data [%]

All 3705 FD3
Normal 3490 FD3s1 27.83± 19.87 1.79± 1.35
NCU 185 FD3s2 31.28± 20.38 1.82± 1.31
END 18 FD3s4 29.22± 24.34 1.31± 0.83
FSB 12 FD3s5 40.50± 28.60 1.92± 1.61

Perinatal mortality 30 FD3s3

An example of the varying start and end point of 3 episodes, as well as tob

and t0 is shown in Figure 5.15. The time of birth is known for all episodes
and is therefore used as a reference point between the episodes.
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Figure 5.15: Illustration of the how the start and end point of FHR measurements
varies from labour to labour. The end point in this analysis is therefore set to the time
of birth, tob, and the starting point t0 a fixed amount of time prior to the time of birth.

The subset is defined based on the neonatal status 24 hours after birth.
The subset s1 includes all labours where the newborn was assessed as normal.
Subset s2 includes all labours where the newborn was still admitted to
neonatal care unit (NCU) at 24 hours. Subset s3 includes all episodes where
the newborn died during the 24-hour period or died during labour (FSB).
FSB and END are grouped together in subset s3 due to the low quantity
of episodes within each outcome. An overview of the used subsets, and the
amount of missing and removed data in each subset is shown in table 5.3.
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Fetal Heart Rate Development

The measured FHR within a defined time interval, ∆, in an episode, i,
from the subset, sk, is extracted from the start time, t, and throughout the
duration, t+ ∆. Let the trend, mFHRs(p), be defined as the median of
all measured heart rate in the interval, of all episodes in the subset, s

mFHRs(p) = median
((
fhrt

1,s(n), . . . , fhrt
Ls,s(n)

))
n ∈ {t, t+ ∆}

(5.16)
Where Ls is the number of episodes in the subset s, and the sampling index
p is given by

p = 1
∆(t+ t0) (5.17)

To describe the spread at each time interval, the 1st and 3rd quar-
tiles, q1, q3, called HRq1(t) and HRq3(t), are computed using the
concatenated vector of all FHR measurements in the time interval,(
fhrt

1,s(n), . . . , fhrt
Ls,s(n)

)
∀n ∈ {t, t+ ∆}.

Fetal Heart Rate Distribution

A normalized histogram is used to estimate the changes over time in a
probability density function (pdf). The histogram is created using an
interval defined by the starting point, t and end point t+ ∆ for all episodes
in a subset. When computing two or more distributions, these can be
used to identify how the distribution changes over time. Let ht

i(l) be the
histogram of the measured FHR in episode i, in the interval with start
point t and end point t+ ∆,

ht
s(l) =

∑
i∈s

ht
i(l) ∀ l = {50, 51, . . . , 200} (5.18)

The normalized histogram, h̄s(l), is then given by

h̄t
s(l) = 1

#N ht
s(l) (5.19)

Where #N is the total number of
∑

l h
t
s(l)
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5.7.2 Result

Fetal Heart Rate Development

The FHR development is computed as the median FHR, mFHR(t), using
non-overlapping intervals of fixed size. Intervals of 5- and 10-minute
duration were used to obtain multiple resolutions of the heart rate trend in
the last 150 minutes before birth. An overview of mFHR(t) using 5- and
10-minute intervals are shown in Figures 5.16 and 5.17, respectively. The
solid lines indicate mFHR(t), and dashed lines the HRq1(t) and HRq3(t).
The green lines show the trend for newborns with a normal outcome, FD3s1,
yellow newborns still admitted to NCU, FD3s2, and red newborns either
defined as FSB or dead during the first 24 hours, FD3s3.
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Figure 5.16: Trend of the FHR using 5-minute non-overlapping intervals the last 150
minutes before birth. Solid lines indicate the median heart rate, and the matching dashed
lines the 25 and 75 percentiles.

The computed trend indicates a reduction in mFHR the last 30 minutes
before birth. The reduction in mFHR for the perinatal mortality group,
FD3s3, group occurs at a longer time before birth than for FD3s1and FD3s2.

Fetal Heart Rate Distribution

An estimate of the pdf for all FHR over all episodes in each subgroup was
found for the last 30 minutes before birth, and the two 30-minute intervals
before. The pdfs were computed to study how the estimated pdf of FHR
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Figure 5.17: Trend of the FHR using 10-minute non-overlapping intervals the last 150
minutes before birth. Solid lines indicate the median heart rate, and the matching dashed
lines the 25 and 75 percentiles.

changes before and after the drop in the mFHR observed in section 5.7.2.
The estimated pdf for the last 90 to 60 minutes before birth is shown in
Figure 5.18a, the last 60 to 30 minutes before birth in Figure 5.18b, and
the final 30 minutes before birth in Figure 5.18c. The green line indicates
the estimated pdf for normal outcome, yellow line is the NCU group and
red for the perinatal mortality group.

In the interval 90 to 60 minutes before birth, Figure 5.18a, all outcome
groups have a peak in the 135-145 bpm region. In the interval 60 to 30
minutes before birth, a similar peak as in the previous interval is found
for the normal and NCU groups. The perinatal mortality group still has a
peak at 135 bpm, although not as distinct. The variance of the perinatal
mortality group is also increased. In the last 30 minutes before birth, the
variance increases for both the normal group and the NCU group. But
the peaks stay within the same 135-145 bpm region. For the perinatal
mortality group, the variance is high, and the peak has now shifted down
to 110 bpm.
By combining multiple normalized histograms using continuous non-

overlapping intervals, both the change in trend and spread of the FHR can
be visualized, shown in figure 5.19. The red line illustrates the number
of episodes with data at the corresponding time point. A peak in the
computed histograms will result in a visible ridge in the 3D-visualization.
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Figure 5.18: Estimated probability density function (pdf) of the measured heart rate
the last 90 minutes before birth, divided in 30-minute windows. a) The estimated pdf
for the last 90 to 60 minutes before birth. b) The estimated pdf for the last 60 to 30
minutes before birth. c) The estimated pdf for the last 30 minutes before birth.

The major findings can be summarized by the following four points:

1a: A reduction in mFHR is observed for all subgroups close to birth.

1b: The reduction in mFHR for the perinatal mortality group is larger
and occurs longer time before birth.

2a: The variance of the estimated pdf increases for all subgroups close to
birth.
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Figure 5.19: Estimated probability density function the last 150 minutes before birth
for newborns defined as normal 24 hours after birth. The red line illustrates the number
of episodes with data at the corresponding time point.

2b: A larger increase in the variance, as well as shift in the peak is
observed for the perinatal mortality group.
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Chapter 6

Newborn resuscitation
In the following chapter, previous work on newborn resuscitation is first
presented, followed by our contribution to the topic.

6.1 Previous work

Detection and recognition of activities using accelerometer data have pre-
viously been explored on healthy adults. Static and dynamic activities
such as sitting positions, walking versus running has been found using
accelerometers mounted on the back [81] and on the waist [82]. With the
rise of wearable technology in everyday life, such as sport watches and
cell phones, accelerometers are now available for activity recognition using
commercially available devices [83]. To the authors knowledge, there are no
reported works utilizing accelerometer and ECG signals to automatically
classify therapeutic activities, except from this research group at this time.

6.1.1 Activity detection

A system for detection of time periods during resuscitation where activities
are likely to be performed on the newborn, from now on called VuDetec-
tor [52], has previously been proposed by our research group. The method
detects these time periods based on the short time energy (STE) of the
acceleration energy signal. The acceleration energy, Acc(n) is given by

Acc(n) =
√
Acc2

x(n) +Acc2
y(n) +Acc2

z(n) (6.1)

Where Accd is a low pass filtered version of the measured acceleration in
axis d ∈ {x, y, z}, and n is the index in the acceleration signal. The STE,
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EAcc(i), is then found using a window function, w

EAcc(i) =
i∑

n=i−N+1
(Acc(n) · w (i− n))2 (6.2)

The STE at index i is computed using samples from the window of length
N . The computed STE signal is then thresholded to determine if an activity
occurs at the current window.

Activity(i) =

1 if EAcc(i) ≥ Thr
0 otherwise

(6.3)

The method achieves a sensitivity of 90% and a specificity of 80%, both
with a standard deviation of 6%. Further details of VuDetector can be
found in Vu et al. [52].

6.1.2 Detection of Ventilation

Ventilation is known to be a vital part of the resuscitation process. A
method to detect and parameterize the manual bag-mask ventilation has
previously been proposed by our research group with an accuracy of 95%,
from now on called VuVentilation [84].

The method detects ventilation events (vl) by thresholding the pressure
signals after baseline wander removal. Expired volume in the ventilation is
found by extracting start of inspiration and expiration periods from the
flow signal and integrating the flow signal over the relevant period. Further
details of can be found in Vu et al. [84].

6.1.3 Activity classifier

A system to automatically identify therapeutic strategies during newborn
resuscitation, from now on called VuClassifier, has previously been proposed
by our research group [85]. VuClassifier is designed to identify the following
categories:

(i) Chest compression

(ii) Stimulation

(iii) Other activities
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The classification is performed using 46 features extracted from
accelerometer- and ECG-signals from the NeoBeat prototype in the LNRM.
These features include time domain features, such as energy, RMS, entropy,
and frequency domain features, such as wavelet for both the acceleration
and ECG signals. The wavelet features were extracted using a 6-level
decomposition using the Daubechies mother wavelet. More information
on these features can be found in Vu et al. [85]. The classifier achieves an
overall accuracy of 78.7% when distinguishing between the three classes. By
combining chest compression and stimulation into one general stimulation
activity, the overall accuracy is increased to 79.8%.
While the system achieves a promising performance, some limitations

should be mentioned. The system needs full-episode statistics for the
classification, making real-time implementations challenging. The small
data set of 30 episodes used to verify the method can also be a limitation.
In total, these episodes consisted of 21 sequences of chest compression, 250
sequences of stimulation, and 175 sequences of other.

6.1.4 Activity recognition using deep learning on video sig-
nals

An alternative approach for automatically annotating newborn resuscitation
episodes is by using deep leaning on videos overlooking the resuscitation
table. One such system, ORAA-net [86], has previously been proposed
by our research team. The system consists of four main steps: 1) Object
detection, 2) Region proposal, 3) Activity recognition, and 4) generation
of Activity timelines. The first step is based on a deep learning system to
detect objects such as bag-mask ventilator, suction devices, and health care
hands [86]. Regions around these objects are proposed and used in a new
network to recognize stimulation, ventilation, suction, and if the newborn
is covered or uncovered [87]. The recognized activities are finally used to
create timelines describing the resuscitation episode.

However, video of a resuscitation may not always be available. The use
of NeoBeat in combination with information from different sensors could
provide timelines based on what is available: ventilation signals, NeoBeat
(ECG, accelerometer) signals, videos or a combination of these sources.
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6.2 Contribution overview

In the following sections, the contribution of each block in Figure 6.1 will be
presented. Identification of clinically important parameters during newborn
resuscitation is presented in section 6.3. A validation of VuClassifier and a
new proposed method for annotating stimulation is presented in section 6.4.

Birth

Ventilation

Stimulation Stimulation

Resuscitation
started

Figure 6.1: Overview of the contributions in newborn resuscitation. The dotted lines
indicate modules previously proposed by our research group. With the use of a system
to detect stimulation and ventilation during resuscitation, timelines can be created to
describe the resuscitation event.

The dotted lines in Figure 6.1 indicate methods previously proposed
by our research group. These methods are included as they are a vital
part in a system for describing the therapeutic activities performed during
newborn resuscitation. In the generated timeline, seen on the bottom of
Figure 6.1, we can see that the resuscitation is started shortly after birth.
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Both stimulation and ventilation are performed during the resuscitation,
and both activities can be performed at the same time.

6.3 Identification of clinically important parame-
ters (Paper 4)

In this section, the contribution in the pink Identify clinically important
parameters for resuscitation outcome block in Figure 6.2 is presented. The
proposed system is shown on the bottom of the figure. Full details of this
method can be found in paper 4.

Figure 6.2: Overview of the identification of clinically important parameters during
newborn resuscitation. The dotted line and boxes illustrate methods previously proposed
by our research group. Features are extracted from LNRM data as well as manually
logged values during labour. The features are used in a nested cross-validation to estimate
the performance for distinguishing the resuscitation outcomes.

By identifying treatment factors determinant for the 24-hour neonatal
outcome, better treatment, and feedback solutions to guide the therapy can
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be sought. Factors for prediction of the need of neonatal resuscitation [88],
and the relationship between ventilation performance and responses of
newborns in term of Apgar score [89] have been explored. There is, however,
still an uncertainty of which therapeutic strategies are determinant for
outcome in neonatal resuscitation - what characterize a good resuscitation?

6.3.1 Method

Features are extracted from LNRM data as well as manually logged values
during labour.
Parametrization of the resuscitation episode is distinguished in three

main categories: initial conditions, treatment, and early response parame-
ters. Treatment parameters are further divided into two subgroups, those
reflecting therapeutic strategies, like stimulation vs ventilation, and those
reflecting the quality of the ventilations.

Initial condition parameters

The following parameters were used to describe the initial condition of the
newborn prior to bag-mask ventilation:

• Birth weight (BW) in grams.
• Gestational Age (GA) in weeks, estimated at birth.
• Time from birth to start of bag-mask ventilation (tBMW ). Logged by

research assistants present at the labour.
• Initial heart rate (hrVi) is the heart rate when the first ventilation

sequence starts (V1,start).

hrV1 = HR(V1,start) (6.4)

Treatment parameters

The following parameters are extracted from the sensor data:

• Total duration of the resuscitation episode (T ). Defined as the time
period from the resuscitation was started, until the end of the last
stimulation or ventilation sequence.
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• Stimulation time in percent (STP RC) is the ratio of the time of all
stimulation sequences (Sj) over T .

STP RC = 1
T

∑
i

Sj · 100% (6.5)

• Ventilation time in percent (VTP RC) is the ratio of the time of all
ventilation sequences (Vi) over T .

VTP RC = 1
T

∑
i

Vi · 100% (6.6)

• Hands-off time in percent (HOTP RC) is the ratio of the time of all
hands-off sequences HOk over T .

HOTP RC = 1
T

∑
i

HOk · 100% (6.7)

• The total number of ventilations (nV ) is the sum of all ventilation
events (vl) in all Vi.

nv =
∑

i

∑
l

#{vl ∈ Vi} (6.8)

• The expired volume (expVolml/kg) is the median expired volume from
all ventilation events, divided by the newborns birth weight (BW) in
kg.

expVolml/kg = median

( expVol
BW/1000

)
(6.9)

• The average ventilation rate (VR) is nV over the total duration of all
ventilation sequences in one episode.

VR = nV∑
i Vi/60 [inflations/min] (6.10)

The features STP RC , VTP RC , and HOTP RC , reflect therapeutic strategies,
while the remaining treatment parameters are associated to quality of
ventilation.

One can argue that the time from birth to start of bag-mask ventilation,
tBMW , can be seen as both a treatment parameter and an initial condition
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for the bag-mask ventilation parameter. However, we have defined treatment
parameters as parameters possible to extract from the measured sensor
signals. Median expired volume can be both a treatment and response
parameter. We have chosen to label this feature as a treatment parameter,
as it is an efficient way to identify the ventilation quality. A poor ventilation
with severe mask leakage will result in a high measured inflated volume,
but a low measured expired volume. A good ventilation will result in a
sufficiently high expired volume.

Early response parameters

The following parameters are extracted from the sensor data, and can be
regarded as response parameters:

• Heart rate when first ventilation sequence ends hrV1,end

hrV1,end
= HR(V1,end) (6.11)

• Heart rate 30 seconds after first ventilation sequence hrV1,30s

hrV1,30s = HR(V1,end + 30) (6.12)

• Heart rate 60 seconds after first ventilation sequence hrV1,60s

hrV1,60s = HR(V1,end + 60) (6.13)

Classification

Due to the low number of episodes ending in death, there is a large class
imbalance when trying to distinguish episodes in the normal group from the
group ending in death. To alleviate this imbalance, the RUSboost classifier
was chosen. Details of the classifier can be found in section 3.4.1.

A nested-CV scheme, presented in section 3.4.4, is used to estimate the
performance. In the nested CV, the internal loop is used for feature selection
and reduction of dimensionality of the feature set, using the external loop
for validation. Feature selection is done using a wrapper method [90] with a
forward selection approach, presented in section 3.4.4, maximizing the true
(positive+negative) rate. The data set, RD1, is further divided into three
non-overlapping sections in both the internal and external loop. System
performance is computed using the summed confusion matrices from all
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external folds. The same type of classifier is used in both the internal and
external loops. Feature normalization is applied in each CV fold, where
the mean, µ, and standard deviation, σ, is found for the current training
set and then applied to the normalization of the current test set.

The same feature selection method is applied to the entire data set, RD1,
to identify the most crucial features corresponding to the performance
found in the nested CV.

6.3.2 Result

Three experiments were conducted and validated:

(i) Identification of neonatal outcome 24 hours after birth using all
features available

(ii) Identification of neonatal outcome using all features for newborns
initially in a poor condition

(iii) Identification of neonatal outcome using only initial- and treatment
parameters for newborns initially in a poor condition.

Newborns with an initial heart rate below 120 beats per minute was
defined to be in a poor condition.

Each experiment was run for all four class combinations: Normal - Death,
Normal - NCU, NCU - Death, and the three-class problem Normal - NCU -
Death. The performance of each outcome combination and experiments
are shown in table 6.1. The label 1 is used for class normal, the label 2 for
class NCU, and the label 3 for class death.
Using all 14 features, heart rate after the first ventilation, number of

ventilations, total resuscitation time, ventilation time, and hands-off time
percentage are found to be good identifiers of resuscitation outcome. For
identification of neonatal outcome of episodes with an initial heart rate
below 120, heart rate, ventilation time, stimulation time, and hands-off time
percentage are found to be good identifiers. Total resuscitation duration
is, however, only found as a good feature for one class combination. For
newborns with an initial heart rate below 120, identification of all class
combinations includes at least two out of three parameters characterizing
the therapeutic strategies. Indicating that the therapeutic strategies are
crucial for the newborn survival. A full overview of the found features in
each experiment can be found in Paper 4, reprinted on page 167.
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Table 6.1: Performance using feature selection in nested CV. P = precision, R = recall.
1 for class Normal, 2 for class NCU, and 3 for class Death

Exp 1 Exp 2 Exp 3

P1 P2 P3 P1 P2 P3 P1 P2 P3

R1 R2 R3 R1 R2 R3 R1 R2 R3

Normal/Death 0.96 0.47 0.88 0.55 0.91 0.54

0.89 0.74 0.87 0.57 0.83 0.71

Normal/NCU 0.84 0.42 0.74 0.46 0.72 0.45

0.71 0.60 0.71 0.50 0.74 0.43

NCU/Death 0.85 0.60 0.78 0.69 0.71 0.51

0.85 0.59 0.86 0.57 0.78 0.43

Normal/NCU/
Death

0.77 0.26 0.31 0.73 0.39 0.41 0.70 0.43 0.35

0.64 0.28 0.65 0.74 0.24 0.69 0.75 0.16 0.67

6.4 Automatic annotation of Stimulation (Paper
5)

In this section, the contribution in the pink Detection of Stimulation block
in Figure 6.3 is presented. Full details of this system can be found in paper
5.
During a resuscitation, the newborn will be moved, covered, and un-

covered etc. Such activities will be visible on the accelerometer signals
from the attached NeoBeat prototype but are not considered therapeutic
activities. In VuClassifier, presented in section 6.1.2, our research group
proposed a first attempt of classification of the detected activities based on
ECG and accelerometer signals. The VuClassifier was, however, based on
signal features extracted from detected activity events of variable duration.
It needed statistics from the entire resuscitation episode, and as such, only
suitable for retrospective analyses.

In this work we validate VuClassifier, and propose a new causal system,
NBstim, for detecting time periods of stimulation activities based on the
signals recorded by the NeoBeat prototype. In combination with VuVentila-
tion [84], useful timelines can be created to illustrate the amount, duration
and order of ventilations and stimulations performed in real world newborn
resuscitation episodes. The generated timelines would be highly beneficial
to evaluate which resuscitation activities are improving the state of the
newborn. The timelines may be used to determine if current guidelines are
adequate, and if they are followed.
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Figure 6.3: Overview of the contributions in newborn resuscitation. Using raw inputs
directly from the Laerdal NeoBeat prototype, a timeline describing the resuscitation event
can be computed. The dotted line and boxes illustrate methods previously proposed by
our research group.

6.4.1 Method

Using a larger data set, validation of the VuClassifier is first performed.
To allow for either real-time analysis during resuscitation, or on request to
obtain more details of a given resuscitation episode at a later time, a causal
feature extraction is desired. A resolution of 10Hz in the classification is
chosen. The features at index i are causally extracted from index i− k + 1
to i, where k is the window size. The feature set are based on the 46
features proposed by Vu et al. in the VuClassifier [85]. As two of the
features required information from the entire episode, they were excluded.
The two features were the maximum value in the acceleration energy, and
the maximum value in the ECG signal.
Stimulation activities often consist of repetitive movements, such as

rubbing the back of the newborn. To represent these repetitive movements in
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the analysis, three new features are defined for each axis in the accelerometer
signal. Resulting in a total of 9 new features. Let P i

Acc,d(f) denote the
Short Time Fourier Transform (STFT) of window i in the accelerometer
signal in axis d ∈ {x, y, z} as a function of the frequency, f . Using a window
of size 1 second, equal to size of L = 100 samples, the mean is first removed.
The STFT is then computed using a N-point DFT, where N = 3 · L. The
first feature, AP max,d, describes the maximum amplitude in the frequency
domain,

AP max,d (i) = max
(
P i

Acc,d(f)
)

(6.14)

The second feature, Af,d(i), describes the frequency this maximum occurs
at, according to

Af,d(i) = argmax
(
P i

Acc,d (f)
)

(6.15)

The third feature describes the highest frequency with an amplitude above
a set threshold, given by

AfT,d(i) = max{f : P i
Acc,d(f) > T} (6.16)

The threshold T was set to 20, based on empirical observations to capture
the highest frequency peak in the transformed signal.

As the ECG sensor in the LNRM is susceptible to noise from the power
grid, a 50Hz notch filter is applied to the signal prior to extracting any of
the features from the ECG. An overview of all features used can be found
in Urdal et al. [91].

6.4.2 Result

Validation of the VuClassifier was done using the original feature set, fSet1.
The classifier was trained on the original data described in Vu et al. [85],
and then used to classify the subset RD2blk. The performance can be seen
in table 6.2.

Table 6.2: Performance using the features and classifier proposed by Vu et al. [85] on
the data set RD2blk.

Method #features Sensitivity Specificity Accuracy
VuClassifier [85] 46 88.4% 1.7% 50.7%

The performance using the 44 causal features, fSet2, on the data set
RD2win, can be seen in table 6.3.
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Table 6.3: Performance of various feature sets computed using sliding window on
time points where an activity is found by VuDetector and either stimulation or no
activity is manually annotated, RD2win. The performance is computed using a nested
cross-validation. 3 folds were used in both the inner and the outer loop.

Feature set #features Sensitivity Specificity Accuracy
fSet2 44 61.7% 65.5% 61.7%
fSet3 24 63.3% 65.5% 63.7%
fSet4 9 75.6% 43.7% 69.7%
fSet3∪ fSet4 33 57.4% 69.8% 59.7%
fSet5 23 67.3% 62.1% 66.4%

Table 6.4: Performance of NBstim when distinguishing between stimulation and non-
stimulation on full resuscitation episodes, RD2, with a maximum length of 7 minutes,
.

Method Sensitivity Specificity Accuracy
No postprocessing 68.3% 93.1% 88.6%
Median filtering 69.2% 94.8% 90.3%

Using a greedy forward feature selection, the number of features were
reduced down to 24, fSet3. A final feature selection was performed on the
subset consisting of fSet3 and the newly proposed STFT features, fSet4.
The final feature set is denoted fSet5. The performance for each step is
shown in table 6.3.
A visualization of the computed values for the final feature set, fSet5,

is shown in Figure 6.4. Each row corresponds to a given feature, and a
darker colour indicate a higher value in the computed feature value. For
visualization purposes, all features in Figure 6.4 are normalized to [0, 1].

To estimate the performance of NBstim, with the feature set fSet5, on
complete episodes, a leave-one-out cross-validation is used. As we expect
the therapeutic activities to last longer than the 0.1 second sample period,
a median filtering is applied as a post processing scheme. A length of 11
samples is used for the median filter. The performance with- and without
the post processing scheme is shown in table 6.4.

The proposed NBstim classifier can be combined with VuVentilation to
create a complete system for detecting both stimulation and ventilation
activities during newborn resuscitation. An example of how the graphical
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Figure 6.4: Overview of the 23 final features, fSet5 computed for an example sequence
where VuDetect identify two activities. Each row in the heat map illustrate the values
of a given feature over time. A darker colour indicates a higher value. All features are
normalized in the region [0, 1] for visualization purposes. NBstim evaluates the regions
found by VuDetect and classifies them, one as stimulation and one as a non-stimulation
activity.

user interface for this system could look like, is shown in Figure 6.5. The
green timelines indicate manually annotated data, while the cyan timelines
indicate automatically classified timelines. When used on new data, only
the cyan timelines would be available to the user.
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Figure 6.5: Example graphical user interface for NBstim combined with VuVentilation.
In this example, the timeline includes manually annotated data, shown in green, and
automatically classified data, shown in cyan. ECG and acceleration signals are included
to visualize the current measurements to the user.
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Chapter 7

Discussion and conclusion
In the following chapter, we first discuss our contributions and the challenges
related to work presented on FHR and labour analysis and a conclusion
and future work on the topic. We then discuss our contribution and the
challenges related to newborn resuscitation. Finally, we conclude and
discuss our plan for continuing this work.

7.1 Fetal heart rate and labour analysis

The contributions to FHR and labour analyses, originally presented in Fig-
ure 5.1, are reprinted in Figure 7.1 to remind the reader of the relationship
between the contributions. The main achievements can be summarized as:

A1: Removal of less trustworthy segments in the measured FHR signal.

A2: Estimation of missing data in FHR signals using shift-invariant dic-
tionary learning.

A3: Indication of when uterine contractions occur using an accelerometer
mounted in proximity of the Doppler ultrasound sensor.

A4: Explored FHR patterns during labour, and how these patterns differs
based on the perinatal outcome of the newborn.

7.1.1 Results and challenges

In the following subsections, each of the four achievements will be discussed.
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Figure 7.1: Overview and relationship of the contributions related to fetal and heart
rate and labour analysis presented in this work. This is a reprint of Figure 5.1.

Noise detection

The noise-detection algorithm identifies many small sections of the FHR
signal as noise. By removing these, a cleaner version of the FHR signal, and
thereby a trend can be obtained. This opens for automated signal analysis
and feature extraction in the future. A challenge in detecting time periods
with noise in the data acquired using the Moyo, is that there is no truth
data available. As it is difficult to determine with certainty which part of
the measured FHR signal is noise, only time periods where the signal is very
unlikely to contain information of the fetal status is removed. While some
time period containing noise may be kept using this conservative approach,
we consider it a better option over removing potential vital information.

Uterine contractions

Information of when uterine contractions occur, can sometimes be found by
looking for decelerations in the measured FHR signal. A challenge in this
approach, is that an increased uterine activity may result in an increased
movement of the mother, and thus the sensor. A result of this increased
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movement, is more missing data. In our experiment with low amount of
energy in the acceleration signal, the proposed method accurately identifies
contractions corresponding to all large decelerations. Experienced midwifes
confirmed that the results resemble typical examples of decelerations caused
by uterine contractions. However, when the amount of acceleration energy
increases, it is challenging to determine if the detected contractions are
correct. While the highest peaks are categorized as movement and therefore
excluded, it is challenging to categorize remaining peaks as contractions and
not smaller artefacts due to the movement. In cases where the FHR signal
contains a large amount of missing data, the corresponding acceleration
signal often contains more maternal movement. Potentially resulting in a
lower identification of uterine contractions. The two thresholds used in the
algorithm is defined conservatively based on empirical observation, and the
chosen values might be suboptimal. A search for the optimal parameters is
therefore required before the method is implemented in other systems.
While our findings of uterine contractions have been discussed with

trained healthcare personnel during the study, the main limitation is the
lack of truth data. A new data set should ideally be collected containing
both Moyo signals as well as information of the uterine activity for validation
of the proposed method. Uterine contractions may also in some cases occur
at a higher rate than 5 per 10-minute window, known as tachysystole. As
a threshold of minimum 2 minutes between the onset of two consecutive
contractions is used in this method, detection of tachysystole may be
limited.

Estimation of missing data

Time periods with missing data in the FHR signal pose a challenge when
extracting features in a continuous analysis. Simple methods, such as linear
and spline interpolation are often used, but these affect computation of
FHR variability. When the missing data percentage is low, both MOD and
K-SVD achieve high performance, while SI-FSDL outperforms the other
methods when the missing percentage is increased. A high SNR is also
observed for linear interpolation. Reconstruction using dictionary learning
is, however, shown to be closer to the true signal in terms of the spectral
content of the signal. In order to have reliable information, less artefacts
are crucial when performing further analysis on the data.

It is worthwhile to note that while estimations using dictionary learning
can be utilized to reconstruct the gaps, the methods might miss some
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details if the gaps become too large. In addition, if any of the missing
time periods would have included a deceleration or acceleration in the FHR
signal, we would need to know the duration of these patterns in order to
be able to reconstruct the true signal.

Fetal heart rate development

The heart rate of newborns have previously been reported to increase
shortly after birth [22], and a corresponding drop in the FHR is observed
close to the time of birth in this work. The behaviour is similar for all
outcome groups, with a drop of the measured FHR shortly before birth. For
labours in the perinatal mortality group, the drop in the measured FHR is
larger, and it occur earlier relative to the time of birth. The variance in
the estimated probability density function (pdf) has a larger increase for
the perinatal mortality group, and the pdf peak has a larger shift. This
difference may indicate that these newborns struggle to endure the physical
strain of the labour, and that an earlier intervention could potentially save
lives.
A limitation in this study is the low number of newborns in perinatal

mortality group. In addition, not all recordings include data up until the
time of birth, further reducing the number of episodes included in the study.
To increase the amount of recordings, a longer data collection period would
be desired. Ideally, data from additional hospitals would be used.
A second limitation of this work is that the internal clock in the first

generation Moyo monitor was shown to be drifting. If not calibrated often
enough this can result in inaccuracies of up to 30 minutes in the logged time
stamp. A result of this, is that the FHR zero to one minute before birth,
may in worst-case be recorded 30 minutes before birth for some episodes.
In cases with drift in the opposite direction, an FHR may be present in
the signal after the defined time of birth. These episodes are corrected by
adjusting the time of birth to the time of the last recorded FHR.

7.1.2 Conclusion

The contributions to FHR and labour analyses can be distinguished into
two main categories: 1) A basis to allow for continuous analysis of the fetal
well-being during labour, and 2) Exploration of how the FHR develops
during labour based on the 24-hour outcome.

90



7. Discussion and Conclusion

With the use of our proposed methods, less trustworthy time periods in
the measured FHR signal can be removed. Missing data, or time periods
where we have removed less trustworthy measurements, can be estimated
using a shift-invariant dictionary. The dictionary achieves a high SNR and
retains a lot of the spectral content in the estimations. With the use of an
accelerometer mounted in proximity to the Doppler ultrasound sensor, we
indicate when uterine contractions occur.

By observing the FHR, the last 150 minutes before birth, we found that
the FHR drops for all labours close to birth. The drop was, however, larger
and it occurred a longer time before birth for labours with an adverse
outcome. This earlier drop in FHR, could indicate that these lives may
have been saved with earlier interventions.

7.1.3 Future work

We plan to expand the work on FHR and labour analysis and develop a
system to indicate the fetal well-being. Such a system can potentially alert
the healthcare personnel when a risk is detected. The healthcare personnel
can then perform a full assessment to determine if any interventions are
required.

Before we start development on a system to indicate the fetal well-being,
we plan to validate the results and methods presented in this work to ensure
we base such a system on validated features and methods. While data
collection in the Safer Birth project has reached its end, data collection at
HLH continues with the Safer Haydom project. In addition, the scaling up
birth bundle through quality improvement in Nepal (SUSTAIN) project
has been started. This project aim to improve the intrapartum care using
a set of quality improvement interventions and will collect data using both
Moyo and NeoBeat. With the increased amount of data from these new
projects, we plan to further explore and validate the differences between
FHR development of labours with a normal and with an adverse outcome.

7.2 Newborn resuscitation

Our contributions on newborn resuscitation, originally presented in Fig-
ure 6.1, is reprinted in Figure 7.2 to remind the reader of the relationship
between the two contributions. The main achievements can be summarized
by:
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Birth
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Stimulation Stimulation
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started

Figure 7.2: Overview of the contributions in newborn resuscitation. The dotted lines
indicate modules previously proposed by our research group. With the use of a system
to detect stimulation and ventilation during resuscitation, timelines can be created to
describe the resuscitation event. This is a reprint of Figure 6.1.

A5: Identification of important parameters to describe the resuscitation
outcome.

A6: Proposed an improved system, NBstim, for automatic annotation of
stimulation during newborn resuscitation using acceleration and ECG
signals.

7.2.1 Result and challenges

In the following subsections, each of the two achievements will be discussed.
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Identification of critically important parameters

The results presented in this work suggest that parameters describing
the initial status, therapeutic strategies, quality of ventilation, and early
response parameters are crucial factors for distinguishing the 24-hour
outcome for newborns identified as normal or dead at this point in time.
These parameters do, however, struggle to identify newborns still in the
neonatal care unit 24 hours after birth, indicating that additional features
are required. To provide information back to the healthcare workers, the
work must be extended to find features for identifying the newborns who
are alive, but still in a critical condition 24 hours after birth.
Identification of features which can be utilized on all resuscitations is

highly desirable. However, we acknowledge that newborns have a wide
range of initial conditions, and that newborns in a poor initial condition
may require a different therapy than newborns in a better condition.

Automatic annotation of stimulation

A system for automatic identification of stimulation during newborn re-
suscitation is proposed. The system consists of an activity detector, and
the proposed NBstim classifier with 23 features. Of these, 18 features are
defined using the 100Hz accelerometer signals in X, Y, and Z-directions
and 5 features are from the 500Hz dry-electrode ECG signal. The features
are computed using a rectangular sliding window of 1 second with 900ms
overlap. NBstim achieves high performance, with an accuracy of 90.3% in
identifying stimulation, and could therefore be used as a replacement of
time-consuming manual annotation, or as an initial step in an interactive
tool. It can also be used with the recently released Laerdal NeoBeat new-
born heart rate meter. But a validation using a larger data set is required
before implementing the method in clinical practice.

Due to the small data set of only 74 resuscitations episodes, and a total
of 21830 seconds, the proposed system may be seen as a feasibility study.
When identifying the feature set, a smaller subset of only 1961 seconds was
utilized. The reduction was performed by only including time periods where
some movement occur, and only stimulation or no therapeutic activity is
performed. The advantage of using the smaller subset, is that the method
will identify features which are crucial in distinguishing stimulation and non-
stimulation activities instead of focusing on patterns from other activities.
Due to the limited data set with ground truth, further validation is required
before applying this method in clinical practice.
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7.2.2 Conclusion

The ultimate objective is to save lives at birth, and more specifically by
studying what activities are performed by healthcare providers during
resuscitation of asphyxiated newborns. Are the guidelines followed, and
are the current guidelines effective in saving lives?

By identifying critically important parameters during newborn resuscita-
tion, we found that therapeutic strategies such as stimulation, ventilation
and hold-off were found to be important parameters in most of the classifi-
cations. While guidelines exist for how ventilation should be performed,
guidelines on how stimulation should be applied are lacking. To aid in this
work, we have proposed a system for automatically annotating stimulation
using ECG and accelerometer signals of the newborn. With information
on how stimulation is being applied during newborn resuscitation, we can
potentially identify which stimulation strategy should be recommended.

7.2.3 Future work

Two main directions are planned for expansion of this work. We first plan
to expand the work of finding critical features to also identify newborns
who are alive, but still in a critical condition 24 hours after birth. We
then plan to validate the NBstim classifier using a larger data set. While
data collection in the Safer Births has reached its end, data collection of
newborn resuscitation will continue at the Safer Haydom and SUSTAIN
projects.
The next step for our research group is to develop a user-friendly stan-

dalone tool that can be utilized by other researchers to automatically
annotate newborn resuscitation episodes. This tool can be used to create
timelines for thousands of newborn resuscitation episodes. In combination
with the immediate and 24-hour outcome, available in the Safer Births
project, vital statistics can be extracted to potentially get a greater under-
standing of how stimulation activities affect resuscitation procedures and
newborn outcomes.
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Abstract:
Fresh stillbirths and early neonatal deaths due to birth asphyxia
are global challenges with an estimated 1.3 and 1.0 million deaths
respectively every year. Adequate fetal monitoring during labour
to prevent these deaths, is challenging, and regular assessment of
fetal heart rate (FHR) in relation to uterine contractions is a key
factor. A multi-crystal strap-on low-cost Doppler device, including
an accelerometer, is recently developed to improve FHR monitoring
in lower resource settings. In this work, we propose a method to
increase interpretability of FHR Doppler signals by reducing noise,
and a method to utilize accelerometer signals to estimate uterine
contractions.
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8.1 Introduction

Fetal heart rate (FHR) monitoring is a widely used method to assess the
status of a fetus during pregnancy and labour. In high resource countries,
cardiotocography (CTG) is normally used for all labours assessed as high
risk. This measuring technique normally includes an external Doppler
based FHR sensor and a tocometer to measure uterine contractions. In
cases where the Doppler based sensor is insufficient in obtaining a good
quality measurement, an alternative FHR sensor can be attached directly to
the scalp of the fetus. In low resource settings, however, assessment of the
FHR is often conducted manually using either a fetoscope or intermittent
Doppler. As these techniques does not include information of the uterine
contractions, the FHR is often not assessed in relation to the contractions.
Fresh stillbirths and asphyxia-related newborn deaths, meaning the

fetus dies during labour or soon after birth, are global challenges with an
estimated 1.3 and 1.0 million deaths respectively every year [1]. The vast
majority of these, 98%, occurs in low resource settings [1], and the primary
cause of these deaths is interruption of placental blood flow with ensuing
changes in FHR patterns [1, 2, 92]. Optimal FHR monitoring should detect
such changes at an early stage to facilitate adequate obstetric interventions.

The introduction of a portable, low-cost, multi-crystal Doppler continuous
FHR monitoring device (Moyo, Laerdal Global Health, Stavanger, Norway)
at several sites in Tanzania, provides the opportunity to study the FHR
changes and patterns without relying on human interventions to conduct
periodic measurements. Well-known problems with such continuous Doppler
devices are both noise and missing signal data. This can be caused by
sensor movement, suboptimal placement of the sensor, maternal heart
rate, doubling and halving of the FHR signal caused by the Doppler
principle. Missing data can be estimated to resemble the measured data
using dictionary learning [73, 93]. Artefacts due to noise may affect the
interpretability and should be removed for both visual interpretation and
further digital analysis. Methods for classification and suppression of this
noise [71] and removal of the maternal heart rate [72] have previously been
used on electrocardiography (ECG) signals from CTG. A system utilizing
the sampled heart rate is, however, desired for low-cost continuous FHR
monitoring devices.
Interpretation of the FHR signal during labour is normally conducted

in relation to the corresponding uterine contraction, if this measurement
is available. Accelerometers have previously been used to monitor muscle
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contractions [77], and muscular fatigue [78]. Signals from an accelerometer
attached to the abdomen during labour has been shown to correlate to
uterine contractions [79]. By utilizing an accelerometer mounted in close
proximity of the Doppler sensor, indications of when contractions occur
can potentially be extracted. In this work, we have studied Doppler
and accelerometer signals from Moyo and identified time periods in the
measured FHR where the signal is likely to be noise. Using the three-axes
accelerometer, we indicate the position where uterine contractions occur.

Figure 8.1: The Laerdal Moyo fetal heart rate monitor. Reprinted with permission [49].

8.2 Data material

The data is collected as part of the Safer Births research project, which is a
research collaboration between multiple international research institutions,
and hospitals in Tanzania. Data is collected at two urban and one rural
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hospital in Tanzanian between October 2015 and June 2018. In total, 3807
labours were recorded. Of these, 3593 were classified as normal 24 hours
after birth, 184 were still admitted to a neonatal care unit, 18 died during
the first 24 hours, and 12 died during labour. Only labours which were
assessed as normal on admission to the hospital were included in the study.

Data collection was done using the Laerdal Moyo fetal heart rate moni-
tor [94], illustrated in Figure 8.1. The device consists of a main unit with
a display presenting the measured heart rate to the health care personnel,
and a sensor unit with a Doppler ultrasound sensor and an accelerometer.
The sensor unit is attached to the mother using an elastic strap. If the
detected FHR stays outside the 110-160 range for 10 minutes, or outside the
100-180 range for 3 minutes, an alarm will sound to alert the health care
personnel. The FHR is measured using a 9-crystal pulsed wave Doppler
ultrasound sensor operating at a frequency of 1MHz and an intensity of less
than 5mW/cm2. The computed FHR is sampled at 2Hz. Movement of the
sensor unit is measured using a three-axes accelerometer, sampled at 50Hz.
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Figure 8.2: Signal example recorded using the Moyo fetal heart rate monitor. The red
dashed lines indicate the normal region of the fetal heart rate. In the bottom plot, the
three acceleration axes can be observed.

The project was ethically approved prior to implementation by the Na-
tional Institute for Medical Research (NIMR) in Tanzania (NIMR/HQ/R.8a
/Vol. IX/1434) and the Regional Committee for Medical and Health Re-
search Ethics (REK) in Norway (2013/110/REK vest).

8.3 Method

This section first introduces a method to identify time regions in the FHR
measurement where the heart rate is less trustworthy, and thus should
be removed. A proposed method of estimating the point in time when
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contractions occur based on acceleration signal follows. An example of the
recorded signals is shown in Figure 8.2. The upper plot shows the FHR
signal, and the lower plot shows the corresponding accelerometer. In the
following we will use the notation fhr(n) to refer to a discrete FHR signal,
and Accx(n), Accy(n) and Accz(n) to refer to the measured acceleration
signals in the x, y, and z directions respectively. ẋ(n) denotes the discrete
derivative of the signal x(n).

8.3.1 Noise detection

Noise introduced in the measured FHR, fhr(n), can affect the visual
interpretation conducted by medical personnel as well as introduce undesired
artefacts in a continuous digital analysis. To identify time periods, hereafter
called segments, where variations in the FHR cannot be explained from
a physiological perspective, we first fill missing data in the FHR using
forward replication, given by

fhrrep(n+ 1) = fhr(n) : fhr(n+ 1) = 0 ∀n (8.1)

Let s be a pair of time indexes (ts, k) representing the start time and length
of a segment. Let A be a set of s,

A = {s : | ˙fhrrep(ts)| > c ∩ | ˙fhrrep(ts + k)| > c ∩ k < Tk} (8.2)

As the measured FHR is a result of a biological process, physiological
limitations exist for how fast the heart rate can change, the threshold c
is set to 30 beats per minute. The segments are thereafter checked in
order from the shortest to the largest, to see if the large signal variation
is a doubling or halving caused by a Doppler shift error. Let fhrd(n) and
fhrh(n) denote the intersample variation, and be defined by:

fhrd(n) = |2 · fhr(n)− fhr(n− 1)| (8.3)

fhrd(n) = |0.5 · fhr(n)− fhr(n− 1)| (8.4)

The shift errors are identified by comparing the intersample variation to
a threshold TD , allowing for some intersample variability. The shift errors
are corrected using:

fhrc(n) = 2 · fhr(n) : fhrh(n) < TD (8.5)
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fhrc(n) = 0.5 · fhr(n) : fhrd(n) < TD (8.6)

TD is set to 5 based on empirical observation. If the sharp variations do
not correspond to doubling or halving, the segment is considered as noise.
When all segments of length < TK are checked, the process is repeated using
backward replication as some segments may be > TK due to replication
of missing data in the end of the segment. Based on findings from our
previous work [5], the threshold TK is set to 25 seconds. A cleaned FHR
signal is returned. An overview of the method is shown in Algorithm 1.

Algorithm 3: noisedetection
Input: fetal heart rate, fhr

Variation threshold, c
Maximum length of segment, TK

Doubling/halving variation threshold, TD

Output: cleaned fetal heart rate, fhrc

fhrc = fhr
for direction ∈ {forward, backward} do

fhrrep(n) = fillGaps(fhrc(n), direction)
A = {s : | ˙fhrrep(ts)| > c ∩ | ˙fhrrep(ts + k)| > c ∩ k < Tk}
for all s ∈ A sorted from smallest k do

for all i ∈}ts, ts + k do
fhrd(n) = |2 · fhr(n)− fhr(n− 1)|
fhrd(n) = |0.5 · fhr(n)− fhr(n− 1)|
fhrc(n) = 2 · fhr(n) : fhrh(n) < TD

fhrc(n) = 0.5 · fhr(n) : fhrd(n) < TD

fhrc(i) = 0 : | ˙fhr(i)| > TD

fhrrep(n) = fillGaps(fhrc(n), direction)

def fillGaps(fhrrep, direction):
if direction = forward then

fhrrep(n+ 1) = fhr(n) : fhr(n+ 1) = 0 ∀n
else

fhrrep(n− 1) = fhr(n) : fhr(n− 1) = 0 ∀n
return fhrgaps
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8.3.2 Estimation of contractions

An advantage of indicating the positions of the uterine contractions based
only on the acceleration signal, allows the algorithm to run on recordings
independent of missing FHR. The accelerometer captures small movements
in the abdomen muscle as well as larger movements due to the mother
changing positions. The acceleration signal amplitude of these movements
is, however, typically vastly different. As the sensor location and orientation
may be different between each labour, a trend describing the movement is
computed using the acceleration energy, AccE(n), given by:

AccE(n) =
√
Acc2

x(n) +Acc2
y(n) +Acc2

z(n) (8.7)

As the acceleration energy signal contains high frequency components, an
upper envelope is computed to obtain the movement trend. The envelope of
the acceleration energy, Accenv(n), is computed using a 20 second window.
A set of positions, C, indicating contractions at time points, tc, are found
as local peaks of the envelope, given by

C = {tc : ˙Accenv(tc) = 0 ∩ T1 < Accenv(tc) < T2} (8.8)

Where the thresholds T1 and T2 are set to 10−2 and 10−1 standard gravity,
g0, correspondingly, to avoid detecting small movements, and movements
due to the mother changing position as contractions. As the intrapartum
fetal monitoring guidelines from the International Federation of Gynecology
and Obstetrics (FIGO) [3] states that < 5 per 10-minute window averaged
over 30 minutes is considered normal, the onset of two consecutive indicated
contractions must occur at least 2 minutes from each other. The indicated
contractions are hereafter called detected contractions. A pseudocode of
the proposed contraction detection is depicted in Algorithm 2.

Algorithm 4: contractions
Input: Acceleration signals, Accx,Accy,Accz

Output: Set positions for detected contractions, C
AccE(n) =

√
Acc2

x +Acc2
y +Acc2

z

Accenv(n) = envelope(AccE(n))
C = {tc : ˙Accenv(tc) = 0 ∩ T1 < Accenv(tc) < T2}
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8.4 Experiments and results

As the dataset does not include measurements or registrations describing
when uterine contractions or noise on the FHR signal occurs, experiments
were devised to utilize both visual interpretation and statistics from the
complete dataset to assess if the results from the proposed algorithms are
reasonable. Experiments with visual interpretation of detected contractions
on signals with low, medium, and high amounts of energy in the acceleration
signal were chosen. The visual interpretation is based on discussions with
trained midwifes and the FIGO guidelines [3].

8.4.1 Noise removal

An example illustrating an example FHR signal, and the corresponding
signal after noise removal is removed is shown in Figure 8.3. The method
successfully identifies many of the outliers as noise, while some segments in
the 75bpm region is kept. At the first stage of the data collection, the first
generation Moyo was used. At a later stage, a second generation Moyo was
used, and the percentage of missing data as well as noise was decreased.
The algorithm was run on the complete dataset. An overview of the amount
of detected noise is shown in table 1.

Table 8.1: Overview of the detected noise in the complete dataset.

Number of episodes 3807

Total duration of all episodes 14201 hours

Percentage of all samples with detected,
and corrected, Doppler shift error

0.22

Percentage of all samples removed 2.73

8.4.2 Contractions on signals with low energy in the accel-
eration signal

Detection of contractions were conducted on a recording with low amount of
energy in the acceleration signal extracted from the dataset, Figure 8.4. The
FHR signal shows decelerations, which typically occur as a fetal response to
a contraction. In the Figure we show the time points of detected contractions
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Figure 8.3: Example of noise detection and removal. Original signal on top, with some
artefacts. Filtered signal on the bottom.

using red markers. It is easily seen that contractions corresponding to the
6 largest decelerations are detected. The contraction associated to the
deceleration with a smaller drop in heart rate, at approximately 86 minutes
before birth, is not considered to be caused by a contraction as it is too close
to the previous detected contraction. An additional uterine contraction is
detected at approximately 95 minutes before birth, without a corresponding
deceleration in the FHR.

8.4.3 Contractions on signals with medium energy in the
acceleration signal

Detection of contractions were conducted on a recording with medium
amount of energy in the acceleration signal from the dataset, Figure 8.5.
Contractions are detected periodically in the first half of the signal, while
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Figure 8.4: Detected contractions on a signal with low energy in the acceleration signal.
The red dashed lines indicate the normal range of the FHR. The red crosses indicate the
detected contractions.

only one contraction are detected in the second half. Due to the quality
of the FHR signal, it is challenging to assess if these are actual uterine
contractions.

8.4.4 Contractions on signals with high energy in the accel-
eration signal

Detection of contractions were conducted on a recording with high amount of
energy in the acceleration signal from the dataset, Figure 8.6. Four uterine
contractions are detected in the 25-minute window, but it is challenging to
assess if these are actual contractions due to the FHR signal quality.

107



Paper 1

-210 -205 -200 -195 -190 -185

Time before birth [minutes]

50

100

150

200

F
H

R

-210 -205 -200 -195 -190 -185

Time before birth [minutes]

0

20

40

60

80

100

M
o
v
e
m

e
n
t

Figure 8.5: Detected contractions on a signal with a medium energy in the acceleration
signal. The red dashed lines indicate the normal range of the FHR. The red crosses
indicate the detected contractions.

8.4.5 Overview of contractions on complete dataset

The algorithm was run on all 3807 recordings in the dataset to indicate
how many contractions were found, the mean time between contractions
and other performance metrics. The results are shown in table 2.

8.5 Discussion

The noise-detection algorithm identifies many small sections of the FHR
signal as noise. By removing these, a cleaner version of the FHR signal,
and thereby the trend can be obtained. This may result in improved visual
interpretation as well as it opens for automated signal analysis and feature
extraction for future work. As it is difficult to determine with certainty
which part of the measured FHR signal that is noise, only time periods
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Figure 8.6: Detected contractions on a signal with a high energy in the acceleration
signal. The red dashed lines indicate the normal range of the FHR. The red crosses
indicate the detected contractions.

Table 8.2: Overview of the detected uterine contractions in the complete dataset.

Episodes with detected contractions 3753

Episodes without detected contractions 54

Median number of detected contractions
per episode

29 [14, 51]

Median length of episode 171 [90, 304]

Mean time between contractions 6.27 minutes

where the signal is very unlikely to contain information of the fetal status
is removed. This conservative approach results in that some time periods
containing noise may be kept.

Information of when uterine contractions occur can sometimes be found by

109



Paper 1

studying the FHR signal itself, as the fetus might respond to a contraction
by a deceleration. A challenge in this approach is that uterine contractions
may cause increased movement of the mother and sensor, thus increasing
the amount of missing data in the FHR.
The proposed method correctly identifies contraction waveforms corre-

sponding to all six large decelerations in the example with low amount
of movement, seen in Figure 8.4. These decelerations are confirmed by
experienced midwifes to resemble typical examples of decelerations caused
by uterine contractions. The detected contraction at 95 minutes before
birth may still be an actual uterine contraction, even if it does not have
a deceleration in the measured FHR. The time periods in between the
detected contractions resembles typical labour, and it would be less typical
if there was not detected a contraction at the 95-minute point. When the
energy in the acceleration signal increase, as seen in Figure 8.5, less con-
tractions are detected. As the number of contractions during a 10-minute
window varies from labour to labour, it is difficult to do a direct comparison
between recordings. In cases with a high energy in the acceleration signal,
Figure 8.6, the movement create peaks with a higher amplitude than con-
tractions. While the highest peaks, categorized as movement and therefore
excluded, is not detected as contractions it is challenging to categorize
remaining peaks as contractions and not artefacts due to the movement.
In cases where the FHR signal contains a large amount of missing data,
the corresponding acceleration signal often contains more maternal move-
ment. That is resulting in a lower identification of uterine contractions. In
addition, real contractions may in some cases occur at a higher rate than 5
per 10-minute windows, known as tachysystole. In the proposed algorithm,
a threshold of minimum 2 minutes between the onset of two concurring
uterine contractions is used, and this may be a limiting factor to detect
tachysystole.

8.5.1 Limitations

A limitation of this work is the lack of tocometer measurements and
manual annotations of the positions where uterine contractions occur in the
dataset. To overcome this challenge, discussions regarding noise removal
and indication of likely uterine contractions has been conducted during the
study with trained health care personnel.
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8.6 Conclusion

The work presented indicates that a large portion of the noise present
in a FHR signal from Moyo can be removed utilizing only the sampled
heart rate. It also indicates that a three-axes accelerometer mounted in
proximity of the Doppler sensor, i.e. Moyo Fetal Heart Rate Monitor, can
be used to estimate the point in time where contractions occur when the
maternal movement is low. Further work validating indication positions of
contractions with the use of a tocometer or manually annotated data must
be conducted to determine the real performance.
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Abstract:
In 2015, an estimated 1.3 million intrapartum stillbirths occurred,
meaning that the fetus died during labour. The majority of these
stillbirths occurred in low and middle income countries. With
the introduction of affordable continuous fetal heart rate (FHR)
monitors for use in these settings, the fetal well-being can be better
monitored and health care personnel can potentially intervene at
an earlier time if abnormalities in the FHR signal are detected.
Additional information about the fetal health can be extracted from
the fetal heart rate signals through signal processing and analysis.
A challenge is, however, the large number of missing samples in the
recorded FHR as fetal and maternal movement in addition to sensor
displacement can cause data dropouts. Previously proposed methods
perform well on estimation of short dropouts, but struggle with data
from wearable devices with longer dropouts. Sparse representation
and dictionary learning have been shown to be useful in the related
problem of image inpainting. The recently proposed dictionary
learning algorithm, SI-FDSL, learns shift-invariant dictionaries with
long atoms, which could be beneficial for such time series signals
with large dropout gaps. In this paper it is shown that using
sparse representation with dictionaries learned by SI-FDSL on the
FHR signals with missing samples, provides a reconstruction with
improved properties compared to previously used techniques.
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9.1 Introduction

Fetal heart rate (FHR) monitoring is a widely used method to assess the
fetal well-being during labour. FHR monitoring, used by trained health care
professionals, allows for early detection of a fetus at risk and consequently
appropriate and timely action to prevent further harm to fetus and mother.

In high income countries, FHR monitoring in labours with high risk are
usually measured using continuous Doppler ultrasound in cardiotocography
(CTG), while low risk labours are monitored intermittent with handheld
Doppler devices. In low resource settings, FHR is often accessed intermittent
with a fetal stetoscope or handheld Doppler. In 2015, there were an
estimated of 2.6 [uncertainty range 2.4-3.0] million stillbirths [1, 2], with 1.3
[uncertainty range 1.2-1.6] million deaths occuring during labour [1]. The
vast majority (98%) of these occur in low and middle income countries [1].
Improved care at birth, including continuous FHR monitoring, is the key
to reduce the number of stillbirths. Abnormalities in the FHR signal
can be detected earlier with the use of continuous monitoring. If any
abnormalities are detected, an alarm can be used to alert qualified health
care personnel to assess the situation. Additional information of the fetal
well-being can be extracted from the FHR signals through signal processing
and analysis. With the introduction of affordable devices for continuous
FHR monitoring, such as Moyo Fetal Heart Rate Monitor, used in this
study, new opportunities arises as these devices are also obtainable in low
resource settings.
A well-known problem measuring FHR using Doppler ultrasound are

signal dropouts due to both fetal and maternal movement in addition
to sensor displacement. With the introduction of wearable devices for
continuous FHR monitoring, allowing the mother to move freely while
the device is attached, an increase in both the number and length of
signal dropouts are expected. These missing samples are a challenge when
determining traditional features used to assess the fetal well-being, such
as the short and long time variability of the FHR, as well as when doing
time-frequency analysis on the heart rate signal.

Simple methods such as linear interpolation[61] and cubic Hermite spline
interpolation[62] and more complex methods such as Gaussian processes [63]
and K-SVD [29] have previously been used to estimate the missing samples
on FHR recorded by CTG. However, depending on the length of the gaps,
these methods affect computation of the traditional heart rate features.
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As more and longer dropouts are expected when using wearable monitors,
better estimations are desired.
Dictionary learning and sparse approximation have been shown to pro-

duce state of the art results in estimation of missing data [27, 28, 29]. An
important advantage of using dictionary learning over methods such as
linear or spline interpolation is that through learning from the signal class,
a learned dictionary introduces less artefacts during processing, feature
extraction, and time-frequency analysis.
For an inpainting problem with large gaps, unstructured dictionaries,

produced by general dictionary learning methods such as MOD [30] or
K-SVD [31] require large atom lengths which means increase in number
of free variables. This leads to slow training and usage as well as the
possibility of overfitting.

In this work we propose to use shift-invariant dictionary by utilizing SI-
FSDL, a dictionary learning method for shift invariant dictionaries recently
proposed by our group [80]. SI-FSDL is capable of handling variable shifts
and length of the atoms.

9.2 Data material

The data used in this study are collected by the Safer Births Research
Project, which is a research collaboration with partners including, but not
limited to, University of Stavanger, Laerdal Global Health, and partner
hospitals in Tanzania. The data were collected at Haydom Lutheran
Hospital (HLH), which is a rural hospital, and Muhimbili National Hospital
(MNH), and Temeke Regional Referral Hospital (TRRH) which are both
urban hospitals. 85 labours were monitored and recorded at HLH between
February 1st. and March 18th. 2016, 227 labours were recorded at MNH
between March 15th. and July 13th. 2016, and 1087 births were recorded at
TRRH between June 4th. and October 1st. 2016. All data were anonymized
prior to transfer to researchers.
The project was ethically approved prior to implementation by the Na-

tional Institute for Medical Research (NIMR) in Tanzania (NIMR/HQ/R.8a
/Vol. IX/1434) and the Regional Committee for Medical and Health Re-
search Ethics (REK) in Norway (2013/110/REK vest) before the start of
the study.
Moyo Fetal Heart Rate Monitor, Fig. 9.1, is used to record the fetal

heart rate and is developed by Laerdal Global Health [94] as an affordable
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Figure 9.1: Moyo Fetal Heart Rate Monitor, Laerdal Global Health AS, Norway.
Illustration reproduced with permission [49]

FHR monitoring device for both intermittent and continuous monitoring
for use in low resource settings. The device consists of a small handheld
unit with display and a sensor unit. For continuous monitoring, the sensor
can be applied to the maternal abdomen using an elastic band, shown
in Fig. 9.1. The sensor unit includes a 9-crystal pulsed wave Doppler
ultrasound sensor operating at a frequency of 1 MHz and an intensity of
less than: 5mW/cm2. The detected fetal heart rate is logged at 2Hz. The
sensor unit also includes a 3-axes accelerometer sampled at 50Hz used to
describe maternal movement, and a temperature sensor, sampled at 2Hz.
FHR and maternal HR as well as accelerometer and temperature values
are stored to files and can be accessed via USB connection.

9.3 The proposed method

Sparse representation and dictionary learning is based on the idea that it
is possible to represent a signal class sparsely in some domain, and that a
learned dictionary can represent this domain. Let an N ×1 signal vector be
denoted by x, and its approximation as x̂ = Dw, where D is the dictionary
matrix of size N ×K, with the columns (di s) forming dictionary atoms,
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and w, K × 1, is the vector of sparse coefficients. The dictionary learning
problem is formulated as follows:

W, D = argmin
W,D

‖X −DW ‖2F s.t

wi is sparse
||di||22 = 1.

(9.1)

where W and X are formed from concatenation of coefficient wi and signal
vectors xi respectively. Since equation 9.1 is not tractable, it is usually
broken into two steps: in the first step, sparse coding, one would find W
while fixing D. In the second step, dictionary update, D is found while
keeping W constant. MOD [30] and K-SVD [31] are examples of dictionary
learning methods using these steps.
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Figure 9.2: A sample FHR signal, its masked version and simulated missing samples.
The masked signal has zeros as value where there are missing samples and is equal to
the original signal elsewhere.

In this paper we are dealing with recovering of missing data or inpainting
where the location of missing data is known beforehand. Since signals
and the location of missing samples differ from patient to patient, and
these analyses are done in retrospect, we wish to learn a dictionary on
the signals with missing data to tailor the dictionary to the person, before
performing the reconstruction. For this reason, the information about the
missing samples is built into a mask matrix. One possible mask matrix is
an identity matrix with its rows removed on locations where the data is
missing. This means that applying it to a vector or a matrix, removes the
rows corresponding to missing samples.
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Figure 9.3: Different steps of inpaiting. The input contains missing samples. Each
iteration of this method replaced the missing values with their approximated version.
This is done until some criteria is satisfied.

Another type of mask, identity matrix with zeros on the locations of
missing samples, only zeros out the missing samples. In this paper, the
later type of mask is used to help visualize the gaps while the first type is
used for sparse approximation. When having multiple vectors such as in
X, there is a mask matrix for every vector in X. Fig. 9.2 shows a sample
FHR signal along with the masked signal and the missing samples.
The literature describes two ways to incorporate the mask information

into the dictionary learning steps. One method was used in [28, 95, 96]
which alters both dictionary learning steps. An alternative approach was
briefly discussed in [29] which requires only changes to the sparse coding
step. In this paper, we apply the second method for inpainting using
shift-invariant dictionary.
The altered steps required for the second method are as follows:

(i) While the dictionary entries are fixed, remove the rows of the dictio-
nary and the signal vectors corresponding to the missing samples for
each signal vectors.

(ii) Normalize the dictionary columns to 1.

(iii) Find the coefficients using their own respective dictionaries.

(iv) Find the approximation of the signal vectors by multiplying the
coefficients with the full dictionary.
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(v) Reconstruct the signal by replacing the missing samples with their
approximated resulted from above.

(vi) Update the dictionary elements and normalize the columns to 1.

The first three steps describe the sparse coding stage for inpainting. Fig.
9.3 illustrates the different steps of this solution.

For imposing the shift-invariant structure onto the dictionary we utilized
our previously proposed method, SI-FSDL[80]. One of the benefits of
shift-invariant dictionaries is that we can address larger gaps (by using
larger shift-invariant atoms) than a general dictionary while keeping the
number of free variables fixed.

?0 0 ∗0 0 0 α0 0
?1 ?0 ∗1 ∗0 0 α1 0
?2 ?1 0 ∗1 ∗0 0 α0

0 ?2 0 0 ∗1 0 α1


Figure 9.4: A simple shift-invariant dictionary with 3 shift-invariant atoms(SIAs). The
first two SIAs have 1 shift while the last one has 2 shifts.

An example of a small shift-invariant dictionary with three shift-invariant
atoms or SIAs, is depicted in Fig. 9.4. This example does not have circular
shifts, i.e. the the shifting ends as the last non-zero element of a SIA reaches
the bottom row of the dictionary matrix. SI-FSDL handles variable length
and variable shift atoms as Fig. 9.4 illustrates.

9.4 Experiments

A total of 691400 segments of missing samples are found in the 1399
recordings in the dataset, with an average of 494 missing segments in each
recording. In total, the missing percentage of data is 36.4%. However,
96.9% of the missing data gaps are less than 50 samples in length. The
distribution of the length in these gaps from 1 to 50 samples is shown in
Fig. 9.5.

We have chosen a signal without missing samples from our database and
randomly removed parts of it so that the true signal is available to evaluate
the recovery results. The used recovery methods are SI-FSDL, MOD, K-
SVD, spline and linear interpolation. During the experiments the number

122



Paper 2

0 5 10 15 20 25 30 35 40 45 50
Gap length (samples)

0

2

4

6

8

10

12

#
 o

f 
ga

p
s

#104

Figure 9.5: Distribution of gap lengths

of free variables in the dictionaries are kept constant at approximately 3000.
The ratio of non-zeros coefficients to the number of elements in the signal
is 0.1. Signal blocks are chosen in an overlapping fashion for the dictionary
learning methods. Block lengths, N , of 30, 40 and 50 are used for MOD
and K-SVD, and 500 for SI-FSDL.

9.4.1 Experiment 1

The first experiment is designed to evaluate the average performance of
each method when the missing percentage is fixed, but the gap lengths
changes. In order to have a realistic scenario, the fixed missing percentages
are set to 10 and 30. The length of the gaps ranges from 1 sample to 50
samples. To find the average performance for each gap length, different
randomly created masks are used.
Performance of the tested methods for 10% missing data are shown

in Fig. 9.6. All methods achieves similar performance for short interval
lengths, with the exception of spline interpolation. As the gap lengths
increases, the performance of MOD and K-SVD decreases. The exception
to this is when the segment length is 50. Their performance is at least as
good as linear interpolation and always better than SI-FSDL.
Performance of the tested methods for 30% missing data are shown

in Fig. 9.7. All methods achieves similar performance for short interval
lengths. With higher ratio of missing data, the performance for MOD and
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Figure 9.6: Recovery performance for different methods when the missing interval
changes but the missing percentage stays the same (10%)

K-SVD for all segment lengths decrease faster than the case of 10%. The
performance of linear interpolation and SI-FSDL, remain almost the same
regardless of length of missing sample interval.

9.4.2 Experiment 2

The experiment is devised to have a closer look at the best performing
methods of last experiment when the missing percentage is 30%, which
is close to the percentage for our dataset. These methods are linear
interpolation and SI-FSDL. The intent is to look at the continuous wavelet
transform of their reconstructed signals and see how similar the time-
frequency distribution of the reconstructed signal is to the original signal.

The time-frequency response for a short section of FHR with 3 missing
gaps are shown in Fig. 9.8. In close-ups of the signal around each mask,
the original signal is shown in blue, estimations using linear interpolation
in dotted red, and SI-FSDL in dashed black.
It can be seen by visual inspection that SI-FSDL restores the time-

frequency properties better than linear interpolation even though the later
has higher SNR.

124



Paper 2

0 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

gap length (Samples)

S
N
R
(d
B
)

SI-FSDL

interp(spline)

interp(linear)
MOD-40x76
KSVD-40x76
MOD-50x60
KSVD-50x60
MOD-30x100
KSVD-30x100

1

Figure 9.7: Recovery performance for different methods when the missing interval
changes but the missing percentage stays the same (30%)

9.5 Discussion

It is worthwhile to note that while inpainting methods can be utilized to
reconstruct the gaps, they might miss some details if the gaps become too
large. In the case of FHR signals temporary increases or decreases, known
as accelerations and decelerations in the heart rate, are important details
when determining the fetal well-being. In order to recover such information,
we need to know the duration of these patterns. In an abrupt accelerations
and decelerations the FHR has a change of 15 beats per minute with a time
from onset to extremum of ≤ 30 seconds and total duration of less than 2
minutes. Based on this, it is safe to reconstruct segments with a maximum
length of 25 seconds, corresponding to 50 samples. Fig. 9.5, shows that
most of the gaps are short in length, with 96.9% of the gaps below our
upper limit.
On data where 10% of the samples are missing, Fig. 9.6, linear inter-

polation and all dictionary learning techniques achieve similar SNR for
gaps ≤ 28 samples in length. MOD and K-SVD with block length 50
show the best performance for all the missing gaps. Increasing the missing
percentage to 30%, Fig. 9.7, a large drop in SNR is seen in both MOD and
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Figure 9.8: Continuous wavelet transform over a short signal with 3 gaps missing
samples. Original signal shown in blue, linear interpolation shown as dotted red line,
SI-FSDL shown as dashed black line.

K-SVD. Depending on the gap size, this dropout occurs for gaps larger
than 10, 17 and 23 samples. Since MOD and K-SVD have block lengths
of 30 to 50, they cannot restore gaps close or larger than their size. A
possible solution to this is to increase the block length in MOD and K-SVD.
However, this usually means increasing the overall number of free variables
as well and learning a larger dictionary which requires more data and
processing time. Due to its structure, however, SI-FSD can reconstruct
larger gaps by adjusting the length and number of SIAs.
A high SNR is seen for linear interpolation and SI-FSDL for all gaps.

The challenge of using linear interpolation, however, is that it introduces
artefacts, as seen in Fig 9.8. In the first and third gaps, samples 300-330
and 525-555, linear interpolation introduces artefacts by removing high
frequencies. In the same gaps, SI-FSDL shows more fidelity to the original
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signal. Both methods perform similarly in the second gap, samples 405-435,
and introduce artefacts.

9.6 Conclusion

The results presented in this work indicate that for dictionary learning based
methods, gap interval and missing percentage are important parameters
when attempting to recover missing data in the signal. When the missing
percentage is low, MOD and K-SVD achieve the highest performance, while
SI-FSDL outperforms the other methods when the missing percentage is
increased. A high SNR is also observed for linear interpolation. Reconstruc-
tion based on dictionary learning methods, however, are shown to be closer
to the true signal in terms of the spectral content of the signal. In order to
have reliable information, having less artefacts is crucial when performing
further analysis on the data.
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Abstract:
Background Fresh stillbirths (FSB) and very early neonatal deaths
(VEND) are important global challenges with 2.6 million deaths
annually. The vast majority of these deaths occur in low and low-
middle income countries. Assessment of the fetal well-being during
pregnancy, labour, and birth is normally conducted by monitoring
the fetal heart rate (FHR). The heart rate of newborns is reported
to increase shortly after birth, but a corresponding trend in how
FHR changes just before birth for normal and adverse outcomes has
not been studied. In high resource settings, monitoring of the FHR
is done using cardiotocography for labours assessed as high risk,
but the number of labours with an adverse outcome are low. In this
work we utilize FHR measurements collected from 3711 labours from
a low and low-middle income country to study if there are trends
and patterns in the FHR development close to the time of birth
related to the neonatal well-being 24-hours after birth. A signal
pre-processing method was applied to identify and remove time
periods in the FHR signal where the signal is less trustworthy. We
suggest an analysis framework to study the FHR development. The
FHR trend is found for labours with a normal outcome, neonates
still admitted for observation, FSB and VEND. Finally, we study
how the spread of the FHR changes over time during labour.
Results A drop in median FHR as well as an increased spread in
FHR is observed for all defined outcome groups near the time of
birth. For labours ending with FSB or VEND, the drop in median
FHR is larger, it occurs longer time before birth, and the spread is
higher compared to labours with a normal outcome or for neonates
admitted to neonatal care unit.
Conclusion The observed difference in the drop of median FHR be-
tween the outcome groups indicate that neonates in the VEND/FSB
group struggle to endure the physical strain of the labour, and that
an earlier intervention could potentially save lives.
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10.1 Background

Fetal heart rate (FHR) monitoring is a widely used method to assess the
status of the fetus during pregnancy, labour and birth. In high resource
countries, continuous monitoring of the FHR is done using cardiotocography
(CTG) for labours categorized as high risk. In low income and low-middle
income countries (LMIC), an intermittent measurement is the norm for
all labours. The intermittent measurement is normally conducted using a
Pinard stethoscope or hand-held Doppler. Guidelines state that auscultation
of FHR should be conducted every 15-30 minutes during the first stage of
labour, and every 5-15 minutes during the second stage of labour. Each
auscultation should also last for at least one minute [5]. The intervals
defined by the guidelines is not possible without a nurse:patient ratio
of 1:1 [6] and will be a challenge in LMIC where the ratio of health care
workers to the number of labours is much lower. A limitation of intermittent
auscultation, independent of the device used, is that the status of the fetus
is only checked during a specific point in time. When the time between
each auscultation increase, the possibility of detecting an abnormal FHR
may be reduced.

Stillbirths is a worldwide challenge, with an estimated 2.6 million [uncer-
tainty range 2.4-3.0] stillbirths in 2015 [1], of these 1.3 million is estimated
to have died during labour and birth, i.e. fresh stillbirth (FSB). In addi-
tion, one million newborns die within their first and only day of life [1, 2].
Asphyxia and prematurity complications during labour are the primary
causes of death. The vast majority, 98%, of stillbirth and early neonatal
death are found in LMIC settings [1]. Current guidelines states that a FHR
in the range 110-160 beats per minute (bpm) during labour is considered
normal [3, 4]. The use of continuous FHR monitoring devices in LMIC
settings, may help the health care workers detect abnormalities in FHR at
an earlier stage, allowing the health care personnel time to intervene before
it is so too late.
In high income settings, continuous FHR monitoring is primarily used

for high risk labours. This study, however, include labours assessed as
low-risk with normal FHR on admission. This inclusion criteria gives us
the possibility to study how FHR development for labours with a normal
outcome differ from labours with an adverse outcome. The heart rate of
newborns is earlier reported to increase shortly after birth [22]. But to the
authors knowledge, a corresponding development of the FHR just before
birth has not been studied previously. The use of an embedded system

133



Paper 3

analyzing the FHR development during labour, can potentially reduce
the number of labours with a severe outcome by alerting the health care
personnel if the FHR deviates from the expected trend.
This work is a part of the larger Safer Birth project 1, a collaboration

between multiple Norwegian and international research institutions as well
as hopsitals in Tanzania. The aim of Safer Births is to increase newborn
survival by gaining new knowledge and developing innovative products to
aid the help care workers. Among the data that has been collected through
the Safer Births project, FHR from 3711 labours in Tanzania was collected
using the Moyo fetal heart rate monitor 2, a doppler based utrasound sensor
developed for continous or intermittent FHR monitoring, useful also in
LMIC settings.

The objective of this paper is to present a framework that can be used to
analyze fetal heart rate collected continuously using Moyo (or potentially
other FHR devices) and to use that on this unique data material to show
how the FHR develops during labour for neonates with normal outcome,
compared to neonates with abnormal or severe outcomes. Both the de-
velopment as a function of time of the median heart rate and the spread
is reported. Another objective is to study the maternal-fetal heart rate
ambiguity for the Moyo device, and compare that to reported ambiguities
using a traditional CTG.

10.2 Results

The proposed FHR analysis framework is shown in Figure 10.1. Each
episode is first processed to remove noise, before group analyses over all
inputs are conducted. Both MHR/FHR ambiguity and FHR development
for different neonatal outcome groups are analysed. Further details of these
steps can be found in the Methods section.
Noisy signal samples in the Moyo FHR was identified and removed by

FhrClean [97]. For the following experiments, the data set were divided
into subsets based on the newborn outcome 24 hours after birth. These
outcomes were Normal, still admitted to neonatal care unit (NCU), very
early neonatal death (VEND) and FSB. An overview of the subsets are
shown in table 10.1. Due to the low number of episodes in s4 and s5,

1http://www.saferbirths.com
2https://laerdalglobalhealth.com/products/moyo-fetal-heart-rate-monitor/
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Figure 10.1: Signals acquired from the Moyo Fetal Heart Rate Monitor is used as
the input for our analysis framework in this work. Noise is first removed on the FHR
signals, before group analysis is conducted. The acceleration signal present in the Moyo
has previously been shown to identify contractions [97], but it is not used in the work
presented in this paper.

these subsets were combine to describe all episodes ending with death, s3.
The subsequent experiments on development of FHR trend were conducted
using the cleaned version of the FHR signals. In experiment 3-5, the defined
starting point, t0, is set to -9000 seconds, equivalent of 150 minutes before
birth.

10.2.1 Noise removal

The noise removal algorithm, FhrClean [97], was run on the entire data set.
An example of the original- and cleaned FHR signal is shown in Figure 10.2.

The mean and standard deviation of the % of sample points that is
removed as artefacts for each of the four outcome groups are shown in
table 10.1.

10.2.2 Experiment 1: Maternal heart rate

The MHR and FHR measurements are extracted from all episodes in the
data set. The dry-electrode ECG sensor for MHR is used in 30.54% of
the episodes in the data set. In these episodes, the MHR is measured in
0.412± 0.542 percent of the episode duration.

The distribution of the measured FHR and MHR in all time points where
both values are measured are shown in Figure 10.3a. The red indicates
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Table 10.1: Overview of data set and the removed noise from FHR signal in each labour
outcome group.

Outcome #episodes Subset Missing Removed
data [%] data [%]

All 3705 s0

Normal 3490 s1 27.83± 19.87 1.79± 1.35
NCU 185 s2 31.28± 20.38 1.82± 1.31
VEND 18 s4 29.22± 24.34 1.31± 0.83
FSB 12 s5 40.50± 28.60 1.92± 1.61

VEND/FSB 30 s3
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Figure 10.2: Example of the result using FhrClean. The original FHR signal with noise
on top, and the corresponding signal with noise removed, bottom.

measured MHR, and blue indicates the measured FHR. The absolute
difference between the measured FHR and FHR at each time point is
shown in Figure 10.3b. The red bar indicates the amount of MHR/FHR
ambiguity. The MHR/FHR ambiguity in time points where both heart
rates are measured is 4.53 percent. The similarity threshold, Tmhr, is set
to 5 when computing the ambiguity, according to the study of Reinhard et
al. [76].
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Figure 10.3: a) Distribution of the MHR and FHR from all time points in the data set
where both values are measured. b) The absolute difference between the corresponding
pairs of MHR and FHR. The found MHR/FHR ambiguity of 4.53 percent is illustrated
with the red bar.

10.2.3 Experiment 2: Fetal Heart Rate Development

The FHR development is found as the median FHR, mFHR(t), using non-
overlapping intervals of fixed size. Intervals of 5 and 10 minute duration
were used to obtain multiple resolutions of the heart rate trend in the
period from 150 minutes before birth until the time of birth. An overview
of mFHR(t) using 5- and 10-minute intervals are shown in Figures 10.4
and 10.5 respectively. The solid lines indicate mFHR(t), and dashed lines
the HRq1(t) and HRq3(t). The green lines shows the trend for neonates
with a normal outcome, s1, yellow neonates still admitted to NCU, s2 ,
and red newborns either defined as fresh stillborn or died during the first
24-hours, s3.

The found trend indicates a reduction in mFHR the last 30 minutes
before birth, with the reduction for the VEND/FSB, s3, group occuring
longer time before before birth than for s1 and s2.

10.2.4 Experiment 3: Fetal Heart Rate Distribution

An estimate of the probability density function (pdf) for all fhr(n) over all
episodes in each sub group was found for the last 30-minutes before birth,
and the two preceding 30-minute intervals, were computed to study how
the estimated pdf of FHR changes before and after the drop in the mFHR
observed in experiment 3. The estimated pdf for the last 90 to 60-minutes
before birth are shown in Figure 10.6a, the last 60 to 30-minutes before
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Figure 10.4: Trend of the FHR the last 150 minutes before birth. Solid lines indicate the
median heart rate, and the matching dashed lines the 25 and 75 percentiles. Computed
using non-overlapping 5-minute intervals.

birth in Figure 10.6b, and the final 30-minutes before birth in Figure 10.6c.
The blue line indicates the estimated pdf for normal outcome, red line is
the the NCU group and black for the VEND/FSB group.
90 to 60-minutes before birth, Figure 10.6a, all outcome groups have a

peak in the 135-145 bpm region. 60 to 30-minutes before birth, a similar
peak is found for the normal and NCU groups. The VEND/FSB group
still has its peak at 135 bpm, although not as distinct, and the variance of
the pdf is increased. In the last 30 minutes before birth, the pdf variance
increases for both the normal group and the NCU group, but the peak
stays within the same 135-145 bpm region. For the VEND/FSB group, the
variance is high, and the peak has now shifted down to 110 bpm.

10.2.5 Experiment 4: Fetal Heart Rate Distribution Over
Time

To increase the visual interpretability of how the trend and spread changes
over time, an estimated pdf of the heart rate was computed using 10-minutes
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Figure 10.5: Trend of the FHR the last 150 minutes before birth. Solid lines indicate the
median heart rate, and the matching dashed lines the 25 and 75 percentiles. Computed
using non-overlapping 10-minute intervals.

non-overlapping intervals for the last 150 minutes before birth, plotted
together in a 3D surface plot.
The estimated pdf of the heart rate over time for neonates defined as

normal is shown in Figure 10.7, and for neonates still admitted to NCU
after 24 hours in Figure 10.8. The red line indicate the number of episodes
containing any measured FHR signal in the corresponding time interval.
For neonates identified as normal, Figure 10.7, and still admitted to NCU,
Figure 10.8, the variance increase closer to birth. The number of episodes
contributing the analysis are, however, lower for the NCU group than the
normal group. For the VEND/FSB group it is even smaller, and we have
not included the pdf.

10.3 Discussion

All subgroups in the data set contain a relatively high percentage of missing
data. A mean of approximately 30% missing data is seen in the normal,
NCU and VEND groups, while episodes in the FSB group has a mean of
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Figure 10.6: Estimated pdf of the measured heart rate the last 90 minutes before birth,
divided in 30-minute windows. a) Estimated pdf for the last 90 to 60 minutes before
birth. b) Estimated pdf for the last 60 to 30 minutes before birth. c) Estimated pdf for
the last 30 minutes before birth.

40% missing data points. The spread is however large, with a standard
deviation of approximately 20% for all groups. FhrClean [97] identifies and
removes 1-2% of the data, further increasing the amount of missing data.
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Figure 10.8: Estimated pdf changes over time, neonates admitted to NCU 24 hours
after birth

This removal is, however, desired as these data points are considered as
noise or MHR. The missing data points may introduce an uncertainty in
the analyses, but the impact is expected to be relatively small due to the
large number of labours included in the study.
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The major findings in this work can be summarized into five points:

1: MHR/FHR ambiguity stays within the same region observed on
conventional CTG.

2a: A reduction in mFHR is observed for all subgroups close to birth.

2b: The reduction in mFHR for VEND/FSB is larger, and occurs longer
time before birth.

3a: The variance of the estimated pdf increases for all subgroups close to
birth.

3b: An larger increase in the variance, as well as shift in the peak is
observed for VEND/FSB.

The MHR/FHR ambiguity found at time points where both measurements
are available stays within the same region as observed by Reinhard et.
al. [76]. Indicating that the Moyo Fetal Heart Rate monitor does not pick
more of the MHR than conventional CTG.
The FHR development the last 150 minutes before birth, shown in

Figure 10.5, shows a decrease in the measured heart rate for all defined
subset in the study, finding 2a. Labours in the normal and the NCU subsets
follow the same trend, where a small decrease can be seen from 40 minutes
before birth and at the onset of a larger drop at 10-20 minutes before birth.
For labours in the VEND/FSB subset, the onset of a larger decrease occurs
already at 40 minutes before birth. The observed drop in the normal and
NCU group is likely to be caused by an increased frequency and intensity
of the uterine contractions as the labour progresses. The drop is larger
and occur longer time before birth in the VEND/FSB group, finding 2b,
may also be caused by the increased frequency and intensity of the uterine
contractions, and may indicate that the fetus is unable to cope with this
increased intensity.

By studying the difference in estimated pdf in 30-minute intervals during
the last 90-minutes before birth, we observe that the variance increase
for all subgroups as the labour progresses towards birth, finding 3a. The
VEND/FSB has also a larger increase in the variance than the other two
groups, and the shift in peak down to 110bpm in the last 30-minutes is also
larger than for the other subgroups, finding 3b. As the estimated pdf for
VEND/FSB in Figure 10.6a resembles the normal and NCU in Figure 10.6c,
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lives could potentially been saved if interventions had been conducted at
an earlier point in time.

By introducing the same 10-minute intervals from the FHR development
experiment to the computation of the estimated pdf of the heart rate, we
can see that the variance gradually increases, Figure 10.7. The probability
for heart rates below 100 bpm also increases during the last 10-minute
interval before birth. A similar trend is seen for labours where the neonate
is still admitted to neonatal care unit 24-hours after birth, Figure 10.8.
The jagged shape of the pdf in Figure 10.8 may be a result of less data
available. A similar illustration for VEND/FSB is challenging due to the
low amount of episodes with this outcome.
A limitation in this study is the low number of neonates in the

VEND/FSB subset. In addition, not all recordings include data up until
the time of birth, further reducing the amount of episodes included in the
study. The drop in number of episodes with data close to birth can be seen
on the red line in Figure 10.7 and 10.8. To increase the amount of data,
a longer data collection period would be desired. Ideally, data collection
from multiple hospitals would be used.
A second limitation of this work is that the internal clock in the Moyo

monitor has shown to be drifting. If not calibrated often enough this can
result in inaccuracies of up to 30 minutes in the logged time stamp. The
result of this is that the heart rate presented zero to one minute before birth
may in worst-case be recorded 30 minutes before birth for some episodes.
In cases with drift in the opposite direction, a FHR may be present in the
signal after the defined time of birth. Episodes with a measured FHR after
the time of birth are corrected by adjusting the time of birth to the time
of the last found FHR.

10.4 Conclusion

In this work, we first remove time periods with less trust-worthy signal
from the measured FHR signal prior to further analysis. The dry-electrode
ECG sensors on Moyo is used to intermittently measure the MHR in 30.5%
of the episodes, and the observed MHR/FHR ambiguity of 4.53% is within
the same area as previously reported on on CTG [76].
The heart rate of newborns have previously been reported to increase

shortly after birth [22], and a corresponding drop in the measured FHR
close to the time of birth is for the first time observed and reported in this
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work. A drop in the FHR shortly before birth is observed for all outcome
groups. However, for labours ending in very early neonatal death or fresh
stillbirth, this drop in the measured FHR is larger, and it occurs longer
time before the time of birth. The variance in the estimated FHR pdf
increases for all subgroups as the labour get closer to the time of birth.
Specifically, in the FSB/VEND group there is a higher increase, and the
corresponding pdf peak also has a larger shift. This may indicate that these
neonates struggle to endure the physical strain of the labour, and that an
earlier intervention could potentially save lives.
Further investigations with more cases of VEND and FSB are required

to validate this difference in the FHR development.

10.5 Methods

10.5.1 Data material

The data was collected at three hospitals in Tanzania between October
2015 and June 2018. Haydom Lutheran Hospital is located in a rural part
of the country, while the Muhimbili National Hospital and Temeke Referral
Hospital are located in Dar es Salaam. During the study period, data
from 3711 labours were collected. At 24 hours after birth, 3490 neonates
were defined as normal, 185 were still admitted to neonatal care unit, 18
died within the first 24 hours, and 12 were classified as fresh stillborn. 6
labours were not associated with any of the four outcomes above, and were
therefore excluded from this work.

The data was collected using the Moyo Fetal Heart Rate Monitor, a small
handheld device, illustrated in Figure 10.9. The monitor is developed by
Laerdal Global Health 3 for FHR monitoring in LMIC settings.

Moyo Fetal Heart Rate Monitor

The Moyo Fetal Heart Rate Monitor measures FHR using a 9-crystal pulsed
wave Doppler ultrasound sensor operating at a frequency of 1MHz and an
intensity of less than 5mW/cm2. The heart rate is computed and logged
twice per second, equivalent of a sampling rate of 2Hz. In addition, the
device is equipped with an accelerometer, sampled at 50Hz, a temperature
sensor and an dry-electrode ECG sensor for measurement of the maternal

3https://laerdalglobalhealth.com
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Figure 10.9: Moyo Fetal Heart Rate Monitor, Laerdal Global Health AS, Norway.
Illustration reproduced with permission [49]

heart rate (MHR). The ECG sensor, used to measure the MHR requires the
mother to keep one finger from each hand on the monitor. It is therefore
suitable to intermittently assess the MHR, or to determine if the Doppler
measurement captures the true FHR or if it falsely detects the MHR.
The Moyo FHR monitor is similar to conventional CTG with external

Doppler for measurement of the FHR, but it lacks a sensor to detect
uterine activity. To overcome this, an approach of using the accelerometer
measurements from Moyo to estimate the uterine contractions has been
proposed by our research group [97]. While measurements of the MHR is
typically done using a separate device in high-resource settings, the inclusion
of the ECG sensor is an advantage in LMIC settings as the availability
of other devices may be limited. The small size of the Moyo also allows
the mother to move more freely around while the device is attached. An
overview of the differences and similarities between Moyo and conventional
CTG can be seen in Table 10.2.

A segment from the signals collected using Moyo during a labour example
episode is shown in Figure 10.10. The top plot shows FHR and MHR, in
blue and red, in relation to the time of birth. The normal region, for FHR,
of 110 − 160 bpm is indicated by red dashed lines. The second subplot
shows movement of the sensor measured by the three axes accelerometer.
The MHR is computed using the ECG signal shown in the third subplot.
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Figure 10.10: Example signals from the Moyo fetal heart rate monitor. The top plot
includes the FHR, shown in blue, and MHR, shown in red. The red dashed lines indicate
the normal FHR region during labour. An example of the noise removad by FhrClean is
illustrated in the green circle. The second plot shows the three axes measured from the
accelerometer. The MHR is intermittent measured at -343 minutes. A zoomed version of
the maternal ECG, with visible R-waves is shown on the bottom.

10.5.2 Pre-processing of data

Doppler measurements of the FHR is known to be noisy [98]. To allow for
a computerized analysis of the FHR, the acquired measurements should
first be preprocessed to remove unwanted artefacts, such as for example
interference from the MHR [98, 99], misinterpreted harmonics [100]. The
use of a portable device for FHR monitoring allows for more movement,
thus potentially increasing the amount of noise. In conventional CTG, an
internal transducer can be attached directly to the fetal scalp in case of
poor signal quality from the Doppler sensor on the abdomen. However,
this is not possible using the Moyo FHR monitor alone.
There are three distinct patterns of noise, i) short spikes with both

higher and lower values than the baseline FHR, and ii) longer time periods
deviating from the baseline FHR in a non-physical (impossible) way, iii)
missing data points. Short spikes are relatively easy to detect, and examples
can be seen the green circles in Figure 10.10 as short signal segments
outside of the normal region of 110-160bpm, illustrated using the dashed
red lines. Time periods with such noise in the measured FHR signal are
identified using our recently proposed method for noise identification in
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Table 10.2: Comparison between Moyo Fetal Heart Rate Monitor and conventional
CTG

Moyo CTG Comments
FHR Doppler Doppler

Contractions No* Yes *Contractions can be identified
Acceleration Yes* No using accelerometer [97]
Moveable Yes No

Maternal HR Yes No

FHR signals [97]. The noise removal method, denoted FhrClean [97], is run
on the complete data set prior to further analysis, as illustrated by the box
in Figure 10.1. FhrClean first utilize forward- and backward replication to
fill any missing data in the measured signal. Less trustworthy time periods,
meaning periods where the measurement is not likely to consist of the true
FHR, are found by identifying temporary drops or peaks in the signal. A
more in-depth view of the used method can be found in Urdal et. al. [97].

10.5.3 Maternal heart rate

Doppler based FHR measurements are susceptible of incorrectly picking up
the MHR due to sub-optimal sensor placement [74]. If the FHR is within 5
bpm of the MHR, it can be classified as an MHR/FHR ambiguity. Since the
amount of MHR/FHR ambiguity in Doppler CTG is found to be 1.22± 1.9
percent during the first stage of labour and 6.2± 9.0 percent during the
second stage or labour [76], it may cause unwanted artefacts in digital
analysis of the FHR. The option of measuring MHR using Moyo is intended
to be intermittent and not continuous, the amount of measured MHR
varies from labour to labour. Thus the possibility of verifying whether the
measured HR from the ultrasound Doppler is maternal or fetal is therefore
limited. The MHR can also mimic an expected FHR, making it challenging
to distinguish true MHR from true FHR signals [75].
To study the MHR/FHR ambiguity on data acquired using the Moyo

Fetal Heart Rate Monitor, all time points where both signals exist are
studied, indicated as the Group analysis matching FHR/MHR box in
Figure 10.1. Let ht be a vector of a FHR fhr(n) sample and a MHR sample
mhr(m)

ht = [fhr(nt),mhr(mt)] (10.1)
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sampled with different sampling rate, here represented with a sample at the
corresponding time point, t. Let H be the set of all such matching heart
rate pairs, ht

H = {ht : fhr(nt) > 0 ∩mhr(mt) > 0} (10.2)
The MHR/FHR ambiguity, mhramb ∈ {0, 1}, in an episode is calculated

as a fraction of the time where both signals are present, defined as

mhramb = 1
NH

∑
ht∈H

I(ht) (10.3)

where NH is the number of vectors, ht,i.e. the number of matching time
points, in H, and I(ht) is an indication function given by

I(ht) =

1; if |ht(1)− ht(2)| =< Tmhr

0; if |ht(1)− ht(2)| > Tmhr

(10.4)

and Tmhr is a threshold to allow some inequalities due to the different
measurement techniques.

10.5.4 Fetal heart rate

Labour is normally a physical strain on both the mother and the fetus. As
the labour progresses, this strain may affect the physical condition of the
fetus, and can potentially be observed on the measured FHR. Analysing
continuous FHR measurements from a large number of labours assessed as
low-risk on admission, can potentially be used to determine if differences
exist in the heart rate development between neonates with normal or adverse
outcomes. As the time period where the FHR is measured vary from labour
to labour, we define the sample index, n, in the measured FHR signal based
on the measured FHR sample rate, 2Hz, the elapsed time, t, and a defined
start point before birth, t0, such as

n = 2(t+ t0) (10.5)
In the following sections, we describe the group analysis over all episodes

box in Figure 10.1, utilizing subsets of the data set based on neonatal
status 24-hours after birth. The subset s1 includes all labours where the
neonate was assessed as normal, the subset s2 include all labours where
the neonate was still admitted to neonatal care unit (NCU) at 24 hours,
and the subset s3 all episodes where the neonate in the VEND and FSB
outcome groups. These two outcomes are grouped together in subset s3
due to the low number of episodes within each outcome.
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Fetal Heart Rate Development

With the use of continuous FHR monitoring in a large number of labours,
it is possible to determine how the heart rate develops during labour and
develop trend models. This can in turn be useful to determine how new
labours progress compared to the known trend models.
The measured FHR within a defined interval, ∆, in an episode, i, from

the subset, sk, is extracted from the start time, t, and throughout the
duration, t+ ∆. Let the trend, mFHRs(p), be defined as the median of
all measured heart rates in the interval, of all episodes in the subset, s

mFHRs(p) = median
((
fhrt

1,s(n), . . . , fhrt
Ls,s(n)

))
n ∈ {t, t+ ∆}

(10.6)
Where Ls is the number of episodes in the subset s, and the sampling index
p is given by

p = 1
∆(t+ t0) (10.7)

To describe the spread at each interval, the 1st and 3rd quartiles, q1, q3,
called HRq1(t) and HRq3(t), are computed using the concatenated vector
of all FHR in the interval,

(
fhrt

1,s(n), . . . , fhrt
Lk,s(n)

)
∀n ∈ {t, t+ ∆}.

Fetal Heart Rate Distribution

To illustrate changes in the estimated probability density function (pdf)
over time, we utilize a normalized histogram to estimate the pdf in an
interval defined by the start point, t and end point t+ ∆ for all episodes in
a subset. When computing two or more distributions, these can be used to
identify how the distribution changes over time. Let ht

i(l) be the histogram
of the measured FHR in episode i, in the interval with start point t and
end point t+ ∆.

ht
s(l) =

∑
i∈s

ht
i(l) ∀ l = {50, 51, . . . , 200} (10.8)

Where l indicates the histogram variable, heart rate from 50 to 200. The
normalized histogram, h̄s(l), is then given by

h̄t
s(l) = 1

N
ht

s(l) (10.9)

Where N is the total count in ht
s(l)
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By combining multiple normalized histograms using continuous non-
overlapping intervals, both the change in trend and spread of the FHR can
be visualized simultaneously in a 3D surface plot. A peak in the computed
histograms will result in a visible ridge in the 3D-visualization.

Abbreviations

FHR: fetal heart rate; CTG: cardiotocography; mFHR: median Fetal Heart
Rate; MHR: maternal heart rate; VEND: very early neonatal death; FSB:
fresh stillbirth; NCU: neonatal care unit

Acknowledgements

The authors would like to acknowledge the health care personnel Haydom
Lutheran Hospital, Temeke Referral Hospital and Muhimbili National
Hospital for all the work done at the labour wards.

Authors’ contributions

JU, KE, TE, HE designed the study; BK, PM, HK and SHH performed
data collection and quality assurance. JU performed the analysis. JU
drafted the manuscript, KE, TE, SHH, BK, PM, HK and HE revised the
manuscript. All authors read and approved the final manuscript.

Funding

This work is part of the Safer Births project which has received funding
from Laerdal Foundation, Laerdal Global Health, Skattefunn, Norwegian
Ministry of Education and USAID. The work was partly supported by the
Research Council of Norway through the Global Health and Vaccination
Programme (GLOBVAC) project number 228203.

Availability of data and materials

The datasets analysed during the current study are not publicly avail-
able due National Tanzanian regulations, but may be available from the
corresponding author on reasonable request.

150



Paper 3

Ethics approval and consent to participate

The project was ethically approved prior to implementation by the National
Institute for Medical Research (NIMR) in Tanzania (NIMR/HQ/R.8a/Vol.
IX/1434) and the Regional Committee for Medical and Health Research
Ethics (REK) in Norway (2013/110/REK vest).

Consent for publication

The participants acknowledged their consent to publish the acquired data.

Competing interests

Solveig Haukås Haaland is an employee of Laerdal Medical AS.

151





Paper 4:
Signal processing and
classification for
identification of clinically
important parameters
during neonatal
resuscitation

153



154



Signal processing and classification for identifi-
cation of clinically important parameters during
neonatal resuscitation

J. Urdal1, K. Engan1, Trygve Eftestøl1, Hussein Kidanto2,
Ladislaus Blacy Yarrot3, Joar Eilevstjønn4, Hege Ersdal5,6

1 Department of Electrical Engineering and Computer Science, University of Stavanger,
Norway

2 Muhimbili University of Health and Allied Sciences, Tanzania

3 Research Institute, Haydom Lutheran Hospital, Haydom, Manyara, Tanzania

4 Strategic Research, Laerdal Medical AS, Stavanger, Norway

5 Department of Anesthesiology and Intensive Care, Stavanger University Hospital,
Norway

6 Faculty of Health Sciences, University of Stavanger, Norway

Published by the IEEE International Conference on Signal and
Image Processing Applications, ICSIPA 2017.

https://doi.org/10.1109/ICSIPA.2017.8120672

155

https://doi.org/10.1109/ICSIPA.2017.8120672


Paper 4

Abstract:
Neonatal mortality is a global challenge. One million newborns die
each year within their first 24 hours as a result of complications
during labour and birth asphyxia. Most of these deaths happen
in low resource settings. However, basic resuscitation at birth can
increase newborn survival. Identification of initial factors and simple
therapeutic strategies determinant for neonatal outcome can aid
health care workers provide the best follow-up during resuscitation.
In this work, the initial condition of the newborn, the treatment
given, and early heart rate response from manual bag mask ventila-
tion are parameterized. The features are investigated in a machine
learning framework to identify which features are determinant for
the different outcomes. Using a selection of the defined features, an
identification rate of 89% for newborns in the normal group, and an
identification rate of 74% for episodes ending in death was found.
This points to the direction of identifying the important factors of
newborn survival.
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11.1 Introduction

In 2012, 2.9 million newborns died worldwide within their first 28 days of
life, counting for two out of every five deaths for children under the age
of five. Of these, one million died within their first 24 hours of life [101].
The primary causes for these deaths are complications during labour, and
birth asphyxia [101, 102]. An increased challenge is found in low resource
settings, as the number of newborn deaths is four times as high in Africa
as it is in Europe [101]. To reduce the newborn mortality, it is crucial
to ensure that the optimal treatment is available and is provided during
labour, delivery, and immediately after birth when the mortality risk is
highest.
By identifying treatment factors determinant for the 24-hour neonatal

outcome, better treatment and feedback solutions to guide the best therapy,
can be sought. In the case where newborns are unable to start breathing
by themselves, guidelines published by the World Health Organization and
others [7, 103] recommend neonatal resuscitation should start within the
first minute after birth, known as the golden minute [9]. While factors
for prediction of an increased need for neonatal resuscitation [88], and the
relationship between ventilation performance and response of newborns in
term of apgar score [89] have been explored. There is still an uncertainty
of which therapeutic strategies are determinant for outcome in neonatal
resuscitation - what characterize a good resuscitation?
The Safer Births Project4 is a research and development collaboration

between Norwegian, Tanzanian, American and Irish research institutions
collecting and analyzing data of neonatal resuscitations to find new infor-
mation with the ultimate goal of improving the survival rate of newborns.
In collaboration with the Safer Births project, multiple signals are mea-
sured during resuscitation of newborns at Haydom Lutheran Hospital in
Tanzania including; ECG, acceleration (reflecting movement) of the new-
born, and flow, pressure, and expired CO2 during ventilation. In addition,
initial conditions are manually observed and logged by research assistants
continuously present in the labour ward.

Detection of physiological events associated with manual bag-mask ven-
tilation during resuscitation have previously been proposed by our research
group [84], utilizing signal processing on the physiological signals. Identifi-
cation of therapeutic strategies is done using the ECG signal in combination

4http://www.saferbirths.com
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with the short-time energy of the acceleration signals of an accelerometer
mounted together with the ECG sensor, proposed by our research group
in [52, 85].
In this work, we attempt to identify vital and predictive factors for de-

termining outcome during resuscitation of newborns from features derived
from the given therapy and response using a machine learning framework.
We define 14 features to characterize the initial condition of the newborn,
the treatment given, and early heart rate response from manual bag mask
ventilation. Evaluation of the effectiveness of the treatment is based on the
neonatal status 24 hours after birth. The possible outcomes are defined as:
normal, still admitted in neonatal care unit (NCU), and death. A wrapper
based nested cross-validation classification scheme is used to identify the
most important features for achieving high classification performance which
can indicate that these features are important for the chance of survival.
However, as the number of newborns surviving are expected to greatly
outnumber newborns dying, classification can be challenging as traditional
methods tend to create models featuring the largest class [43]. Multi-
ple algorithms have previously been proposed to alleviate this challenge,
including SMOTEBoost [45] and RUSBoost [42].
The study was supported by the Laerdal Foundation and the Research

Council of Norway through the Global Health and Vaccination Program
(GLOBVAC), project no. 228203.

11.2 Data material

The data set presented in this work is collected at Haydom Lutheran
Hospital in collaboration with the Safer Births project. Haydom Lutheran
Hospital is a resource limited hospital in rural Tanzania with a shortage
of health care staff. Assistance during labour and treatment, including
necessary resuscitations, of the newborns are primarily conducted by the
midwifes. All events at the labour ward are observed by trained research
staff, logging predefined data on forms. Implementation of the research
project was approved by the National Institute for Medical Research (NIMR)
in Tanzania (NIMR/HQ/R.8a/Vol. IX/1434) and the Regional Committee
for Medical and Health Research Ethics (REK) in Norway (2013/110/REK
vest) before the start of the study.
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Figure 11.1: Example signals of ECG (50 Hz filtered), acceleration in three axis,
ventilation, pressure, flow, and volume (integrated from flow). A magnified section of the
ECG is included to illustrate the dynamic range of measurements with little noise. An
intervention from the health care workers are seen during the first 15 seconds, followed
by a movement of the newborn. A ventilation sequence is seen from 135 to 165 seconds,
followed immediately by a new intervention from the health care workers.
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Figure 11.2: The Laerdal Newborn Resuscitation Monitor

The Laerdal Newborn Resuscitation Monitor (LNRM) is developed for
research in a low resource setting where newborn resuscitation is usually
performed by a single health care provider. Example signals measured by
the LNRM is presented in Figure 11.1, and a photo of the LNRM can be seen
in Figure 11.2. The monitor provides heart rate to the health care provider
during a resuscitation as well as collecting data for research purposes.
The heart rate sensor, green sensor shown in Figure 11.2, is placed across
the abdomen or thorax of the newborn. The heart rate sensor contains
dry-electrode ECG, sampled at 500 Hz, and a 3-axis accelerometer to
monitor movement of the newborn during the resuscitation event, sampled
at 100 Hz. An extra preprocessing step, using a 50 Hz notch filter, is
used on the ECG signal. Additional sensors for monitoring pressure, flow,
and expired CO2 are mounted between the resuscitator bag and mask for
research purposes. Pressure and flow are both sampled at 100 Hz, while
CO2 is sampled at 20 Hz. The measured signals and the corresponding
time of each measurement is stored on the LNRM, ensuring synchronization
between the various signals. The stored data is then transferred to a
computer or external hard drive using the embedded USB interface after
the resuscitation event is finished. The example signals in Figure 11.1
shows the ECG, acceleration, pressure, flow and volume (integrated from
volume) measured using the LNRM. A magnified section of the ECG signal
is included in Figure 11.1 to illustrate the dynamic range of measurements
with little noise. The resuscitation monitors were installed in all labour
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Table 11.1: Distribution of 24-hour outcome for the 530 episodes.

Outcome label Normal NCU Death

# of patients 361 123 46

rooms as well as the operating theatre at Haydom Lutheran Hospital to
measure data for research purposes during all resuscitation events.

A total of 916 resuscitation episodes were recorded between October 2013
and August 2016. Outcome at 24 hours included, 617 labelled as normal,
194 still admitted to NCU, 48 deaths, and 57 episodes classified as stillborn.
Heart rate is however observed on 27 episodes identified as stillborn, these
episodes are therefore reclassified and included in the study, thus the group
with heart rate ending in death includes (48 + 27 =)75 episodes. The data
set was further reduced by only using episodes where all features used
throughout this paper could be derived. Using this criteria, the data set
was reduced to 530 episodes, where the distribution is shown in Table 11.1.

11.3 Proposed method

A block diagram of the proposed system is shown in Figure 11.3. Features
are extracted from LNRM data as well as manually logged values during
labour. The features are used in a nested cross-validation to estimate
performance of a reduced feature set, and in a feature selection to identify
the most vital features for determining neonatal outcome.

11.3.1 Signal processing and feature extraction

For parameterization of the resuscitation episode we distinguish between
three feature categories: initial conditions, treatment, and early response
parameters. Treatment parameters are further divided into two subgroups,
those reflecting therapeutic strategies, like stimulation vs ventilation, and
those reflecting the quality of the ventilations.
During the therapeutic strategy of ventilation, the actual quality of

ventilations performed can vary. The quality of ventilations might be of
crucial importance for neonatal asphyxia and thus have to be assessed.
The flow and pressure signals measured by the LNRM are used to extract
features defined by the work of this group in Vu et al. [84] where the details
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Figure 11.3: Overview of the proposed system. Data from the Laerdal Newborn Resus-
citation Monitor is used to compute heart rate, ventilation parameters and therapeutic
strategies applied during the resuscitation episode. The computed parameters are used
in combination with manually logged data as features in the nested cross-validation.

can be found. In short, ventilation events (vl) are defined by thresholding
the pressure signals after baseline wander removal, expired volume is found
by extracting start of inspiration and expiration periods from the flow
signal, and integrating the flow signal (as seen in the volume signal of
Figure 11.1) over the relevant period. An example of pressure, flow, and
volume (integrated from flow) of a ventilation sequence is shown in the
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Figure 11.4: Timeline representation of therapeutic strategies during resuscitation.
When no activity is registered in either timeline, the activity is defined as hands off.

period from 135 to 165 seconds in Figure 11.1.
Identification of therapeutic strategies during the resuscitation episode is

implemented (box 2 in Figure 11.3) by extracting features from the energy
of the different axes in the accelerometer signals, shown in Figure 11.1, as
well as energy of different subbands after a discrete wavelet decomposition
of the the ECG signals, shown in Figure 11.1, from the LNRM. This
identification is proposed and described by this research group in Vu
et al. [52, 85] where more details can be found. The features are fed
to a decision tree classifier using the activity classifier proposed by Vu
et al. [85]. The activity classifier identifies therapeutic strategies in the
following categories: ventilation, stimulation, suction, chest compressions,
drying, tactile stimulation, moving heart rate sensor, hands off, and other,
illustrated in the timeline of Figure 11.4. In this work we group compression,
stimulation, tactile stimulation, and suction together as stimulation, and
drying, moving sensor, other, and hands off together as hands off. In
Figure 11.4, Vi, Sj and Ck illustrate sequence i/j/k of the corresponding
activity carried out by the health care provider. Vi,start defines the time
when ventilation sequence i starts, and Vi,end the time when ventilation
sequence i ends. Vi,end+30s and Vi,end+60s corresponds to the time 30 and
60 seconds after the ventilation sequence i ends. These time points are
chosen to measure the heart rate response a fixed delay after the ventilation
sequence.

Heart rate (HR) (box 2 in Figure 11.3) is computed using a median filter
of instantaneous heart rate found from the ECG, shown in Figure 11.1. As
intervention from health care workers occur during resuscitation, compu-
tation of the instantaneous heart rate is challenging due to the noise. An
example of such noise can be observed in the period 100 to 115 seconds and
165 to 180 seconds in the ECG signal, shown in Figure 11.1. By observing
the energy in the acceleration signals in the same time periods, it is reason-
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able to assume that this noise is added as a result of intervention from the
health care workers. A linear interpolation is therefore used to estimate
heart rate between each computed heart rate point (with a resolution of 0.1
seconds). If no instantaneous heart rate is found in a 10 seconds period,
the heart rate is considered difficult to estimate and is therefore set as
undefined.

Initial condition parameters

The following parameters were used to describe the initial condition of the
newborn prior to bag-mask ventilation:

• Birth weight (BW) in grams.
• Gestational Age (GA) in weeks, estimated at birth.
• Time from birth to start of bag-mask ventilation (tBMW ). This time

is logged by research assistants continuously present during labour.
• Initial heart rate (hrVi) is the heart rate when the first ventilation

sequence starts (V1,start).

hrV1 = HR(V1,start) (11.1)

Treatment parameters

The following parameters are extracted from the sensor data:

• Total duration of the resuscitation episode (T ). Defined as the period
from the start, until the end of the final stimulation or ventilation
sequence.

• Stimulation time in percent (STP RC) is the ratio of the time of all
stimulation sequences (Sj) over T .

STP RC = 1
T

∑
i

Sj · 100% (11.2)

• Ventilation time in percent (VTP RC) is the ratio of the time of all
ventilation sequences (Vi) over T .

VTP RC = 1
T

∑
i

Vi · 100% (11.3)
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• Hands off time in percent (HOTP RC) is the ratio of the time of all
hands off sequences HOk over T .

HOTP RC = 1
T

∑
i

HOk · 100% (11.4)

• The total number of ventilations (nV ) is the sum of all ventilation
events (vl) in all Vi.

nv =
∑

i

∑
l

]{vl ∈ Vi} (11.5)

• The expired volume (expVolml/kg) is the median expired volume from
all ventilation events (vl), divided by the newborns birth weight (BW)
in kg.

expVolml/kg = median

( expVol
BW/1000

)
(11.6)

• The average ventilation rate (VR) is nV over the total duration of all
ventilation sequences in one episode.

VR = nV∑
i Vi/60 [inflations/min] (11.7)

STP RC , VTP RC , and HOTP RC , reflect therapeutic strategies. Remaining
treatment parameters are associated to quality of ventilations.

One can argue that the time from birth to start of bag-mask ventilation
(tBMW ) can be seen as both a treatment parameter and an initial condition
for the bag-mask ventilation parameter. However, we have defined the
treatment parameters as parameters possible to extract from the measured
sensor signals during the bag-mask ventilation episode. Median expired
volume can be seen as both a treatment and response parameter. In this
work, we have chosen to label this feature as a treatment parameter, as it
is an efficient way to identify the ventilation quality. A poor ventilation
with severe mask leakage will result in a high measured inflated volume,
and a low measured expired volume. A good ventilation will result in a
sufficiently high expired volume.
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Early response parameters

The following parameters are extracted from the sensor data, and can be
regarded as response parameters:

• Heart rate when first ventilation sequence ends hrV1,end

hrV1,end
= HR(V1,end) (11.8)

• Heart rate 30 seconds after first ventilation sequence hrV1,30s

hrV1,30s = HR(V1,end + 30) (11.9)

• Heart rate 60 seconds after first ventilation sequence hrV1,60s

hrV1,60s = HR(V1,end + 60) (11.10)

11.3.2 Classification

Due to the low number of episodes ending in death, there is a large class
imbalance when trying to distinguish episodes in the normal from the group
ending in death. To alleviate this imbalance, we have chosen to use the
RUSBoost classifier. While this is a simpler and faster technique, it performs
comparably to SMOTEBoost [42]. A nested cross-validation (CV) [104, 105]
scheme is chosen instead of using a dedicated training and validation set. In
the nested CV, the internal loop is used for feature selection and reduction
of dimensionality of the feature set, using the external loop for validation.
Feature selection is done using a wrapper method [90] with a forward
selection approach, maximizing the true (positive+negative) rate. In the
external loop, the data set is divided into three non-overlapping sections
(folds) where 66% is used for training and the remaining 33% is used for
validation. For each fold in the external loop, the internal loop is run on
the training set with the same 66%/33% divide between training and test
(3 folds). System performance is computed using the summed confusion
matrices from all external folds. The same type of classifier is used in
both the internal and external loops. Feature normalization is applied in
each CV fold, where µ and σ is found for the current training set and
then applied to the normalization of the current test set. A result of using
independent feature selection in each fold of the external loop, is that the
used features might vary between the folds. Nested CV does, however,
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give a measure of how well the model performs on the data set, where
the model includes feature selection and the used classifier. The same
feature selection is applied to the entire data set to identify the most crucial
features corresponding to the performance found in the nested CV.

11.4 Experiments and results

Table 11.2: Performance using feature selection in nested CV. P = precision, R = recall.
1 for class Normal, 2 for class NCU, and 3 for class Death

Exp 1 Exp 2 Exp 3

P1 P2 P3 P1 P2 P3 P1 P2 P3

R1 R2 R3 R1 R2 R3 R1 R2 R3

Normal/Death 0.96 0.47 0.88 0.55 0.91 0.54

0.89 0.74 0.87 0.57 0.83 0.71

Normal/NCU 0.84 0.42 0.74 0.46 0.72 0.45

0.71 0.60 0.71 0.50 0.74 0.43

NCU/Death 0.85 0.60 0.78 0.69 0.71 0.51

0.85 0.59 0.86 0.57 0.78 0.43

Normal/NCU/
Death

0.77 0.26 0.31 0.73 0.39 0.41 0.70 0.43 0.35

0.64 0.28 0.65 0.74 0.24 0.69 0.75 0.16 0.67

Identification of factors which can be utilized on all resuscitations is
highly desirable. However, we acknowledge that newborns have a wide
range of initial conditions, and that newborns in a poor initial condition
may require a different therapy than newborns in a better condition. It was
also considered interesting to study if the outcome could be described using
only the initial status and the treatment given, as this could potentially
improve identification of the best treatment factors. Three experiments
were conducted and validated:
Exp 1: Identification of neonatal outcome 24 hours after birth using all
features available
Exp 2: identification of neonatal outcome using all features for newborns
initially in a poor condition
Exp 3: identification of neonatal outcome using only initial- and treatment
parameters for newborns initially in a poor condition.
Each experiment was run for all four class combinations: Normal - Death,
Normal - NCU, NCU - Death, and the three-class problem Normal - NCU
- Death. To identify newborns in a poor condition, initial heart rate
was chosen as an identifier. A threshold was then used to only study
resuscitation episodes with an initial heart rate below 120.
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Table 11.3: Mean and standard deviation of each class for all features

Normal NCU Death

BW 3229.9±494.5 2905.7±675.8 2777.1±643.0
GA 38.2±1.7 37.0±2.8 36.9±2.9
tBMW 125.1±67.8 136.8±82.9 142.8±106.5
hrVi 125.8±44.2 107.5±40.0 74.9±34.4
T 365.7±348.9 500.2±424.9 913.7±780.3
STP RC 24.7±14.4 19.2±12.7 12.5±10.4
VTP RC 26.0±18.1 35.9±22.4 50.0±22.2
HOTP RC 49.2±18.3 44.9±19.9 37.5±17.5
nV 76.2±103.7 146.2±168.1 438.5±546.6
expVolml/kg 7.0±5.3 9.0±7.4 9.3±5.4

VR 55.5±21.6 54.1±22.5 54.1±18.0
hrV1,end

130.8±42.6 113.3±40.4 78.9±39.4
hrV1,30s 142.8±37.0 131.1±34.2 87.8±44.9
hrV1,60s 148.9±34.0 138.7±35.2 91.5±50.0

Performance was evaluated using precision and recall, these performance
metrics were chosen to keep the same evaluation parameters for both
the two- and three-class problems. Precision is defined as the fraction of
correctly classified examples over all examples classified as this class, and
recall is defined as the fraction of correctly classified examples over all
examples really belonging to this class [106]. The performance metrics
were computed from the summed confusion matrices from all folds in the
external loop in the nested CV. The use of only forward feature selection was
chosen due to the computational requirement of nested CV. The approach
does however, have its limitations, with the possibility of only finding a
local maximum. Results for identifying the various outcomes in all three
experiments are shown in Table 11.2. P denotes precision and R denotes
recall. 1 is used for class normal, 2 for class NCU, and 3 for class death.
An overview of mean and standard deviation of the features are given in
Table 11.3.

168



Paper 4

Table 11.4: The selected features using all available data and all features (Exp 1).

Normal/Death Normal/NCU NCU/Death Normal/NCU/Death

hrV1,60s nV hrV1,60s nV

T GA BW hrV1,30s

hrV1,end
T T VR

expVolml/kg hrV1,60s hrV1,30s T

nV STP RC hrVi HOTP RC

BW hrV1,30s expVolml/kg VTP RC

hrVi tBMW HOTP RC

tBMW BW tBMW

VTP RC hrV1,end
GA

hrV1,30s VTP RC VR

expVolml/kg hrV1,end

nV

A corresponding feature selection was done on each experiment using
the entire data set in combination with the same forward feature selection
scheme as used in the previous experiments. The selected feature order is
shown in Table 11.4 using all features, in Table 11.5 using all features for
newborns initially in a poor condition, and in Table 11.6 using only initial-
and treatment parameters for newborns initially in a poor condition.

11.5 Discussion

In Table 11.3, a mean expired volume of 9 ml/kg can be seen for both NCU
and death, higher than episodes with a normal outcome. In combination
with the increased number of ventilations given for NCU and Death, we
assume that the health care workers perform a high number of ventilations
of sufficient quality to the newborns in need. The resuscitation duration
shows an expected increase from the normal class to both NCU and Death.
The therapeutic strategies show a shift in focus for the health care providers
for newborns in a critical condition. While ventilations are given 26% of

169



Paper 4

Table 11.5: The selected features using all defined features for newborns with an initial
heart rate below 120 (Exp 2).

Normal/Death Normal/NCU NCU/Death Normal/NCU/Death

hrV1,60s VTP RC hrV1,60s hrV1,60s

T GA BW VTP RC

BW HOTP RC hrV1,30s hrVi

expVolml/kg nV nV hrV1,end

VR hrV1,30s hrV1,30s

hrVi STP RC HOTP RC

tBMW tBMW GA
GA BW

VTP RC tBMW

HOTP RC

STP RC

hrV1,30s

the resuscitation period for newborns in the normal class, an increased
focus on ventilations is observed in the NCU and Death classes, where
50% of the treatment duration is used for ventilations in the latter. A
reduction in stimulation is also observed from normal to NCU and death.
This reduction is not necessarily a critical factor, as stimulation alone often
will be insufficient treatment for newborns in a poor initial condition.

For the two-class problems, Table 11.2, a precision of 96% and a recall
of 89% for normal, and a precision of 47% and a recall of 74% for episodes
ending in death were achieved (Exp 1), indicating that the features can
be used to describe the 24-hour outcome. Exp 3, Table 11.2, achieves a
similar results, while Exp 2, Table 11.2, achieves a lower performance. This
could be a local maximum due to the forward feature selection, as Exp 2
contains all features used in Exp 3 and should therefore be able to achieve
similar performance. The high precision in one class and low precision
in the other class, can be explained due to the large class imbalance. In
the case of Exp 1 for normal vs death, the 11% misclassification of the
normal class (38 episodes), is almost the same number as the entire death
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Table 11.6: The selected features using initial conditions and treatment parameters for
newborns with an initial heart rate below 120 (Exp 3).

Normal/Death Normal/NCU NCU/Death Normal/NCU/Death

nV VTP RC STP RC nV

VTP RC BW hrVi tBMW

HOTP RC GA T T
VR nV BW STP RC

GA T expVolml/kg VTP RC

STP RC STP RC HOTP RC GA
hrVi VR

VR tBMW

tBMW VTP RC

class (46 episodes), thus a low precision for the smaller class is obtained.
Distinguishing between episodes in normal and NCU achieves a a recall
above 70% for the normal class in all three experiments, the NCU class is
however close to random guessing. Classifying NCU vs death achieve similar
performance both in Exp 1 and Exp 2. Studying the feature selection, two
of the early response features are chosen in Exp 1 and Exp 2, indicating
that early response parameters are crucial for distinguishing these two
classes. In the three-class problem, identification of NCU is low in all three
experiments. This is considered a consequence of the class temporary state,
as most episodes in this class will eventually change into normal or death.
A second challenge is the large standard deviation of all features while the
feature mean difference is fairly low between the three outcomes.
Using all 14 features, heart rate after the first ventilation, number of

ventilations, total resuscitation time, ventilation time, and hands off time
percentage are found to be good identifiers of resuscitation outcome. For
identification of neonatal outcome of episodes with an initial heart rate
below 120, heart rate, ventilation time, and hands off time percentage
are found to be good identifiers. Total resuscitation duration is, however,
only found as a good feature for one class combination. When studying
newborns with an initial heart rate below 120 using only initial condition
and treatment parameters, identification of all class combinations includes
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at least two out of three parameters characterizing the therapeutic strategies.
This tells us that the therapeutic strategies are crucial for the newborn
survival.

11.6 Conclusion and future work

The results presented in this paper suggest that parameters describing
the initial status, therapeutic strategies, quality of ventilations, and early
response parameters are crucial factors for distinguishing the 24-hour
outcome for newborns identified as normal or dead at this point in time.
With the inclusion of newborns still in neonatal care unit 24 hours after birth,
the identification rate of all outcomes are reduced, indicating additional
features are required.
To provide additional information to the health care workers, the work

has to be extended to find critical features for identifying the newborns
who are alive, but still in a critical condition 24 hours after birth.
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Abstract:
Background and Objective: Early neonatal death is a worldwide
challenge with 1 million newborn deaths every year. The primary
cause of these deaths are complications during labour and birth as-
phyxia. The majority of these newborns could have been saved with
adequate resuscitation at birth. Newborn resuscitation guidelines
recommend immediate drying, stimulation, suctioning if indicated,
and ventilation of non-breathing newborns. A system that will
automatically detect and extract time periods where different re-
suscitation activities are performed, would be highly beneficial to
evaluate what resuscitation activities that are improving the state
of the newborn, and if current guidelines are good and if they are
followed. The potential effects of especially stimulation are not
very well documented as it has been difficult to investigate through
observations. In this paper the main objective is to identify stimu-
lation activities, regardless if the state of the newborn is changed
or not, and produce timelines of the resuscitation episode with the
identified stimulations. Methods: Data is collected by utilizing
a new heart rate device, NeoBeat, with dry-electrode ECG and
accelerometer sensors placed on the abdomen of the newborn. We
propose a method, NBstim, based on time domain and frequency
domain features from the accelerometer signals and ECG signals
from NeoBeat, to detect time periods of stimulation. NBstim use
causal features from a gliding window of the signals, thus it can
potentially be used in future realtime systems. A high performing
feature subset is found using feature selection. System performance
is computed using a leave-one-out cross-validation and compared
with manual annotations. Results: The system achieves an over-
all accuracy of 90.3% when identifying regions with stimulation
activities. Conclusion: The performance indicates that the pro-
posed NBstim, used with signals from the NeoBeat can be used to
determine when stimulation is performed. The provided activity
timelines, in combination with the status of the newborn, for exam-
ple the heart rate, at different time points, can be studied further to
investigate both the time spent and the effect of different newborn
resuscitation parameters.
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12.1 Introduction

Early neonatal death is a worldwide challenge with 1 million newborn
deaths every year, and the vast majority of these are found in low and
low-middle income contries [101]. The primary cause of these deaths are
complications during labour and birth asphyxia [101, 102]. Guidelines on
newborn resuscitaion are published by both the World Health Organization
and others [7, 8]. The general guideline is to start resuscitation within
the first minute after birth if the newborn is unable to start breathing [9].
A gap between the medical guidelines and what is actually performed in
practice has also been observed [10]. While resuscitation immediately after
birth is a crucial part of saving these lives, the full understanding of how
to best apply therapeutic activities is not well documented. Therapeutic
activities includes stimulation of the newborn, like firmly rubbing the back
and drying, removal of mucus and obstructions in the airways by suction,
and bag mask ventilation. The amount of activities performed during
resuscitation, such as tactile stimulation and bag-mask ventilation, has
been shown to be correlated with the 24-hour outcome of the newborn [107].
Further analyses should be conducted to study the importance of factors
like duration and order of these therapeutic activities.
Safer Births5 is a large and collaborative research project with the

goal of establishing new knowledge and develop new innovative products
to save lives at birth. One of the goals of this collaborative project is
to construct a system that can automatically detect time periods where
different resuscitation activities are performed. Such a system can be used
as part of a debriefing system, and will make it possible to evaluate a
large number of episodes to find out which resuscitation activities that are
improving the state of the newborn, if current guidelines are good and if
they are followed. The state of the newborn can effectively be evaluated
by assessing the heart rate [8], and a change in the observed heart rate
may be the result of prolonged resuscitation activities. There might as
well be potential for real time decision support during resuscitation. A
number of sensor data have been collected during newborn resuscitation at
partner hospitals in Tanzania during the research project; pressure and flow
from the bag-mask resuscitator (BMR), dry-electrode electrocardiogram
(ECG) signals and signals from an accelerometer using a prototype of the
NeoBeat6, attached over the abdomen of the newborn.

5http://www.saferbirths.com/
6https://laerdalglobalhealth.com/products/neobeat-newborn-heart-rate-meter/
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Figure 12.1: Laerdal Newborn Resuscitation Monitor with the various sensors indicated.
The measured heart rate is shown on the LCD to give feedback to the health care
personnel. The green buckle with accelerometer and dry-electrode ECG is a prototype
of the NeoBeat,

The detection of bag-mask ventilation can relatively easy be performed
using the flow and pressure signals from sensors mounted in the BMR [84],
and detection and recognition of treatment activities during newborn
resuscitation using deep neural networks on videos of resuscitation [86]
has been described in earlier work from this research group. Videos of the
resuscitation is often not available, or the view can be blocked by some of
the activities. Thus it would be beneficial to be able to detect stimulation
based on the NeoBeat signals. As tactile stimulation during newborn
resuscitation involves some kind of repetitive movement, we hypothesize
that these activities can be picked up using an accelerometer attached to
the newborn through the use of NeoBeat.

Detection and recognition of activities using data from an accelerometer
have previously been explored on healthy adults: static and dynamic activ-
ities such as sitting positions, walking versus running were found using an
accelerometer mounted on the subjects back [81] and the subjects waist [82].
With the rise of wearable technology in every day life such as sport watches
and cell phones, accelerometers are now available for activity recognition
using commercially available devices [83]. To the authors knowledge, there
are no reported correlation between the ECG morphology [108] and exter-
nal stimulation, and no reported works utilizing accelerometer and ECG
signals of newborns to automatically classify therapeutic activities, except
from this research group.
Automatic detection of some sort of activity performed by the health

care personnel, VuDetector, has previously been proposed by members
of our research group [52]. VuDetector achived a sensitivty of 90% and
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Figure 12.2: Example segment of the measured ECG and accelerometer signals with
the corresponding timeline representation. The signal with a lower amplitude in the
beginning of the ECG signal corresponds to the expected QRS-complex. Two distinct
regions with movement can be seen in the signals, and VuDetect identifies both activities.
NBstim, proposed in this work, evaluates the regions found by VuDetect and classify
them as stimulation or non-stimulation activities.

a specificity of 80%. During a resuscitation, the newborn will be moved,
covered and uncovered etc. and such activities will also be visible on the
accelerometer signals from the attached NeoBeat, but are not considered
therapeutic activities. In VuClassifier [85], we also proposed a first attempt
of classification of the detected activities based on ECG and accelerometer
signals, reported with an accuracy of 79.8 % when distinguishing stimulation
and chest compression from other activities. The VuClassifier was, however,
based on signal features extracted from detected activity events of variable
duration, it needed statistics from the entire resuscitation episode, and as
such, only suitable for retrospective analyses, and it was trained and tested
on relatively few episodes, and needed further verification.
In this work the main objective is to propose a system, NBstim, for

detecting time periods of stimulation activities based on the signals recorded
by the NeoBeat placed on the abdomen of the newborn, using causal signal
features, and as such, suitable for real time analysis. In combination with
a method of detected bag-mask ventilation sequences [84], this can be used
to create useful timelines illustrating the amount, duration and order of
ventilation and stimulation performed in real world newborn resuscitation
episodes, see figure 12.2. In the rest of the paper we start by explaining the
data material and the manual annotations in section 12.2. In Section 12.3
the proposed NBstim is explain in context with the larger system, thereafter
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the signal featuers are defined. In the experimental section, VuClassifier
and NBstim is tested using a larger dataset and compared with manually
annotated activities.

12.2 Data material

The data material used in this work was collected at Haydom Lutheran
Hospital (HLH), a rural hospital in Tanzania, between October 2013 and
September 2016 by the Safer Births project. The research project was ap-
proved by the Regional Committee for Medical and Health Research Ethics
(REK) in Norway (2013/110/REK vest) and National Institute for Medical
Research (NIMR) in Tanzania (NIMR/HQ/R.8a/Vol. IX/1434). Parenteral
verbal consent was obtained for all resuscitated newborns. Within this
research project, subprojects have been subject to randomized trails. For
this particular work, the data collection has been part of an observational
study, not an intervention study.
The data were collected using the Laerdal NeoBeat prototype, Fig-

ure 12.1, which is part of the research device Laerdal Newborn Resuscitation
Monitor [52, 84, 85, 89]. The NeoBeat prototype measures the heart rate
using two dry-electrode ECG sensors attached to a buckle, which is placed
over the abdomen of the newborn. This design allows the health care
personnel to quickly attach the ECG sensor to the newborn and monitor
the heart rate, and can therefore focus on giving the best treatment possible
without struggling with gel and placement of the ECG sensors. An example
of ECG and accelerometer signals measured using the NeoBeat prototype
is shown in Figure 12.2. Due to the combination of dry-electrode ECG
sensors and an environment with a lot of movement, the measured signal
contains more noise than what is seen when using traditional ECG in
settings with less movement. In HLH, a resuscitation monitor is installed
in each of the labour rooms and the midwifes are primarily responsible for
the health care both during labours and potential resuscitation immediately
after birth. The health care workers involved in the data collection were
trained to follow the existing Helping Babies Breathe (HBB) guidelines 7

for newborn resuscitation. These guidelines state what should be checked,
and what action to perform if the newborn is asphyxiated and need help
to start breathing. The guidelines were posted on the wall above each

7https://shop.aap.org/helping-babies-breathe-2nd-ed-action-plan-wall-poster-
paperback/
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resuscitation bed to remind the health care personnel to follow them. A
limitation of the guidelines is, however, that they only defines what activity
to perform, and not the amount, length, or how often the activity should be
performed. Additional clinical data related to the labour and resuscitation
was logged by designated research assistants present at the labour ward for
the research project.
The resuscitation monitor consists of a main processing unit with a

display to show the measured heart rate, as well as the heart rate sensor
and a bag-mask resuscitator (BMR). The NeoBeat prototype seen in green
in Figure 12.1, contains dry-electrode ECG, sampled at 500Hz, and a
three-axes accelerometer to monitor movement of the newborn, sampled at
100Hz. The ventilation bag includes pressure and flow sensors, sampled at
100Hz, as well as a CO2 sensor sampled at 20Hz.

A total of 916 resuscitation episodes were recorded during the data
collection period. A set of 76 randomly selected videos were annotated to
obtain a timeline description of the resuscitation for further evaluation.

12.2.1 Annotations

Videos of the resuscitation were annotated by two independent reviewers;
one neonatologist and one human factors engineer. In cases with agreement
score < 80%, the two reviewers sat together and obtained consensus.
The following categories were annotated: 1) stimulation, 2) suction, 3)
uncovered, 4) other, 5) obscured view, and 6) start/stop of resuscitation.
If the resuscitation lasted longer than seven minutes, only the first seven
minutes were annotated. Stimulation and suction are considered two of the
three primary treatment events performed during resuscitation in addition
to ventilation of the newborn. Uncovered describes how much of the
newborn covered by a blanket, this is considered an important information,
as covering more of the newborn will result in a lower heat loss. The
fourth category is all other activities that are considered as relevant for
the treatment. This can for example be clamping of umbilical cord and
injections.

The heart rate sensor is sometimes detached and later reattached during
a resuscitation episode. As this will contribute to artefact’s and missing
data in the dataset, the author has manually annotated attachment of the
heart rate sensor. Only time regions where the heart rate sensor is fully
attached to the newborn will be used in the analysis.
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Table 12.1: Overview of the data subsets used in experiments. All subsets is based on
74 episodes of newborn resuscitation.

Data
set

Method Inclusion criteria Total duration
of data set

D1 Sliding
window

Full episodes 21830 seconds

D2 Sliding
window

VuDetect and manually
annotated stimulation
or hold off

1961 seconds

D3 Blocks of
variable
size

VuDetect and manually
annotated stimulation
or hold off

1961 seconds

12.2.2 Dataset

Two episodes were excluded due to corrupted data. The dataset used in
this work therefore consists of 74 episodes of newborn resuscitation, called
D1 in this paper.

The example signals, seen in Figure 12.2, include two distinct areas
where some activity clearly is happening. VuDetector identifies both areas
in the timeline representation, shown as detected activity. The manual
annotations, does however only recognize one of the regions as a stimulation
activity.
Newborn resuscitation often involves multiple health care providers,

resulting in multiple activities being performed at the same point in time.
A data subset is created to study regions where only one activity is being
performed on the newborn. This data subset, D2, consists of regions in the
resuscitation where VuDetector has identified an activity, and where either
only stimulation or no therapeutic activity are manually annotated. As
the detected activity regions will not overlap perfectly with the annotated
data, non-overlapping regions are removed. The subset, D2, consists of
15958 time points of stimulation and 3653 time points of non-therapeutic
activities. Grouping these based on the manual annotations, we obtain
D3 with 464 regions with stimulation, and 357 regions with non-therapeutic
activities. An overview of the data subsets are shown in table 12.1.
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Activity
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Feature
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Preprocessing

Classification

Timeline
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Hands off time

Treatment time

Timeline
representation

NeoBeat

Prototype
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Detection of
ventilation

Ventilation time

Proposed system

ECG

Accel-

eration

CO2

Flow

Pressure

Manual

annotations
Evaluation Performance

Ventilator

Figure 12.3: Block diagram of the proposed systems. Using raw inputs directly from
the Laerdal NeoBeat prototype, a timeline describing the resuscitation are computed and
presented to the user for further analysis of the event. The dotted line to and from the
block detection of ventilation illustrates an expansion of the system using a previously
proposed method from our research group.

12.3 Activity recognition system

A block diagram of the proposed system for detecting and recognizing
regions with activities during newborn resuscitation is shown in Figure 12.3.
An example graphical user interface (GUI) of the system is shown in
Figure 12.5. The system takes raw input from the NeoBeat prototype,
do necessary processing and classifications on the signals, and present
a timeline to the user describing what events occurs at various times
during the resuscitation. The analysis is designed to be able to run in
real time during resuscitation, or on request to obtain more details of a
given resuscitation episode at a later time. To obtain a high resolution
in the classified activity and allow for real time operation, stimulation is
classified as time series signal of 10Hz. Where the features at index i are
causally extracted from index i− k+ 1 to i, where k is the window size. As
ventilation and stimulation activities can occur at the same time, the two
classes are differentiated when presented to the user. The GUI, Figure 12.5,
shows the manually annotated data in green and the classified annotation
in cyan. When run on new unannotated data, only the cyan timelines will
be visible to the user.

The following subsections will describe in more detail the various parts
of the system, shown in Figure 12.3.

183



Paper 5

12.3.1 Activity detection

Detection of time periods during resuscitation where activities are likely to
be performed on the newborn has previously been proposed by our research
group, VuDetector [52]. The method detects time regions based on the
short time energy (STE) of the acceleration energy signal. The acceleration
energy, Acc(n) is found by

Acc(n) =
√
Acc2

x(n) +Acc2
y(n) +Acc2

z(n) (12.1)

Where Accd is a low pass filtered version of the measured acceleration in
axis d ∈ {x, y, z}, and n is the index in the acceleration signal. The STE,
E(i), is then found by

EAcc(i) =
i∑

n=i−N+1
(Acc(n) · w (i− n))2 (12.2)

Where the STE at index i is computed using samples from the window of
length N . The STE is thresholded to determine if an activity occurs at the
current window. The method achieves a sensitivity of 90% and a specificity
of 80%, both with a standard deviation of 6%. More details of VuDetector
can be found in [52].

12.3.2 Detection of ventilation

A method for detecting ventilation during newborn resuscitation based on
the measured pressure signal in the BMR has previously been proposed
by our research group with an accuracy of 95%, VuVentilation [84]. As
ventilation and stimulation events can occur at the same time, ventilation
is not taken into account when trying to recognize stimulation.

12.3.3 Preprocessing of data

The recorded ECG signal is susceptible to noise from the power grid, and
is therefore first filtered using a 50Hz notch filter prior to any analysis. In
addition, the QRS wave amplitude is affected both by the condition of the
heart as well as the sensor placement. Variations in the amplitude due to
inferior sensor placement are not desired, and the ECG signal is therefore
normalized based on the median R-height of the signal. R-waves in the
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ECG signal are found using a discrete wavelet transform with the sym4
wavelet. The signal is then normalized using the formula:

ECGnorm(m) = ECG(m)
median(Rh) (12.3)

Where Rh is a vector containing the height of the detected R-waves, and
m the index in the ECG signal.

12.3.4 Feature extraction

The proposed system utilize a subset of the ECG and acceleration features
used by VuClassifier [85]. An overview of the features used in VuClassifier
can be found in column fSet1 in table 12.2. Features in the time domain,
such as energy, RMS, entropy, and in the frequency domain, wavelet, were
defined for both the acceleration and ECG signals by Vu [85]. The wavelet
features were extracted using a 6-level decomposition using the Daubechies
mother wavelet. These features are denoted Ea for the energy corresponding
to the approximation and D1 −D6 for the energy corresponding to the
detail at each level. More details of these features can be found in [85].
VuClassifier [85] considers the entire region detected by VuDetector as

a single class. This approach will introduce unwanted misclassifications
in all cases where the detected activity region does not perfectly match
the true stimulation activity in both time and length. As two or more
events performed by the health care workers are unlikely to have the same
duration, this approach also extracts features from windows at various
lengths throughout each episode which is also not desirable. To handle these
challenges, a sliding window of fixed size is introduced. Initial experiments
were conducted using various length of the sliding window, with only minor
differences between window sizes. A sliding window of 1 second, with a
900ms overlap were chosen to achieve a high resolution in the classification,
so that all feature values are recalculated every 0.1 second, and as such can
be seen as a function of a time index, i, at a sample rate of 10 Hz.
Based on visual observation of the resuscitation activities applied by

the health care personnel, it is clear that stimulation often contains some
repetitive movements, i.e. rubbing the back of the newborn. We therefore
consider the accelerometer signals to be the most important signals for
describing this repetitive movement. To represent these movements in the
analysis, three new features are defined for each axes in the accelerometer
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signal. Resulting in a total of 9 new features. Let P i
Acc,d(f) denote the Short

Time Fourier Transform (STFT) of window i in the accelerometer signal
in axis d ∈ {x, y, z} as a function of the frequency, f . The first feature,
AP max,d, describes the maximum amplitude in the frequency domain,

AP max,d (i) = max
(
P i

Acc,d(f)
)

(12.4)

The second feature, Af,d(i), describes the frequency this maximum occurs
at, according to

Af,d(i) = argmax
(
P i

Acc,d (f)
)

(12.5)

The third feature describes the highest frequency with an amplitude above
a set threshold, given by

AfT,d(i) = max{f : P i
Acc,d(f) > T} (12.6)

An overview of the STFT features are seen in column fSet4 in table 12.2.

12.3.5 Classification

Initial tests were conducted using classifiers such as Naive Bayes, SVM [109],
and RUSBoost [42]. Due to only minor differences in performance, the
Naive Bayes classifier is used throughout the experiments due to its low
computational complexity. The classifier is designed to distinguish between
stimulation and non-stimulation activities. Discrimination between these
two classes are conducted on all regions identified by VuDetector.

12.4 Experiments

Three experiments were designed. The first experiment was conducted
to validate the previously published activity classifier. In the second
experiment, all features were computed using a sliding window of fixed size.
New features are added, and a nested cross-validation with feature selection
are conducted to illustrate the performance which is possible. A reduced
feature set is then found using feature selection. The final experiment
studies performance of NBstim on full episodes, and how post processing
can be utilized to increase the performance. The first experiment utilize the
dataset D3, the second experiment uses the corresponding points extracted
using a sliding window defined in D2. The third experiment utilize D1 of
74 resuscitation episodes of up to 7 minutes each.
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Table 12.2: Overview of all features. The dashed line separate features from Vu [85]
and new features proposed in this work for the accelerometer signals.
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Table 12.3: Continuation of Table 12.2.
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12.4.1 Experiment 1: Validation of previous work

In VuClassifier [85] the activities were divided into three classes, 1) chest
compression, 2) stimulation, and 3) other. The first two classes were
proposed to be combined to obtain a classification of treatment versus non-
treatment. In the present work, we focused on distinguishing stimulation
from non-stimulation activities, thus the two first classes were combined,
and considered stimulation. The third class was interpreted as all non-
stimulation activities. Validation of VuClassifier was conducted using the
dataset D3.

12.4.2 Experiment 2: Improvement of activity classifier

To improve the usability of an improved version of the classifier, and
facilitate for real-time classification, only causal features were implemented.
The feature set fSet1 include the two features, ECGglobalMax and AglobalMax,
which are computed using entire episodes, and were therefore omitted.

Selecting a smaller feature subset, with a high performance, from a larger
set can be achieved using multiple approaches. Exhaustive search is rarely
used in datasets with many features due to the heavy computational cost
related to do validation of every possible feature combination in a dataset. A
common approach is to use a greedy method, such as a forward selection or
backward elimination, as they are fast and robust against overfitting [110].
A wrapper based nested cross-validation [90] with a modified feed forward
approach, where the 5 best features in an iteration was used in this work
to determine the best feature combination in the next iteration.
The nested cross-validation with feature extraction scheme is used to

determine the performance which can be obtained using a feature subset. A
new feature selection is then conducted to identify the optimal subset, fSet3,
from fSet2. The new feature set, fSet4, are then be included. A second
round of nested cross-validation and feature selection will be performed
to identify the potential performance and the feature set, fSet5, from
fSet3 ∪ fSet4.

12.4.3 Experiment 3: Full episodes

As the proposed system is designed to annotate full episodes, it is important
to present the performance which the end user will see. As a result of
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this, the performance on full episodes are computed using a leave-one-out
validation on full episodes using the feature set fSet5.

The complete system classifies stimulation with a resolution of 10Hz. It
is however a reasonable assumption that activities performed by health
care workers do not change at such a speed, nor do they last as short time.
By taking these two factors into consideration, a post processing scheme
were introduced, with the potential of eliminating short segments where
the activity was misclassified.

One of the most basic post processing schemes consists of doing a major-
ity voting within a detected activity region, this approach has the same
challenges as VuClassifier [85], and will therefore not be considered for fur-
ther analysis. As one of the challenges of this approach is misclassifications
at the borders, a second post processing scheme consists of classifying the
edge regions alone, while leaving the bigger middle section to be classified as
a single activity. This scheme can solve the edge problem, but determining
the ideal size of these edges can pose a challenge. An alternative processing
scheme is based on the idea that the detected activity region could include
one or more areas with actual stimulation. The change between stimulation
and non-stimulation activities should, however, not be able to change as
fast as original classification. This post processing scheme can easily be
implemented using a median filter on the classified timeline.

12.5 Results

12.5.1 Experiment 1

The VuClassifier was trained on the original dataset described in [85], and
then used to classify the subset D3. The performance can be seen in
table 12.4, and the used features can be seen in column fSet1 in table 12.2.

Table 12.4: Performance using the features and classifier proposed by Vu et al.on blocks
with variable length found as time segments where an activity is found by VuDetector
and either stimulation or no activity is manually annotated, D3

Method #features Sensitivity Specificity Accuracy
VuClassifier [85] 46 88.4% 1.7% 50.7%
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Figure 12.4: Overview of the computed feature values for the same time period
illustrated in Figure 12.2 using the 23 final features, fSet5. Each row in the heat map
illustrate the values of a given feature over time. A darker color indicates a higher value.
The feature order is the same as shown in table 12.5. All features are normalized in the
region [0, 1] for visualization purposes. NBstim evaluates the regions found by VuDetect,
and classify them as stimulation or non-stimulation activities.

12.5.2 Experiment 2

The performance using all 44 causal window based features in fSet2 on the
dataset D2, can be seen in table 12.5. The 44 features are then reduced
to 24 features using feature selection. The chosen features can be seen in
column fSet3 in table 12.2, and the performance of the reduced feature set in
table 12.5. A feature extraction is conducted the feature subset consisting of
fSet3 ∪ fSet4 resulting in fSet5 as seen in table 12.2. Performance for each
subset is computed using a nested cross-validation with feature extraction.
The performance of these three feature sets are seen in table 12.5.

A visualization of the computed values for the final feature set, fSet5,
is shown in Figure 12.4. Each row corresponds to a given feature, and a
darker color indicate a higher value in the computed feature value. For
visualization purposes, all features are normalized to [0, 1].

12.5.3 Experiment 3

The performance when distinguishing between stimulation and non-
stimulation activities in entire resuscitation episodes, D1, with and with-
out a post processing scheme are shown in table 12.6. A leave-one-out
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Table 12.5: Performance of various feature sets computed using sliding window on
time points where an activity is found by VuDetector and either stimulation of no
activity is manually annotated, D2. The performance is computed using a 3-fold nested
cross-validation

Feature set #features Sensitivity Specificity Accuracy
fSet2 44 61.7% 65.5% 61.7%
fSet3 24 63.3% 65.5% 63.7%
fSet4 9 75.6% 43.7% 69.7%
fSet3∪ fSet4 33 57.4% 69.8% 59.7%
fSet5 23 67.3% 62.1% 66.4%

Table 12.6: Performance of NBstim when distinguishing between stimulation and
non-stimulation in full resuscitation episodes with a maximum length of 7 minutes, D1

Method Sensitivity Specificity Accuracy
No postprocessing 68.3% 93.1% 88.6%
Median filtering 69.2% 94.8% 90.3%

cross-validation is used, and the classified timeline is compared to when
stimulation or no-stimulation is manually annotated.

12.6 Discussion

Validation of VuClassifier achieves a high sensitivity and a low specificity
in distinguishing between stimulation and non-stimulation events on the
data set annotated by a neonatologist, more details in section 12.2.1. This
performance does not correspond to the accuracy of 79.8%, sentivity of
84% and specificity of 72.6% reported in Vu et al. [85]. The degradation
in performance could be a result of how the new dataset is defined. The
increased size should not affect performance, but how manual annotations
are found may result in a change. In the original publication, Vu et al [85],
the data was annotated by the author using several additional categories,
and may therefore differ from how a trained clinician would annotate it.
By combining features in fSet1 with a sliding window, fSet2, and a

simple classifier, an accuracy of 61.7% is achieved, with a sensitivity and
a specificity both above 60%. By adding more features to a system, the
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performance does not necessarily increase. The final feature set, fSet5,
found using a feature selection approach, outperforms the original feature
set,fSet2.
The performance when using the STFT features, fSet4, to distinguish

between stimulation and non-stimulation activities achieve a high sensitivity
and accuracy. The specificity is, however, reduced compared to the reduced
feature set from Vu et al [85], fSet3. The final subset, fSet5, consisting
of 23 features, achieves a sensitivity and accuracy which is lower, but the
specificity has a large increase compared to using only the new features.
While correct identification of the stimulation events are important, we
want to keep the false positive rate as low as possible to better indicate
how much stimulation is actually given during the resuscitation.
Using the obtained feature subset, fSet5, on complete episodes, D1, a

large increase in performance is seen with the accuracy increasing from
66.4% in table 12.5 to 88.6% in table 12.6. This increase is a result of
complete resuscitation episodes often include large time periods where
no stimulation occurs. As many of these periods are not identified as
interesting by VuDetector, the specificity will increase. By applying a
median filter post processing scheme, the accuracy is further increased to
90.3%.
While the addition of new STFT features may be considered a small

expansion of previous work, we consider the proposed causal system with
a reduced feature set to be an important step towards utilizing this work
for automatic annotation of newborn stimulation. The new features were
proposed to describe repetitive movement observed when health care per-
sonnel performed stimulation, i.e. rubbing the back of the newborn. In
the visualization of the final feature set, fSet5, we can see some differences
between the feature values in the stimulation and non-stimulation regions.
It is, however, challenging to determine how each feature is physiological
linked to the performed activity.
The signal composition, consisting of accelerometer and dry electrode

ECG, as available from the NeoBeat has never been available before. A
method utilizing these signals to automatically annotate when stimulation
is being performed during resuscitation can greatly impact future studies
of how stimulation activities affect the resuscitation process and newborn
outcome. With such a system, like we propose with NBstim, studies
exploring how stimulation activities affects the resuscitation process will no
longer be limited to using a low number of manually annotated data, but
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Figure 12.5: Example graphical user interface for the proposed system. In this example,
the timeline includes manually annotated data, shown in green, and automatically
classified data, shown in cyan. ECG and acceleration signals are included to visualize
the current measurements to the user.

information from larger data sets can be extracted. Statistics on how guide-
lines are followed can be extracted. It will also allow to extract information
of the duration of stimulation activities during a resuscitation. Was it a
continuous stimulation or multiple? When the newborn was not ventilated,
was that due to hands-off time or stimulation? Such information may be
vital when exploring how resuscitation outcomes are correlated with the
stimulation activities during resuscitation. In a future scenario we might
have NeoBeat available in some hospitals, video signals in other hospitals,
ventilation data from some hospitals, or several of these components. We
are planning to fuse the output of the NBstim algorithm with the output of
the automated video analysis [86], and potentially output from ventilator
signals [84] to produce more reliable timelines of activities, also including
ventilation and suction when possible.

For further quality assurance and truth marking for validation, an inter-
face similar to what is shown in Figure 12.5 can be used as an interactive
annotation tool with the automatic detections as a first step, and with the
option of refining these manually if needed.
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12.6.1 Limitations

Due to the small data set of only 74 resuscitations episodes, a total of 21830
seconds, the proposed system may can be seen as a feasibility study of the
possibility of annotating stimulation based on the measured accelerometer
and ECG signals. When identifying the feature set, a smaller subset of
only 1961 seconds is utilized. This reduction is performed by only including
time periods where some movement occur, and VuDetector identifies the
movement as an activity, and either only stimulation or no therapeutic
activity is performed. The advantage of using this smaller subset for the
feature selection is that the method will identify features which are crucial in
distinguishing stimulation and non-stimulation activities instead of focusing
on patterns from other activities. Because of this limited data set with
ground truth, further validation is required before applying the method in
clinical practice.

12.7 Conclusion

In this work, we present a complete system for automatic identification
of stimulation during newborn resuscitation. The system consists of
an activity detector, and the proposed NBstim classifier with 23 features,
18 from the 100Hz accelerometer signals in X,Y, and Z-directions and 5
from the 500Hz dry-electrode ECG signal. Features are computed using
a sliding window of 1 second with 900ms overlap. NBstim achieves a
high performance, with an accuracy of 90.3% in identifying stimulation,
and could therefore be used as a replacement of time consuming manual
annotation, or as an initial step in an interactive tool. The ultimate
objective is to save lives at birth, and more specifically by studying what
activities are performed by health care providers during resuscitation of
asphyxiated newborns, if guidelines are followed, and if current guidelines
are effective in saving lives.

The system can be used with the newly released Laerdal NeoBeat New-
born Heart Rate Meter, but a validation using a larger data set is required
before implementing the method in clinical practice. In the Safer Births
project, we are currently working on expand our data collection of newborn
resuscitation, and we want to to increase the number of manually annotated
data.
In future work, we want to utilize NBstim for creating timelines for

thousands of newborn resuscitation episodes. In combination with the
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immediate and 24-hour outcome, available in the Safer Births project, we
can extract vital statistics and potentially get a greater understanding
of how stimulation activities affect resuscitation procedures and newborn
outcomes.
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