Interaction between two calcite surfaces in aqueous solutions: Study of nano-scale interfacial forces using AFM and SFA

Authors

Shaghayegh Javadi

Synopsis

Carbonate-bearing rocks in the upper Earth’s crust are prone to continuous changes under influences of various physical and chemical processes. The macroscopic mechanical strength of carbonates is generally controlled by the cohesion between contacting grains at a molecular scale. These grains deform in contact regions due to the chemistry of pore fluid. The repulsive and attractive forces that perate at the grain contacts may be affected by the dissolution and recrystallization kinetics at the mineral-liquid interfaces. The processes by which the nano-scale interfacial forces are influenced by changing properties of the confined fluid are largely unknown. In this thesis, I investigate these processes and their possible contribution to the strength of calcite-bearing rocks and materials. The Atomic Force Microscope (AFM) and Surface Force Apparatus (SFA) are two powerful tools that provide an opportunity of direct observation of mineral reactions to the contacting fluid and measuring the surface forces at nano-scale in air and liquid environments. In this project, we perform an extended number of experiments using the AFM and SFA to improve our understanding of variation in interfacial forces linked to the strength of calcite and calcite-bearing rocks. In the AFM experiments, we bring an in situ fabricated calcite probe into contact with an opposing freshly cleaved calcite surface in a fluid cell containing aqueous solutions with varying chemical compositions. We also combine the AFM force measurements with a technique called inverse imaging, for in situ simultaneous characterization of the calcite probes. Based on these experiments, we discuss that the possible variation in local topography of contacts, together with a strong dependence on ionic strength of the solution, can explain the variation in strength of calcite rocks in aqueous solutions. With the SFA, we can perform in situ observations of the possible changes in the surfaces via light interferometry technique while measuring the interfacial interactions at nano-scale. At this scale, interactions between contacting surface asperities define the nature of interfacial forces, repulsive or attractive. We discuss how the crystal growth, dissolution and changes in surface roughness affect these interaction forces and their implications on the strength of calcite-bearing rocks.

Author Biography

Shaghayegh Javadi

Department of Physics
University of Oslo
E-mail: shaghayegh.javadi@fys.uio.no

References

E. R. Agudo and C. V. Putnis. Direct observations of mineral fluid reactions using atomic force microscopy: the specific example of calcite. Mineralogical Magazine, 76(1):227-253, 2012. https://doi.org/10.1180/minmag.2012.076.1.227

N. A. Alcantar, J. N. Israelachvili, and J. Boles. Forces and ionic transport between mica surfaces: implications for pressure solu- tion. Geochimica et Cosmochimica Acta, 67(7):1289-1304, 2003a. https://doi.org/10.1016/S0016-7037(02)01270-X

N. A. Alcantar, C. Park, J. M. Pan, and J. N. Israelachvili. Adhesion and coalescence of ductile metal surfaces and nanoparticles. Acta materialia, 51(1):31-47, 2003b. https://doi.org/10.1016/S1359-6454(02)00225-2

M. P. Andersson, K. Dideriksen, H. Sakuma, and S. L. S. Stipp. Modelling how incorporation of divalent cations affects calcite wettability - Implications for biomineralisation and oil recovery. Scientific Reports, 6(28854), 2016. https://doi.org/10.1038/srep28854

A. Anzalone, J. Boles, G. Greene, K. Young, J. N. Israelachvili, and N. Alcantar. Confined fluids and their role in pressure solution. Chemical Geology, 230(3-4):220-231, 2006. https://doi.org/10.1016/j.chemgeo.2006.02.027

A. Awolayo, H. Sarma, and A. M. AlSumaiti. A laboratory study of ionic effect of smart water for enhancing oil recovery in carbonate reservoirs. In SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 31 March-2 April 2014. https://doi.org/10.2118/169662-MS

T. Baimpos, B. R. Shrestha, S. Raman, and M. Valtiner. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3 M Li+ and Cs+ electrolyte solutions. Langmuir, 30(15):4322-4332, 2014. https://doi.org/10.1021/la500288w

D. P. Bentz, C. F. Ferraris, S. Z. Jones, D. Lootens, and F. Zunino. Limestone and silica powder replacements for cement: Early-age performance. Cement and Concrete Composites, 78:43-56, April 2017. https://doi.org/10.1016/j.cemconcomp.2017.01.001

M. Benz, K. J. Rosenberg, E. J. Kramer, and J. N. Israelachvili. The deformation and adhesion of randomly rough and patterned surfaces. The Journal of Physical Chemistry B, 110(24):11884- 11893, 2006. https://doi.org/10.1021/jp0602880

V. Bergeron and C. J. Radke. Disjoining pressure and stratification in asymmetric thin-liquid films. Colloid and Polymer Science, 273:165-174, 1995. https://doi.org/10.1007/BF00654014

A. S. Bergsaker, A. Røyne, A. Ougier-Simonin, J. Aubry, and F. Re- nard. The effect of fluid composition, salinity, and acidity on sub- critical crack growth in calcite crystals. Journal of Geophysical Research: Solid Earth, 121(3):1631-1651, 2016. https://doi.org/10.1002/2015JB012723

S. Bhattacharjee, C. H. Ko, and M. Elimelech. DLVO interaction between rough surfaces. Langmuir, 14:3365-3375, 1998. https://doi.org/10.1021/la971360b

S. Biggs, D. C. Prieve, and R. R. Dagastine. Direct comparison of atomic force microscopic and total internal reflection microscopic measurements in the presence of nonadsorbing polyelectrolytes. Langmuir, 21(12):5421-5428, 2005. https://doi.org/10.1021/la050041e

G. Binnig and C. F. Quate. Atomic force microscope. Physical Review Letters, 56(9), 1986. https://doi.org/10.1103/PhysRevLett.56.930

M. J. Blandamer, J. B. Engberts, P. T. Gleeson, and J. C. Reis. Activity of water in aqueous systems; a frequently neglected prop- erty. Chemical Society Reviews, 34(5):440-58, 2005. https://doi.org/10.1039/b400473f

T. L. Blanton. Deformation of chalk under confining pressure and pore pressure. Society of Petroleum Engineers, 21(01), 1981. https://doi.org/10.2118/8076-PA

J. Bohr, R. A. Wogelius, P. M. Morris, and S. L. S. Stipp. Thickness and structure of the water film deposited from vapour on calcite surfaces. Geochimica et Cosmochimica Acta, 74(21):5985-5999, 2010. https://doi.org/10.1016/j.gca.2010.08.003

J. A. Brant and A. E. Childress. Membrane-Colloid interactions: Comparison of extended DLVO predictions with AFM force mea- surements. Environmental Engineering Science, 19(6):413-427, 2004. https://doi.org/10.1089/109287502320963409

N. Brantut, M. J. Heap, P. Baud, and P. G. Meredith. Mechanisms of time-dependent deformation in porous limestone. Journal of Geophysical Research: Solid Earth, 119(7):5444-5463, 2014. https://doi.org/10.1002/2014JB011186

G. Brekke-Svaland and F. Bresme. Interactions between hydrated calcium carbonate surfaces at nanoconfinement conditions. The Journal of Physical Chemistry C, 122(13):7321-7330, 2018. https://doi.org/10.1021/acs.jpcc.8b01557

H. J. Butt. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophysical Journal, 60(6):1438-1444, 1991. https://doi.org/10.1016/S0006-3495(91)82180-4

H. J. Butt, K. Graf, and M. Kappl. Physics and Chemistry of Interfaces. Wiley, 2003. https://doi.org/10.1002/3527602313

H. J. Butt, B. Cappella, and M. Kappl. Force measurements with the atomic force microscope: Technique, interpretation and ap- plications. Surface Science Reports, 59(1-6):1-152, 2005. https://doi.org/10.1016/j.surfrep.2005.08.003

D. L. Chapman. A contribution to the theory of electrocapillarity. Philosophical Magazine, 25(148):475-481, 1913. https://doi.org/10.1080/14786440408634187

J. Chen and C. J. Spiers. Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model. Journal of Geophysical Research: Solid Earth, 121(12): 8642-8665, 2016. https://doi.org/10.1002/2016JB013470

S.-Y. Chen, Y. Kaufman, K. Kristiansen, D. Seo, A. M. Schrader, M. B. Alotaibi, H. A. Dobbs, N. A. Cadirov, J. R. Boles, S. C. Ayirala, J. N. Israelachvili, and A. A. Yousef. Effects of salinity on oil recovery (the Dilution Effect): Experimental and theoreti- cal studies of crude oil/brine/carbonate surface restructuring and associated physicochemical interactions. Energy and Fuels, 31(9): 8925-8941, 2017. https://doi.org/10.1021/acs.energyfuels.7b00869

M. O. Ciantia, R. Castellanza, G. B. Crosta, and T. Hueckel. Effects of mineral suspension and dissolution on strength and compress- ibility of soft carbonate rocks. Engineering Geology, 184:1-18, 2015. https://doi.org/10.1016/j.enggeo.2014.10.024

D. Croizé. Mechanical and chemical compaction of carbonates - An experimental study. PhD thesis, Department of Geosciences, University of Oslo, 2010. https://doi.org/10.1029/2010JB007697

D. Croizé, F. Renard, K. Bjørlykke, and D. K. Dysthe. Experimen- tal calcite dissolution under stress: Evolution of grain contact microstructure during pressure solution creep. Journal of Geo- physical Research, 115(B9), 2010. https://doi.org/10.1029/2010JB000869

D. Croizé, F. Renard, and J. P. Gratier. Compaction and porosity reduction in carbonates: A review of observations, theory, and experiments. Advances in Geophysics, 54:181-238, 2013. https://doi.org/10.1016/B978-0-12-380940-7.00003-2

N. H. de Leeuw and S. C. Parker. Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach. Journal of Physical Chemistry B, 102: 2914-2922, 1998. https://doi.org/10.1021/jp973210f

P. Delage, C. Schroeder, and Y. J. Cui. Subsidence and capillary effects in chalks. arxiv:0803.1308, 2008.

B. Derjaguin and L. Landau. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress in Surface Science, 43:1-4, 1941. https://doi.org/10.1016/0079-6816(93)90013-L

M. H. Derkani, A. J. Fletcher, W. Abdallah, B. Sauerer, J. Ander- son, and Z. J. Zhang. Low salinity waterflooding in carbonate reservoirs. Colloids and Interfaces, 2(2):20, 2018. https://doi.org/10.3390/colloids2020020

M. D'Heur. Porosity and hydrocarbon distribution in the north sea chalk reservoirs. Marine and Petroleum Geology, 1(3):211-238, 1984. https://doi.org/10.1016/0264-8172(84)90147-8

Y. Diao and R. M. Espinosa-Marzal. Molecular insight into the nanoconfined calcite-solution interface. Proceedings of the Na- tional Academy of Sciences, 113(43):12047-12052, 2016. https://doi.org/10.1073/pnas.1605920113

J. Donaldson, S. H., A. Røyne, K. Kristiansen, M. V. Rapp, S. Das, M. A. Gebbie, D. W. Lee, P. Stock, M. Valtiner, and J. N. Is- raelachvili. Developing a general interaction potential for hy- drophobic and hydrophilic interactions. Langmuir, 31(7):2051- 2064, 2015. https://doi.org/10.1021/la502115g

D. Doornhof, T. G. Kristiansen, N. B. Nagel, P. D. Pattillo, and C. Sayers. Compaction and subsidence. Oilfield Review, 18(3): 50-68, 2006.

W. A. Ducker, T. J. Senden, and R. M. Pashley. Direct measurement of colloidal forces using an atomic force miscroscope. Nature, 353 (6341):239-241, 1991. https://doi.org/10.1038/353239a0

J. Dziadkowiec, S. Javadi, J. E. Bratvold, O. Nilsen, and A. Røyne. Surface Forces Apparatus measurements of interactions between rough and reactive calcite surfaces. Langmuir, 34(25):7248-7263, 2018. https://doi.org/10.1021/acs.langmuir.8b00797

N. Eom, D. F. Parsons, and V. S. J. Craig. Roughness in surface force measurements: Extension of DLVO theory to describe the forces between hafnia surfaces. Journal of Physical Chemistry B, 121(26):6442-6453, 2017. https://doi.org/10.1021/acs.jpcb.7b03131

R. M. Espinosa-Marzal, T. Drobek, T. Balmer, and M. P. Heuberger. Hydrated-ion ordering in electrical double layers. Physical Chemistry Chemical Physics (PCCP), 14(17):6085-6093, 2012. https://doi.org/10.1039/c2cp40255f

S. J. Fathi, T. Austad, and S. Strand. "Smart Water" as a wettabil- ity modifier in chalk: The effect of salinity and ionic composition. Energy and Fuels, 24(4):2514-2519, 2010. https://doi.org/10.1021/ef901304m

S. J. Fathi, T. Austad, and S. Strand. Water-based enhanced oil recovery (EOR) by "Smart Water" in carbonate reservoirs. In SPE International. Society of Petroleum Engineers, January 2012. https://doi.org/10.2118/154570-MS

P. Fenter, S. Kerisit, P. Raiteri, and J. D. Gale. Is the calcite-water interface understood? Direct comparisons of molecular dynamics simulations with specular X-ray reflectivity data. The Journal of Physical Chemistry C, 117(10):5028-5042, 2013. https://doi.org/10.1021/jp310943s

T. Foxall, G. C. Peterson, H. M. Rendall, and A. L. Smith. Charge determination at calcium salt/aqueous. Chemical Society, Fara- day Transactions 1: Physical Chemistry in Condensed Phases, 1979. https://doi.org/10.1039/f19797501034

G. V. Franks. Zeta potentials and yield stresses of silica suspen- sions in concentrated monovalent electrolytes: isoelectric point shift and additional attraction. Journal of Colloid and Interface Science, 249(1):44-51, 2002. https://doi.org/10.1006/jcis.2002.8250

J. C. Fröberg, O. J. Rojas, and P. M. Claesson. Surface forces and measuring techniques. International Journal of Mineral Process- ing, 56:1-30, 1999. https://doi.org/10.1016/S0301-7516(98)00040-4

Z. Gao, C. Li, W. Sun, and Y. Hu. Anisotropic surface properties of calcite: A consideration of surface broken bonds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520:53-61, 2017. https://doi.org/10.1016/j.colsurfa.2017.01.061

J. W. Gibbs. On the equilibrium of heterogeneous substances. Amer- ican Journal of Science, 16(96):441-458, 1878. https://doi.org/10.2475/ajs.s3-16.96.441

K. A. R. Gomari and A. A. Hamouda. Effect of fatty acids, wa- ter composition and pH on the wettability alteration of calcite surface. Journal of Petroleum Science and Engineering, 50(2): 140-150, 2006. https://doi.org/10.1016/j.petrol.2005.10.007

G. Gouy. On the formation of electrical charges at the surface of an electrolyte. Journal of Physique, (9):457, 1910. https://doi.org/10.1051/jphystap:019100090045700

J. Gratier, R. Guiguest, F. Renard, L. Jenatton, and D. Bernard. A pressure solution creep law for quartz from indentation exper- iments. Journal of Geophysical Research, 114(B3), 2009. https://doi.org/10.1029/2008JB005652

J. P. Gratier, F. Renard, and P. Labaume. How pressure solution creep and fracturing processes interact in the upper crust to make it behave in both a brittle and viscous manner. Journal of Struc- tural Geology, 21:1189-1197, 1999. https://doi.org/10.1016/S0191-8141(99)00035-8

M. Gutierrez, L. E. Øino, and K. Høeg. The effect of fluid content on the mechanical behaviour of fractures in chalk. Rock Mechanics and Rock Engineering, 33(2):93-117, 2000. https://doi.org/10.1007/s006030050037

T. Hassenkam, L. L. Skovbjerg, and S. L. S. Stipp. Probing the intrinsically oil-wet surfaces of pores in north sea chalk at sub- pore resolution. Proceedings of the National Academy of Sciences (PNAS), 106(15):6071-6, 2009. https://doi.org/10.1073/pnas.0901051106

T. Hassenkam, A. Johnsson, K. Bechgaard, and S. L. S. Stipp. Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification. Pro- ceedings of the National Academy of Sciences (PNAS), 108(21): 8571-6, 2011. https://doi.org/10.1073/pnas.1009447108

R. Heaney, C. Weaver, S. Hinders, B. Martin, and P. Packard. Absorbability of calcium from brassica vegetables: broccoli, bok choy, and kale. Journal of Food Science, 58:1378-1380, 1993. https://doi.org/10.1111/j.1365-2621.1993.tb06187.x

F. Heberling, T. P. Trainor, J. Lutzenkirchen, P. Eng, M. A. De- necke, and D. Bosbach. Structure and reactivity of the calcite- water interface. Journal of Colloid and Interface Science, 354(2): 843-57, 2011. https://doi.org/10.1016/j.jcis.2010.10.047

F. Heberling, D. Bosbach, J.-D. Eckhardt, U. Fischer, J. Glowacky, M. Haist, U. Kramar, S. Loos, H. S. Müller, T. Neumann, C. Pust, T. Schäfer, J. Stelling, M. Ukrainczyk, V. Vinograd, M. Vučak, and B. Winkler. Reactivity of the calcite-water-interface, from molecular scale processes to geochemical engineering. Applied Geochemistry, 45:158-190, 2014. https://doi.org/10.1016/j.apgeochem.2014.03.006

T. Heggheim, M. V. Madland, R. Risnes, and T. Austad. A chemical induced enhanced weakening of chalk by seawater. Journal of Petroleum Science and Engineering, 46(3):171-184, 2005. https://doi.org/10.1016/j.petrol.2004.12.001

R. Hellmann, J. Gratier, and P. Renders. Deformation of chalk by pressure solution. In V.M. Goldschmidt Conference, volume 1, page 248, Heidelberg, 1996. GoldSchmidt, V.M. Goldschmidt.

R. Hellmann, P. Gaviglio, P. Renders, J. Gratier, S. Békri, and P. Adler. Experimental pressure solution compaction of chalk in aqueous solutions: Part 2: deformation examined by SEM, porosimetry, synthetic permeability and X-ray computerized to- mography. Water-Rock Interactions, Ore Deposits, and Environ- mental Geochemistry, A tribute to David A. Crerar (R. Hellmann, and SA Wood, Eds.)(7):153-178, 2002a.

R. Hellmann, P. Renders, J. Gratier, and R. Guiguet. Experimental pressure solution compaction of chalk in aqueous solutions part 1. deformation behavior and chemistry. Water-Rock Interactions, (7):129-152, 2002b.

H. V. Helmholtz. About some laws of distribution of electric currents in physical conductors with application to the brutish-electrical experiments. Annual Physics (Leipzig), 165:211-233, 1853.

M. P. Heuberger, Z. Zachariah, N. D. Spencer, and R. M. Espinosa- Marzal. Collective dehydration of ions in nano-pores. Physical Chemistry Chemical Physics (PCCP), 19(21):13462-13468, 2017. https://doi.org/10.1039/C7CP01439B

A. Hiorth, L. M. Cathles, and M. V. Madland. The impact of pore water chemistry on carbonate surface charge and oil wettability. Transport in Porous Media, 85(1):1-21, 2010. https://doi.org/10.1007/s11242-010-9543-6

E. M. Hoek and G. K. Agarwal. Extended DLVO interactions be- tween spherical particles and rough surfaces. Journal of Colloid and Interface Science, 298(1):50-8, 2006. https://doi.org/10.1016/j.jcis.2005.12.031

X. Huang, S. Bhattacharjee, and E. M. Hoek. Is surface roughness a "scapegoat" or a primary factor when defining particle-substrate interactions? Langmuir, 26(4):2528-37, 2010. https://doi.org/10.1021/la9028113

J. L. Hutter and J. Bechhoefer. Calibration of atomic-force mi- croscope tips. Review of Scientific Instruments, 64(7):1868-1873, 1993. https://doi.org/10.1063/1.1143970

J. N. Israelachvili. Thin film studies using multiple-beam interfer- ometry. Journal of Colloid and Interface Science, 44(2):259-272, 1973. https://doi.org/10.1016/0021-9797(73)90218-X

J. N. Israelachvili. Intermolecular and Surface Forces. Elsevier, 3rd edition, 2011.

J. N. Israelachvili and R. M. Pashley. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature, 306: 249-250, 1983. https://doi.org/10.1038/306249a0

J. N. Israelachvili and D. Tabor. The measurement of van der waals dispersion forces in the range 1.5 to 130 nm. Proceedings of the Royal Society Lond. A, 331(1584):19-38, 1972. https://doi.org/10.1098/rspa.1972.0162

J. N. Israelachvili, Y. Min, M. Akbulut, A. Alig, G. Carver, W. Greene, K. Kristiansen, E. Meyer, N. Pesika, K. Rosenberg, and H. Zeng. Recent advances in the surface forces apparatus (sfa) technique. Reports on Progress in Physics, 73(3):036601, 2010. https://doi.org/10.1088/0034-4885/73/3/036601

J. N. Israellachvili. Surface Force Apparatus: user manual for SFA 3 and SFA 2000 with attachements. SurForceLLC, 2013.

S. Javadi and A. Røyne. Adhesive forces between two cleaved calcite surfaces in NaCl solutions: The importance of ionic strength and normal loading. Journal of Colloid and Interface Science, 532: 605-613, 2018. https://doi.org/10.1016/j.jcis.2018.08.027

Y. Jiang and K. T. Turner. Measurement of the strength and range of adhesion using atomic force microscopy. Extreme Mechanics Letters, 9:119-126, 2016. https://doi.org/10.1016/j.eml.2016.05.013

O. N. Karaseva, L. Z. Lakshtanov, D. V. Okhrimenko, D. A. Belova, J. Generosi, and S. L. S. Stipp. Biopolymer control on calcite precipitation. Crystal Growth and Design, 18(5):2972-2985, 2018. https://doi.org/10.1021/acs.cgd.8b00096

S. Kerisit and S. C. Parker. Free energy of adsorption of water and calcium on the {10 ¯1 4} calcite surface electronic supplementary information (esi) available: free energy calculations. Chemical Communications, (1):52, 2004. https://doi.org/10.1039/b311928a

A. Kirch, S. M. Mutisya, V. M. Sánchez, J. M. de Almeida, and C. R. Miranda. Fresh molecular look at Calcite-Brine nanoconfined interfaces. The Journal of Physical Chemistry C, 122(11):6117- 6127, 2018. https://doi.org/10.1021/acs.jpcc.7b12582

M. Kohns, M. Schappals, M. Horsch, and H. Hasse. Activities in aqueous solutions of the alkali halide salts from molecular simu- lation. Journal of Chemical and Engineering Data, 61(12):4068- 4076, 2016. https://doi.org/10.1021/acs.jced.6b00544

C. Labbez, B. Jonsson, M. Skarba, and M. Borkovec. Ion-ion corre- lation and charge reversal at titrating solid interfaces. Langmuir, 25(13):7209-7213, 2009. https://doi.org/10.1021/la900853e

K. S. Lackner, C. H. Wendt, D. P. Butt, E. L. J. JR., and D. H. Sharp. Carbon dioxide disposal in carbonate minerals. Energy, 20(11):1153-1170, 1995. https://doi.org/10.1016/0360-5442(95)00071-N

L. Z. Lakshtanov, D. V. Okhrimenko, O. N. Karaseva, and S. L. S. Stipp. Limits on calcite and chalk recrystallization. Crystal Growth and Design, 18(8):4536-4543, 2018. https://doi.org/10.1021/acs.cgd.8b00537

D. Leckband. The surface force apparatus - a tool for probing molec- ular protein interactions. Nature, 376:617-618, 1995. https://doi.org/10.1038/376617a0

F. K. Lehneri and J. Bataille. Nonequilibrium thermodynamics of pressure solution. Pure and Applied Geophysics, 122(1):53-85, 1984. https://doi.org/10.1007/BF00879649

Y. Levenson and S. Emmanuel. Repulsion between calcite crystals and grain detachment during water-rock interaction. Geochemical Perspectives Letters, pages 133-141, 2017. https://doi.org/10.7185/geochemlet.1714

L. Li, F. Kohler, A. Røyne, and D. Dysthe. Growth of calcite in confinement. Crystals, 7(12):361, 2017. https://doi.org/10.3390/cryst7120361

E. M. Lifshitz. The theory of molecular attractive forces between solids. Soviet Physics JETP, 2(1):73-83, 1956.

X. Liu, W. Yan, E. H. Stenby, and E. Thormann. Release of crude oil from silica and calcium carbonate surfaces: On the alternation of surface and molecular forces by high- and low-salinity aqueous salt solutions. Energy and Fuels, 30(5):3986-3993, 2016. https://doi.org/10.1021/acs.energyfuels.6b00569

M. V. Madland, A. Hiorth, E. Omdal, M. Megawati, T. Hildebrand- Habel, R. I. Korsnes, S. Evje, and L. M. Cathles. Chemical alter- ations induced by rock-fluid interactions when injecting brines in high porosity chalks. Transport in Porous Media, 87(3):679-702, 2011. https://doi.org/10.1007/s11242-010-9708-3

C. Marutschke, D. Walters, D. Walters, I. Hermes, R. Bechstein, and A. Kuhnle. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy. Nanotechnology, 25(33):335703, 2014. https://doi.org/10.1088/0957-4484/25/33/335703

J. Matthiesen, N. Bovet, E. Hilner, M. P. Andersson, D. A. Schmidt, K. J. Webb, K. N. Dalby, T. Hassenkam, J. Crouch, I. R. Collins, and S. L. S. Stipp. How naturally adsorbed material on minerals affects low salinity enhanced oil recovery. Energy and Fuels, 28 (8):4849-4858, 2014. https://doi.org/10.1021/ef500218x

M. Megawati, A. Hiorth, and M. V. Madland. The impact of surface charge on the mechanical behavior of high-porosity chalk. Rock Mechanics and Rock Engineering, 46(5):1073-1090, 2012. https://doi.org/10.1007/s00603-012-0317-z

L. Montelius and J. O. Tegenfeldt. Direct observation of the tip shape in scanning probe microscopy. Applied Physics Letters, 62 (21):2628-2630, 1993. https://doi.org/10.1063/1.109267

J. W. Morse, R. S. Arvidson, and A. Lüttge. Calcium carbonate formation and dissolution. Chemical Review, 107:342-381, 2007. https://doi.org/10.1021/cr050358j

S. M. Mutisya, A. Kirch, J. M. de Almeida, V. M. Sánchez, and C. R. Miranda. Molecular dynamics simulations of water confined in calcite slit pores: An NMR spin relaxation and hydrogen bond analysis. The Journal of Physical Chemistry C, 121(12):6674- 6684, 2017. https://doi.org/10.1021/acs.jpcc.6b12412

P. C. Myint and A. Firoozabadi. Thin liquid films in improved oil recovery from low-salinity brine. Current Opinion in Colloid and Interface Science, 20(2):105-114, 2015. https://doi.org/10.1016/j.cocis.2015.03.002

M. Nalbach, P. Raiteri, S. Klassen, S. Schäfer, J. D. Gale, R. Bech- stein, and A. Kühnle. Where is the most hydrophobic region? Benzopurpurine self-assembly at the calcite-water interface. The Journal of Physical Chemistry C, 121(43):24144-24151, 2017. https://doi.org/10.1021/acs.jpcc.7b09825

A. Nermoen, R. I. Korsnes, A. Hiorth, and M. V. Madland. Porosity and permeability development in compacting chalks during flood- ing of nonequilibrium brines: Insights from long-term experiment. Journal of Geophysical Research, 120(5):2935-2960, 2015. https://doi.org/10.1002/2014JB011631

A. Nermoen, R. I. Korsnes, E. V. Storm, T. Stødle, M. V. Mad- land, and I. L. Fabricius. Incorporating electrostatic effects into the effective stress relation - Insights from chalk experiments. Geophysics, 83(3):MR123-MR135, 2018. https://doi.org/10.1190/geo2016-0607.1

A. Nicolas, J. Fortin, J. B. Regnet, A. Dimanov, and Y. Guéguen. Brittle and semi-brittle behaviours of a carbonate rock: influence of water and temperature. Geophysical Journal International, 206 (1):438-456, 2016. https://doi.org/10.1093/gji/ggw154

M. R. Nielsen, K. K. Sand, J. D. Rodriguez-Blanco, N. Bovet, J. Generosi, K. N. Dalby, and S. L. S. Stipp. Inhibition of calcite growth: Combined effects of Mg2+ and SO−4 2. Crystal Growth and Design, 16(11), 2016. https://doi.org/10.1021/acs.cgd.6b00536

O. Nilsen, H. Fjellvåg, and A. Kjekshus. Growth of calcium carbon- ate by the atomic layer chemical vapour deposition technique. Thin Solid Films, 450(2):240-247, 2004. NPD. Ekofisk. Norwegian Ministry of Petroleum and Energy, July 2019. URL field/ekofisk/. https://doi.org/10.1016/j.tsf.2003.10.152

M. M. A. Omari, I. S. Rashid, N. A. Qinna, A. M. Jaber, and A. A. Badwan. Calcium carbonate. Profiles of Drug Substance, Excipients, and Related Methodology, 41:31-132, 2016. https://doi.org/10.1016/bs.podrm.2015.11.003

N. S. Ottosen and M. Ristinmaa. The Mechanics of Constituitive Modeling. Elsevier Science, 2005.

V. A. Parsegian and T. Zemb. Hydration forces: Observations, explanations, expectations, questions. Current Opinion in Colloid and Interface Science, 16(6):618-624, 2011. https://doi.org/10.1016/j.cocis.2011.06.010

D. F. Parsons, M. Bostrom, P. Lo Nostro, and B. W. Ninham. Hofmeister effects: interplay of hydration, nonelectrostatic poten- tials, and ion size. Physical Chemistry Chemical Physics (PCCP), 13(27):12352-67, 2011. https://doi.org/10.1039/c1cp20538b

D. F. Parsons, R. B. Walsh, and V. S. Craig. Surface forces: surface roughness in theory and experiment. Journal of Chemical Physics, 140(164701), 2014. https://doi.org/10.1063/1.4871412

R. Pashley. DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties. Colloid and Interface Science, 83(2):531-546, 1981. https://doi.org/10.1016/0021-9797(81)90348-9

R. M. Pashley and J. N. Israelachvili. DLVO and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions. Colloid and Interface Science, 97(2):446-455, 1984. https://doi.org/10.1016/0021-9797(84)90316-3

N. R. Pedersen, T. Hassenkam, M. Ceccato, K. N. Dalby, K. Mo- gensen, and S. L. S. Stipp. Low salinity effect at pore scale: Probing wettability changes in middle east limestone. Energy and Fuels, 30(5):3768-3775, 2016. https://doi.org/10.1021/acs.energyfuels.5b02562

T. D. Perry, R. T. Cygan, and R. Mitchell. Molecular models of a hydrated calcite mineral surface. Geochimica et Cosmochimica Acta, 71(24):5876-5887, 2007. https://doi.org/10.1016/j.gca.2007.08.030

B. N. Persson and M. Scaraggi. Theory of adhesion: role of surface roughness. Journal of Chemical Physics, 141(124701), 2014. https://doi.org/10.1063/1.4895789

B. N. Persson, O. Albohr, U. Tartaglino, A. I. Volokitin, and E. Tosatti. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. Journal of Physics: Condensed Matter, 17(1):R1-R62, 2005. https://doi.org/10.1088/0953-8984/17/1/R01

B. N. J. Persson. Contact mechanics for randomly rough surfaces. Surface Science Reports, 61(4):201-227, 2006. https://doi.org/10.1016/j.surfrep.2006.04.001

B. N. J. Persson and S. Gorb. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. Journal of Chemical Physics, 119(21):11437-11444, 2003. https://doi.org/10.1063/1.1621854

S. Pourchet, I. Pochard, F. Brunel, and D. Perrey. Chemistry of the calcite/water interface: Influence of sulfate ions and consequences in terms of cohesion forces. Cement and Concrete Research, 52: 22-30, 2013. https://doi.org/10.1016/j.cemconres.2013.04.002

P. Prokopovich and S. Perni. Multiasperity contact adhesion model for universal asperity height and radius of curvature distributions. Langmuir, 26(22):17028-36, 2010. https://doi.org/10.1021/la102208y

T. Puntervold. Waterflooding of carbonate reservoirs. PhD thesis, Department of Petroleum Engineering, University of Stavanger, 2008.

A. Putnis. Transient porosity resulting from fluid-mineral interac- tion and its consequences. Reviews in Mineralogy and Geochem- istry, 80(1):1-23, 2015. https://doi.org/10.2138/rmg.2015.80.01

M. Reithmeier and A. Erbe. Dielectric interlayers for increasing the transparency of metal films for mid-infrared attenuated to- tal reflection spectroscopy. Physical Chemistry Chemical Physics (PCCP), 12(44):14798-14803, 2010. https://doi.org/10.1039/c0cp01125h

F. Renard, S. Beauprêtre, C. Voisin, D. Zigone, T. Candela, D. K. Dysthe, and J.-P. Gratier. Strength evolution of a reactive fric- tional interface is controlled by the dynamics of contacts and chemical effects. Earth and Planetary Science Letters, 341-344: 20-34, 2012. https://doi.org/10.1016/j.epsl.2012.04.048

F. Renard, A. Røyne, and C. V. Putnis. Timescales of interface- coupled dissolution-precipitation reactions on carbonates. Geo- science Frontiers, 10(1):17-27, 2019. https://doi.org/10.1016/j.gsf.2018.02.013

F. Renards and P. Ortoleva. Water films at grain-grain contacts: Debye-hückel, osmotic model of stress, salinity, and mineralogy dependence. Geochimica et Coesmochimica Acta, 61(10):1963- 1970, 1997. https://doi.org/10.1016/S0016-7037(97)00036-7

M. Ricci, P. Spijker, F. Stellacci, J. F. Molinari, and K. Voitchovsky. Direct visualization of single ions in the Stern layer of calcite. Langmuir, 29(7):2207-2216, 2013. https://doi.org/10.1021/la3044736

R. Risnes. Deformation and yield in high porosity outcrop chalk. Physics and Chemistry of the Earth (A), 26(1-2):53-57, 2001. https://doi.org/10.1016/S1464-1895(01)00022-9

R. Risnes and O. Flaageng. Mechanical properties of chalk with emphasis on chalk-fluid interactions and micromechanical aspects. Oil and Gas Science and Technology, 54(6):751-758, 1999. https://doi.org/10.2516/ogst:1999063

R. Risnes and V. Nygaard. Elasticity in high porosity outcrop chalk. In Second Euroconference on Rock Physics and Rock Mechanics, Edinburgh, Scotland, 1999. Heriot-Watt University.

R. Risnes, H. Haghighi, R. I. Korsnes, and O. Natvik. Chalk-fluid interactions with glycol and brines. Tectonophysics, 370(1-4):213- 226, 2003. https://doi.org/10.1016/S0040-1951(03)00187-2

R. Risnes, M. Madland, M. Hole, and N. Kwabiah. Water weakening of chalk-Mechanical effects of water-glycol mixtures. Journal of Petroleum Science and Engineering, 48:21-36, 2005. https://doi.org/10.1016/j.petrol.2005.04.004

S. Rode, N. Oyabu, K. Kobayashi, H. Yamada, and A. Kühnle. True Atomic-Resolution imaging of {10¯14} calcite in aqueous solution by frequency modulation Atomic Force Microscopy. Langmuir, 25:2850-2853, 2009. https://doi.org/10.1021/la803448v

A. Røyne, J. Bisschop, and D. K. Dysthe. Experimental investi- gation of surface energy and subcritical crack growth in calcite. Journal of Geophysical Research, 116(B4), 2011. https://doi.org/10.1029/2010JB008033

A. Røyne, K. N. Dalby, and T. Hassenkam. Repulsive hydration forces between calcite surfaces and their effect on the brittle strength of calcite-bearing rocks. Geophysical Research Letters, 42(12):4786-4794, 2015. https://doi.org/10.1002/2015GL064365

E. Ruiz-Agudo, C. V. Putnis, C. Jiménez-López, and C. Rodriguez- Navarro. An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions. Geochimica et Cosmochimica Acta, 73(11):3201-3217, 2009. https://doi.org/10.1016/j.gca.2009.03.016

E. Ruiz-Agudo, C. V. Putnis, and A. Putnis. Coupled dissolution and precipitation at mineral-fluid interfaces. Chemical Geology, 383:132-146, 2014. https://doi.org/10.1016/j.chemgeo.2014.06.007

E. Ruiz-Agudo, H. E. King, L. D. Patiño-López, C. V. Putnis, T. Geisler, C. Rodriguez-Navarro, and A. Putnis. Control of silicate weathering by interface-coupled dissolution-precipitation processes at the mineral-solution interface. Geology, 44(7):567- 570, 2016. https://doi.org/10.1130/G37856.1

E. H. Rutter. Pressure solution in nature, theory and experiment. Journal of Geological Society, 140:725-740, 1983. https://doi.org/10.1144/gsjgs.140.5.0725

E. H. Rutter and D. Elliott. The kinetics of rock deformation by pressure solution. Philosophical Transactions of the Royal Society, A(283):203-219, 1976. https://doi.org/10.1098/rsta.1976.0079

S. F. Shariatpanahi, S. Strand, and T. Austad. Initial wetting prop- erties of carbonate oil reservoirs: Effect of the temperature and presence of sulfate in formation water. Energy and Fuels, 25(7): 3021-3028, 2011. https://doi.org/10.1021/ef200033h

E. D. Shchukin. Surfactant effects on the cohesive strength of par- ticle contacts: Measurements by the cohesive force apparatus. Journal of Colloid and Interface Science, 256(1):159-167, 2002. https://doi.org/10.1006/jcis.2001.8062

S. Sivasankar, W. Brieher, N. Lavrik, B. Gumbiner, and D. Leck- band. Direct molecular force measurements of multiple adhe- sive interactions between cadherin ectodomains. Proceedings of the National Academy of Sciences (PNAS), 96(21):11820-11824, 1999. https://doi.org/10.1073/pnas.96.21.11820

A. J. Skinner, J. P. LaFemina, and H. J. F. Jansen. Structure and bonding of calcite: a theoretical study. American Mineralogist, 79:205-214, 1994.

L. L. Skovbjerg, D. V. Okhrimenko, J. Khoo, K. N. Dalby, T. Has- senkam, E. Makovicky, and S. L. S. Stipp. Preferential adsorp- tion of hydrocarbons to nanometer-sized clay on chalk particle surfaces. Energy and Fuels, 27(7):3642-3652, 2013. https://doi.org/10.1021/ef301832b

A. M. Smith, A. A. Lee, and S. Perkin. The electrostatic screening length in concentrated electrolytes increases with concentration. Journal of Physical Chemistry Letter, 7(12):2157-63, 2016. https://doi.org/10.1021/acs.jpclett.6b00867

H. Songen, B. Reischl, K. Miyata, R. Bechstein, P. Raiteri, A. L. Rohl, J. D. Gale, T. Fukuma, and A. Kuhnle. Resolving point defects in the hydration structure of calcite (10.4) with Three- Dimensional Atomic Force Microscopy. Physical Review Letters, 120(11):116101, 2018. doi: 10.1103/PhysRevLett.120.116101. https://doi.org/10.1103/PhysRevLett.120.116101

O. Stern. The theory of the electrolytic double-layer. Z. Elekro- chemie und Angewandte Physikaliche Chemie, 30:508, 1924.

M. P. Stewart, A. W. Hodel, A. Spielhofer, C. J. Cattin, D. J. Muller, and J. Helenius. Wedged AFM-cantilevers for parallel plate cell mechanics. Methods, 60(2):186-94, 2013. https://doi.org/10.1016/j.ymeth.2013.02.015

S. L. S. Stipp. Toward a conceptual model of the calcite surface: hydration, hydrolysis, and surface potential. Geochimica et Cos- mochimica Acta, 63(19-20):3121-3131, 1999. https://doi.org/10.1016/S0016-7037(99)00239-2

S. L. S. Stipp and M. F. Hochella. Structure and bonding environ- ments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Geochimica et Cosmochimica Acta, 55:1723-1736, 1991. https://doi.org/10.1016/0016-7037(91)90142-R

S. L. S. Stipp, C. M. Eggleston, and B. S. Nielsen. Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM). Geochimica et Coesmochimica Acta, 58(14):3023-3033, 1994. https://doi.org/10.1016/0016-7037(94)90176-7

S. L. S. Stipp, W. Gutmannsbauer, and T. Lehmann. The dynamic nature of calcite surfaces in air. American Mineralogist, 81:1-8, 1996. https://doi.org/10.2138/am-1996-1-201

S. Strand, E. J. Høgnesen, and T. Austad. Wettability alteration of carbonates-effects of potential determining ions (Ca2+ and SO−4 2) and temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 275(1-3):1-10, 2006. https://doi.org/10.1016/j.colsurfa.2005.10.061

S. Strand, T. Austad, T. Puntervold, E. Høgnesen, M. Olsen, and S. M. F. Barstad. "Smart water" for oil recovery from fractured limestone: A preliminary study. Energy and Fuels, 22:3126-3133, 2008. https://doi.org/10.1021/ef800062n

J. E. Sylte, L. K. Thomas, D. W. Rhett, D. D. Bruning, and N. B. Nagel. Water induced compaction in the Ekofisk Field. Number SPE-56426-MS, Houston, Texas, 3-6 October 1999. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engi- neers. https://doi.org/10.2118/56426-MS

D. Tabor and R. H. S. Winterton. Surface forces: Direct measure- ment of normal and retarded van der Waals forces. Nature, 219: 1120-1121, 1968. https://doi.org/10.1038/2191120a0

R. Tadmor, N. Chen, and J. N. Israelachvili. Thickness and refrac- tive index measurements using multiple beam interference fringes (FECO). Journal of Colloid and Interface Science, 264(2):548- 553, 2003. https://doi.org/10.1016/S0021-9797(03)00405-3

F. Teng, H. Zeng, and Q. Liu. Understanding the deposition and surface interactions of gypsum. The Journal of Physical Chem- istry C, 115(35):17485-17494, 2011. https://doi.org/10.1021/jp2051118

H. Teng, P. Dove, and J. D. Yoreo. Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws. Geochimica et Coesmochimica Acta, 64(13):2255-2266, 2000. https://doi.org/10.1016/S0016-7037(00)00341-0

E. Thormann. Surface forces between rough and topographically structured interfaces. Current Opinion in Colloid and Interface Science, 27:18-24, 2017. https://doi.org/10.1016/j.cocis.2016.09.011

U. Ulusoy and M. Yekeler. Correlation of the surface roughness of some industrial minerals with their wettability parameters. Chem- ical Engineering and Processing: Process Intensification, 44(5): 555-563, 2005. https://doi.org/10.1016/j.cep.2004.08.001

U. Ulusoy, C. Hiçyılmaz, and M. Yekeler. Role of shape properties of calcite and barite particles on apparent hydrophobicity. Chemical Engineering and Processing: Process Intensification, 43(8):1047- 1053, 2004. https://doi.org/10.1016/j.cep.2003.10.003

M. Valtiner, X. Banquy, K. Kristiansen, G. W. Greene, and J. N. Israelachvili. The electrochemical surface forces apparatus: The effect of surface roughness, electrostatic surface potentials, and anodic oxide growth on interaction forces, and friction between dissimilar surfaces in aqueous solutions. Langmuir, 28(36):13080- 13093, 2012. https://doi.org/10.1021/la3018216

E. Verpy, M. Leibovici, and C. Petit. Characterization of Otoconin- 95, the major protein of murine otoconia, provides insights into the formation of these inner ear biominerals. Proceedings of the National Academy of Sciences (PNAS), 96:529-534, 1999. https://doi.org/10.1073/pnas.96.2.529

E. Verwey. Theory of the stability of Lyophobic colloids. Journal of Physical Chemistry, 51(3):631-636, 1947. https://doi.org/10.1021/j150453a001

J. A. D. Waal. On the Rate Type Compaction Behavior of Sandstone Reservoir Rock. PhD thesis, Department of Applied science, Delft University of Technology, May 1986.

L. Wang and X. Fu. Data-driven analyses of low salinity water flooding in sandstones. Fuel, 234:674-686, 2018. https://doi.org/10.1016/j.fuel.2018.07.063

N. A. Wojas, A. Swerin, V. Wallqvist, M. Jarn, J. Schoelkopf, P. A. C. Gane, and P. M. Claesson. Iceland spar calcite: Humid- ity and time effects on surface properties and their reversibility. Journal of Colloid and Interface Science, 541:42-55, 2019. https://doi.org/10.1016/j.jcis.2019.01.047

M. Wolthers, L. Charlet, and P. V. Cappellen. The surface chem- istry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model. American Journal of Science, 308:905-941, 2008. https://doi.org/10.2475/08.2008.02

M. Wolthers, D. Di Tommaso, Z. Du, and N. H. de Leeuw. Cal- cite surface structure and reactivity: molecular dynamics sim- ulations and macroscopic surface modelling of the calcite-water interface. Physical Chemistry Chemical Physics (PCCP), 14(43): 15145-15157, 2012. https://doi.org/10.1039/c2cp42290e

X. Yang, F. Teng, H. Zeng, and Y. Liu. Impact of cranberry juice on initial adhesion of the EPS producing bacterium burkholderia cepacia. Biofouling, 28(5):417-431, 2012. https://doi.org/10.1080/08927014.2012.682576

J. Young, P. Brown, and J. Lees. International nanoplankton as- sociation. Nanotax3 website, April 2017. URL

Z. Zachariah, R. M. Espinosa-Marzal, N. D. Spencer, and M. P. Heuberger. Stepwise collapse of highly overlapping electrical dou- ble layers. Physical Chemistry Chemical Physics (PCCP), 18(35): 24417-27, 2016. https://doi.org/10.1039/C6CP04222H

P. Zhang, M. Tweheyo, and T. Austad. Wettability alteration and improved oil recovery in chalk: The effect of calcium in the pres- ence of sulfate. Energy and Fuels, 20:2056-2062, 2006. https://doi.org/10.1021/ef0600816

X. Zhang and C. J. Spiers. Compaction of granular calcite by pres- sure solution at room temperature and effects of pore fluid chem- istry. International Journal of Rock Mechanics and Mining Sci- ences, 42(7-8):950-960, 2005. https://doi.org/10.1016/j.ijrmms.2005.05.017

R. W. Zimmerman, W. H. Somerton, and M. S. King. Compress- ibility of porous rocks. Journal of Geophysical Research: Solid Earth, 91(B12):12765-12777, 1986. https://doi.org/10.1029/JB091iB12p12765

Cover for Interaction between two calcite surfaces in aqueous solutions: Study of nano-scale interfacial forces using AFM and SFA
Published
February 17, 2020