Divergent Synthesis of Indolo[3,2- c]quinolines, Neocryptolepines and Related Tetracyclic Ring-Systems Containing Promising Biological Activities

Authors

Katja Stangeland Håheim

Keywords:

malaria, indoloquinoline natural products, cryptolepine, neocryptolepine, isocryptolepine, indoloquinoline alkaloids

Synopsis

Malaria is a devastating tropical disease, claiming approximately 627 000 lives in 2020. Due to the appearance of resistance towards artemisinin-based therapies, the discovery of novel treatments are of paramount importance. The indoloquinoline natural products cryptolepine, neocryptolepine and isocryptolepine, first discovered in the extracts of the African bush plant Cryptolepis sanguinolenta, have been found to exhibit potent antimalarial properties. More- over, several functionalized derivatives of these compounds have shown great promise as an- tiplasmodial agents. The indoloquinoline alkaloids have also been found to possess significant antiproliferative and antimicrobial properties, making them ideal targets for the development into novel drug candidates.

The first project in this work details the application of a synthetic approach first devel- oped by Helgeland and Sydnes to assemble various tetracyclic ring systems. The key synthetic strategies being a Suzuki-Miyaura cross-coupling reaction followed by a palladium-catalyzed intramolecular cyclization. Though the approach was unsuitable to construct all the intended target molecules, it furnished the unexpected pyridophenanthridine scaffold. By further inves- tigating alternative protocols for the construction of indoloquinolines, a regiodivergent inter- mediate was discovered, which allowed for the synthesis of both novel pyridophenanthridine and pyridocarbazole scaffolds by utilizing two different reaction protocols. By subjecting this common intermediate to a diazotization-azidation-nitrene insertion approach, the novel pyrido- carbazoles could be furnished in excellent yields.

The unexpected formation of a biquinoline bridged by an aniline during a Suzuki-Miyaura cross-coupling reaction, was deemed interesting for development into a transition metal com- plex for catalysis. Through a collaborative effort with Dr. Eugene Khaskin’s group at Oki- nawa Institute of Science and Technology, five quinoline/pyridine N,N,N ligands were designed and synthesized. The key synthetic tools utilized in their construction was either a sequential Suzuki-Miyaura cross-coupling reaction and Buchwald-Hartwig amination or reductive amina- tion.

A novel two-step approach for the synthesis of the natural product neocryptolepine from commercially available bromoquinolines was developed. The key transformations being re- gioselective N-alkylations followed by a cascade Suzuki-Miyaura cross-coupling reaction and intramolecular nucleophilic C-N bond formation. The scope and limitations for the novel pro- tocol was evaluated through the preparation of 24 neocryptolepine derivatives, bearing a diverse range of functional groups, where electron-withdrawing group substitutions were generally su- perior.

It became apparent that it would also be possible to prepare a library of indolo[3,2-c]quino- lines from the same starting material as the newly devised strategy to produce neocryptolepines. By utilizing a reaction sequence consisting of a Suzuki-Miyaura cross-coupling reaction, in- stallation of an azido moiety and finally photochemical cyclization, this goal was realized, producing a total of 19 indoloquinolines. This protocol was less robost towards substrate func- tionalizations than the neocryptolepine approach, with no apparent trend concerning electron- withdrawing and electron-donating groups being apparent. The photochemical cyclization was hypothesized to proceed via the formation of a reactive singlet nitrene intermediate.

Finally, a selection of the prepared tetracyclic compounds assembled during this work was evaluated for their antiplasmodial, antiproliferative and antimicrobial activities by the help of various external collaborators. The most successful compound was revealed to be the novel pyridophenanthridines, displaying more potent antiproliferative activities than doxoru- bicin against human prostate cancer (IC50 = 24 nM). The novel pyridocarbazoles moreover showed excellent inhibition of biofilm formation, with the potential to be developed into a dual anticancer-antimicrobial agent. Of all the tested compounds, only N-methylated pyridocar- bazole was found to contain any significant activity against the evaluated Plasmodium falci- parum strain. The antimicrobial assays revealed the importance of the inclusion of a methyl group for activity, but not strictly in the form of an N-methyl unit, which is the general con- census in the literature thus far. Further, chlorinated indoloquinolines were revealed to contain excellent antimicrobial activity against both Gram-positive and Gram-negative bacterial cell lines.

Author Biography

Katja Stangeland Håheim

PhD fellow
Faculty of Science and Technology
Department of Chemistry, Bioscience and Environmental Engineering
University of Stavanger
katja.s.haheim@uis.no

References

Cox-Singh, J.; Singh, B. Trends Parasitol. 2008, 24, 406-410.

https://doi.org/10.1016/j.pt.2008.06.001

World Health Organization, World Malaria Report 2021. Available from: www.who.int/malaria/publications/world-malaria-report-2021/en/, Accessed: 7 March 2022.

Collins, F. H.; Paskewitz, S. M. Annu. Rev. Entomol. 1995, 40, 195-219.

https://doi.org/10.1146/annurev.en.40.010195.001211

Amambua-Ngwa, A. et al. Science 2019, 365, 813-816.

https://doi.org/10.1126/science.aav5427

Rosenthal, P. J. et al. Am. J. Trop. Med. Hyg. 2022, 1-3.

Cox, F. E. G. Parasites Vectors 2010, 3, 1-9.

https://doi.org/10.1186/1756-3305-3-9

King, A. Nature 2019, 575, 51-54.

https://doi.org/10.1038/d41586-019-03639-5

Chemison, A.; Ramstein, G.; Tompkins, A. M.; Defrance, D.; Camus, G.; Charra, M.; Caminade, C. Nat. Commun. 2021, 12, 1-12.

https://doi.org/10.1038/s41467-021-24134-4

Baelen, G. V. et al. Bioorg. Med. Chem. 2009, 17, 7209-7217.

https://doi.org/10.1016/j.bmc.2009.08.057

van Dorp, L. et al. Mol. Biol. Evol. 2020, 37, 773-785.

https://doi.org/10.1093/molbev/msz264

Fischer, L.; Gültekin, N.; Kaelin, M. B.; Fehr, J.; Schlagenhauf, P. Travel Med. Infect. Dis. 2020, 36, 101815.

https://doi.org/10.1016/j.tmaid.2020.101815

Hertig, E. Parasites Vectors 2019, 12, 1-9.

https://doi.org/10.1186/s13071-018-3278-6

Anthony, M. P.; Burrows, J. N.; Duparc, S.; Moehrle, J. J.; Wells, T. N. C. Malar. J. 2012, 11, 1-25.

https://doi.org/10.1186/1475-2875-11-316

Achan, J.; Talisuna, A. O.; Erhart, A.; Yeka, A.; Tibenderana, J. K.; Baliraine, F. N.; Rosenthal, P. J.; D'Alessandro, U. Malar. J. 2011, 10, 1-12.

https://doi.org/10.1186/1475-2875-10-144

Tse, E. G.; Korsik, M.; Todd, M. H. Malar. J. 2019, 18, 1-21.

https://doi.org/10.1186/s12936-019-2724-z

Wang, N.; Wicht, K. J.; Imai, K.; Wang, M.; Ngoc, T. A.; Kiguchi, R.; Kaiser, M.; Egan, T. J.; Inokuchi, T. Bioorg. Med. Chem. 2014, 22, 2629-2642.

https://doi.org/10.1016/j.bmc.2014.03.030

Krafts, K.; Hempelmann, E.; Skórska-Stania, A. Parasitol. Res. 2012, 111, 1-6.

https://doi.org/10.1007/s00436-012-2886-x

Nzila, A. J. Antimicrob. Chemother. 2006, 57, 1043-1054.

https://doi.org/10.1093/jac/dkl104

Hurwitz, E. S.; Johnson, D.; Campbell, C. C. Lancet 1981, 317, 1068-1070.

https://doi.org/10.1016/S0140-6736(81)92239-X

Gregson, A.; Plowe, C. V. Pharmacol. Rev. 2005, 57, 117-145.

https://doi.org/10.1124/pr.57.1.4

Andersson, J.; Forssberg, H.; Zierath, J. R. Avermectin and Artemisinin - Revolu- tionary Therapies against Parasitic Diseases. Nobelförsamlingen 2015, 1-11, Available from: www.nobelprize.org/nobel_prizes/medicine/laureates/2015/press.html, Accessed: 11 July 2018.

Su, X.-Z.; Miller, L. H. Sci. China Life Sci. 2015, 58, 1175-1179.

https://doi.org/10.1007/s11427-015-4948-7

van Agtmael, M. A.; Eggelte, T. A.; van Boxtel, C. J. Trends Pharmacol. Sci. 1999, 20, 199-205.

https://doi.org/10.1016/S0165-6147(99)01302-4

Ansari, M. T.; Saify, Z. S.; Sultana, N.; Ahmad, I.; Saeed-Ul-Hassan, S.; Tariq, I.; Khanum, M. Mini-Rev. Med. Chem. 2013, 13, 1879-1902.

https://doi.org/10.2174/13895575113136660097

Bridgford, J. L.; Xie, S. C.; Cobbold, S. A.; Pasaje, C. F. A.; Herrmann, S.; Yang, T.; Gillett, D. L.; Dick, L. R.; Ralph, S. A.; Dogovski, C.; Spillman, N. J.; Tilley, L. Nat. Commun. 2018, 9, 1-9.

https://doi.org/10.1038/s41467-018-06221-1

Yeung, S.; Vornpinyo, W. P.; Hastings, I. M.; Mills, A. J.; White, N. J. Am. J. Trop. Med. Hyg. 2004, 71, 179-186.

https://doi.org/10.4269/ajtmh.2004.71.179

Noedl, H.; Se, Y.; Scaecher, K.; Smith, B. L.; Socheat, D.; Fukuda, M. N. N. Engl. J. Med. 2008, 359, 2619-2620.

https://doi.org/10.1056/NEJMc0805011

Amato, R.; Pearson, R. D.; Almagro-Garcia, J.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Drury, E.; Stalker, J.; Miotto, O.; Fairhurst, R. M.; Kwiatkowski, D. P. Lancet Infect. Dis. 2018, 18, 337-345.

https://doi.org/10.1016/S1473-3099(18)30068-9

Asua, V.; Conrad, M. D.; Aydemir, O.; Duvalsaint, M.; Legac, J.; Duarte, E.; Tumwe- baze, P.; Chin, D. M.; Cooper, R. A.; Yeka, A.; Kamya, M. R.; Dorsey, G.; Nsobya, S. L.; Bailey, J.; Rosenthal, P. J. J. Infect. Dis. 2021, 223, 985-994.

https://doi.org/10.1093/infdis/jiaa687

Bergmann, C.; van Loon, W.; Habarugira, F.; Tacoli, C.; Jäger, J. C.; Savelsberg, D.; Nshimiyimana, F.; Rwamugema, E.; Mbarushimana, D.; Ndoli, J.; Sendegeya, A.; Bayingana, C.; Mockenhaupt, F. P. Emerg. Infect. Dis. 2021, 27, 294-296.

https://doi.org/10.3201/eid2701.203527

Uwimana, A. et al. Nat. Med. 2020, 26, 1602-1608.

https://doi.org/10.1038/s41591-020-1005-2

Uwimana, A. et al. Lancet Infect. Dis. 2021, 21, 1120-1128.

Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O. T.; Tachibana, S.-I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D. A.; Kimura, E.; Palacpac, N. M. Q.; Odongo- Aginya, E. I.; Ogwang, M.; Horii, T.; Mita, T. N. Engl. J. Med. 2021, 385, 1163-1171.

https://doi.org/10.1056/NEJMoa2101746

Straimer, J.; Gandhi, P.; Renner, K. C.; Schmitt, E. K. J. Infect. Dis. 2022, 225, 1411- 1414.

https://doi.org/10.1093/infdis/jiab352

Ndwiga, L. et al. Int. J. Parasotol. Drugs Drug Resist. 2021, 16, 155-161.

Kumar, S.; Bhardwaj, T. R.; Prasad, D. N.; Singh, R. K. Biomed. Pharmacother. 2018, 104, 8-27.

https://doi.org/10.1016/j.biopha.2018.05.009

RTS,S Clinical Trial Partnership. Lancet 2015, 386, 31-45.

https://doi.org/10.1016/S0140-6736(15)60721-8

World Health Organization, WHO Urges Countries to Move Quickly to Save Lives From Malaria in Sub-Saharan Africa, Available online at: https://www.who.int/news-room/questions-and-answers/item/malaria-vaccine-implementation-programme, Ac- cessed: June 7, 2022. 2020.

Nghochuzie, N. N.; Olwal, C. O.; Udoakang, A. J.; Amenga-Etego, L.; Amambua- Ngwa, A. Front. Microbiol. 2020, 18, 1-5.

Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A. G.; Bishayee, A. Eur. J. Pharma- col. 2019, 858, 172472.

https://doi.org/10.1016/j.ejphar.2019.172472

Qui, S.; Sun, H.; Zhang, A.-H.; Xu, H.-Y.; Yan, G.-L.; Ying, H.; Wang, X.-J. Chin. J. Nat. Med. 2014, 12, 401-406.

https://doi.org/10.1016/S1875-5364(14)60063-7

Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2020, 83, 770-803.

https://doi.org/10.1021/acs.jnatprod.9b01285

Daley, S.-K.; Cordell, G. A. Molecules 2021, 26, 3800.

https://doi.org/10.3390/molecules26133800

Brook, K.; Bennett, J.; Desai, S. P. J. Anesth. Hist. 2017, 3, 50-55.

https://doi.org/10.1016/j.janh.2017.02.001

Tillhon, M.; Oriz, L. M. G.; Lombardi, P.; Scovassi, A. I. Biochem. Pharmacol. 2012, 84, 1260-1267.

https://doi.org/10.1016/j.bcp.2012.07.018

Abourashed, E. A.; El-Alfy, A. T.; Khan, I. A.; Walker, L. Phytother. Res. 2003, 17, 703-712.

https://doi.org/10.1002/ptr.1337

Osafo, N.; Mensah, K. B.; Yeboah, O. K. Adv. Pharmacol. Sci. 2017, 1-13.

https://doi.org/10.1155/2017/3026370

Gellért, E.; Schlittler, R.-H. E. Helv. Chim. Acta 1951, 34, 642-651.

https://doi.org/10.1002/hlca.19510340228

Grycovà, L.; Dommisse, R.; Pieters, L.; Marek, R. Magn. Reson. Chem. 2009, 47, 977- 981.

https://doi.org/10.1002/mrc.2494

Sofowora, A. Medicinal Plants and Traditional Medicine in Africa; John Wiley & Sons: Chichester, 1982; pp 183-256.

Kirby, G. C.; Paine, A.; Warhurst, D. C.; Noamese, B. K.; Phillipson, J. D. Phytother. Res. 1995, 9, 359-363.

https://doi.org/10.1002/ptr.2650090510

Grellier, P.; Ramiaramanana, L.; Millerioux, V.; Deharo, E.; Shrèvel, K.; Frappier, F.; Trigalo, F.; Bodo, B.; Pousset, J. L. Phytother. Res. 1996, 10, 317-321.

https://doi.org/10.1002/(SICI)1099-1573(199606)10:4<317::AID-PTR858>3.0.CO;2-0

Olajide, O. A.; Heiss, E. H.; Schachener, D.; Wright, C. W.; Vollmar, A. M.; Dirsch, V. M. Bioorg. Med. Chem. 2007, 15, 43-49.

https://doi.org/10.1016/j.bmc.2006.10.018

Bierer, D. E. et al. J. Med. Chem. 1998, 41, 894-901.

https://doi.org/10.1021/jm9704816

Rauwald, H. W.; Kober, M.; Mutschler, E.; Lambrecht, G. Planta Med. 1992, 58, 486- 488.

https://doi.org/10.1055/s-2006-961531

Chen, Y.-J.; Liu, H.; Zhang, S.-Y.; Li, H.; Ma, K.-Y.; Liu, Y.-Q.; Yin, X.-D.; Zhou, R.; Yan, Y.-F.; Wang, R.-X.; He, Y.-H.; Chu, Q.-R.; Tang, C. J. Agric. Food. Chem. 2021, 69, 1259-1271.

https://doi.org/10.1021/acs.jafc.0c06480

Ablordeppey, S. Y.; Fan, P.; Li, S.; Clark, A. M.; Hufford, C. D. Bioorg. Med. Chem. 2002, 10, 1337-1346.

https://doi.org/10.1016/S0968-0896(01)00401-1

Singh, M.; Singh, M. P. Drug Dev. Ind. Pharm. 1996, 22, 377-381.

https://doi.org/10.3109/03639049609042003

Paulo, A.; Duarte, A.; Gomes, E. T. J. Ethnopharmacol. 1994, 44, 127-130.

https://doi.org/10.1016/0378-8741(94)90079-5

Cimanga, K.; Bruyne, T. D.; Lasure, A.; Poel, B. V.; Pieters, L.; Claeys, M.; Berghe, D. V.; Kambu, K.; Tona, L.; Vlietinch, A. Planta Med. 1996, 62, 22-27.

https://doi.org/10.1055/s-2006-957789

Zhao, M.; Kamada, T.; Takeuchi, A.; Nishioka, H.; Kuroda, T.; Takeuchi, Y. Bioorg. Med. Chem. 2015, 25, 5551-5554.

https://doi.org/10.1016/j.bmcl.2015.10.058

Karou, D.; Savadogo, A.; Canini, A.; Yameogo, S.; Montesano, C.; Simpore, J.; Col- izzi, V.; Traore, A. S. Afr. J. Biotechnol. 2007, 5, 195-200.

Lu, C.-M.; Chen, Y.-L.; Chen, H.-L.; Chen, C.-A.; Yang, P.-J.; Tzeng, C.-C. Bioorg. Med. Chem. 2010, 18, 1948-1957.

https://doi.org/10.1016/j.bmc.2010.01.033

Dassonneville, L.; Lansiaux, A.; Wattelet, A.; Watterz, N.; Mahieu, C.; Miert, S. V.; Pieters, L.; Bailly, C. Eur. J. Pharmacol. 2000, 409, 9-18.

https://doi.org/10.1016/S0014-2999(00)00805-0

Zhu, H.; Gooderham, N. J. Toxicol. Sci. 2006, 91, 132-139.

https://doi.org/10.1093/toxsci/kfj146

Matsui, T.-A.; Sowa, Y.; Murata, H.; Takagi, K.; Nakanishi, R.; Aoki, S.; Kobayashi, M.; Sakabe, T.; Kubo, T.; Sakai, T. Int. J. Oncol. 2007, 31, 915-922.

Bonjean, K.; Pauw-Gillet, M. C. D.; Defresne, M. P.; Colson, P.; Houssier, C.; Das- sonneville, L.; Bailly, C.; Greimers, R.; Wright, C. W.; Quetin-Leclercq, J.; Tits, M.; Angenot, L. Biochemistry 1998, 37, 5136-5146.

https://doi.org/10.1021/bi972927q

Mimanga, K.; Bruyne, T. D.; Pieters, L.; Vlietinck, A. J.; Turger, C. A. J. Nat. Prod. 1997, 60, 688-691.

https://doi.org/10.1021/np9605246

Pousset, J.-L.; Martin, M.-T.; Jossang, A.; Bodo, B. Phytochemistry 1995, 39, 735-736.

https://doi.org/10.1016/0031-9422(94)00925-J

Sharaf, M. M. H.; Schiff, P. L.; Tackie, A. N.; Phoebe, C. H.; Martin, G. E. J. Heterocycl. Chem. 1996, 33, 239-243.

https://doi.org/10.1002/jhet.5570330204

Sharaf, M. M. H.; Schiff, P. L.; Tackie, A. N.; Phoebe, C. H.; Johnson, R. L.; Minick, D.; Crouch, R. C.; Martin, G. E.; Andrews, C. W. J. Heterocycl. Chem. 1996, 33, 789-797.

https://doi.org/10.1002/jhet.5570330343

Lavrado, J.; Moreira, R.; Paulo, A. Curr. Med. Chem. 2010, 17, 2348-2370.

https://doi.org/10.2174/092986710791698521

Paulo, A.; Gomes, E. T.; Houghton, P. J. J. Nat. Prod. 1995, 58, 1485-1491.

https://doi.org/10.1021/np50124a002

Crouch, R. C.; Davis, A. O.; Spitzer, T. D.; Martin, G. E.; Sharaf, M. M. H.; Schiff, P. L.; Phoebe, C. H.; Tackie, A. N. J. Heterocycl. Chem. 1995, 32, 1077-1080.

https://doi.org/10.1002/jhet.5570320369

Wright, C. W.; Addae-Kyereme, J.; Breen, A. G.; Brown, J. E.; Cox, M. F.; Croft, S. L.; Gökçek, Y.; Kendrick, H.; Phillips, R. M.; Pollet, P. L. J. Med. Chem. 2001, 44, 3187- 3194.

https://doi.org/10.1021/jm010929+

Onyeibor, O.; Croft, S. L.; Dodson, H. I.; Feiz-Haddad, M.; Kendrick, H.; Milling- ton, N. J.; Parapini, S.; Phillips, R. M.; Seville, S.; Shnyder, S. D.; Tarameli, D.; Wright, C. W. J. Med. Chem. 2005, 48, 2701-2709.

https://doi.org/10.1021/jm040893w

Wang, N.; S'witalska, M.; Wang, L.; Shaban, E.; Hossain, M. I.; Sayed, I. E. T. E.; Wietryzk, J.; Inokuchi, T. Molecules 2019, 24, 1-12.

https://doi.org/10.3390/molecules24112121

Baker, N. C.; Ekins, S.; Williams, A. J.; Tropsha, A. Drug Discov. 2018, 23, 661-672.

https://doi.org/10.1016/j.drudis.2018.01.018

PATH, From Pipeline to Product: Malaria R&D malaria funding needs into the next decade; WHO Press: Seattle, 2013.

Hao, Y.; Wang, K.; Wang, Z.; Liu, Y.; Ma, D.; Wang, Q. J. Agric. Food Chem. 2020, 68, 8764-8773.

https://doi.org/10.1021/acs.jafc.0c04278

World Health Organization, World Cancer Report 2020: Cancer Research for Cancer Prevention. Available from: www.iarc.who.int/cards_page/world-cancer-report/, Ac- cessed: 11 June 2022.

Sidoryk, K.; Jaromin, A.; Edwards, J. A.; S'witalska, M.; Stefánska, J.; Cmoch, P.; Zagrodzka, J.; Szczepek, Q.; Peczyn'sla-Czoch, W.; Wietrzyk, J.; Kozubek, A.; Zarnowski, R.; Anders, D. R.; łL. Kaczmarek, Eur. J. Med. Chem. 2014, 78, 304-313.

https://doi.org/10.1016/j.ejmech.2014.03.060

Carvalho, C.; Santos, R. X.; Cardoso, S.; Correia, S.; Oliveira, P. J.; Santos, M. S.; Moreira, P. I. Curr. Med. Chem. 2009, 16, 3267-3285.

https://doi.org/10.2174/092986709788803312

Amari, M. R.; Wiraswati, H. L.; Fauziah, N.; Ma'ruf, I. F. Biomed. & Pharmacol. J. 2022, 15, 313-320.

https://doi.org/10.13005/bpj/2369

Moore, A.; Pinkerton, R. Pediatr. Blood Cancer 2009, 53, 1180-1187.

https://doi.org/10.1002/pbc.22161

Shaban, E.; S'witalska, M.; Wang, L.; Xiu, F.; Hayashi, I.; Ngoc, T. A.; Nagae, S.; El-Ghlban, S.; Shimoda, S.; Gokha, A. A. A. E.; Sayed, I. E. T. E.; Wietrzyk, J.; Inokuchi, T. Molecules 2017, 22, 1-11.

https://doi.org/10.3390/molecules22111954

Wang, N.; S'witalska, M.; Wu, M.-Y.; Imai, K.; Ngoc, T. A.; Pang, C.-Q.; Wietrzyk, J.; Inokuchi, T. Eur. J. Med. Chem. 2014, 78, 314-323.

https://doi.org/10.1016/j.ejmech.2014.03.038

Nuthakki, V. K.; Mudududdla, R.; Bharate, S. B. Eur. J. Med. Chem. 2022, 227, 113938.

https://doi.org/10.1016/j.ejmech.2021.113938

Holmes, A. H.; Moore, L. S. P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P. J.; Piddock, L. J. V. Lancet 2016, 387, 176-187.

https://doi.org/10.1016/S0140-6736(15)00473-0

Antimicrobial Resistance Collaborators, Lancet 2022, 399, 629-655.

Durand, G. A.; Raoult, D.; Dubourg, G. Int. J. Antimicrob. Agents 2019, 53, 371-382.

https://doi.org/10.1016/j.ijantimicag.2018.11.010

O'Neill, J. Tackling drug-resistant infections globally: final report and recommenda- tions. London: Review on Antimicrobial Resistance. 2016.

Stamm, A. M.; Long, M. N.; Belcher, B. Am. J. Infect. Control 1993, 21, 70-74.

https://doi.org/10.1016/0196-6553(93)90227-U

Drenkard, E. Microb. Infect. 2003, 5, 1213-1219.

https://doi.org/10.1016/j.micinf.2003.08.009

Teng, C. P.; Zhou, T.; Ye, E.; Liu, S.; Koh, L. D.; Low, M.; Loh, X. J.; Win, Y.; Zhang, L.; Han, M.-Y. Adv. Healthcare Mater. 2016, 5, 2122-2130.

https://doi.org/10.1002/adhm.201600346

Ligon, B. L. Semin. Pediatr. Infect. Dis. 2004, 15, 52-57.

https://doi.org/10.1053/j.spid.2004.02.001

Rodvold, K. A.; Piscitelli, S. C. Clin. Infect. Dis. 1993, 17, S192-S199.

https://doi.org/10.1093/clinids/17.Supplement_1.S192

Rehman, A.; Patrick, W. M.; Lamont, I. L. J. Med. Microbiol. 2019, 68, 1-10.

https://doi.org/10.1099/jmm.0.000873

Aroonkit, P.; Thongsornkleeb, C.; Tummatorn, J.; Krajangsri, S.; Mungthin, M.; Ruchi- rawat, S. Eur. J. Med. Chem. 2015, 94, 56-62.

https://doi.org/10.1016/j.ejmech.2015.02.047

Kumar, E. V. K. S.; Etukala, J. R.; Ablordeppey, S. Y. Mini Rev. Med. Chem. 2008, 8, 538-554.

https://doi.org/10.2174/138955708784534418

Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Curr. Org. Chem. 2011, 15, 1036- 1057.

https://doi.org/10.2174/138527211794785118

Bracca, A. B. J.; Heredia, D. A.; Larghi, E. L.; Kaufman, T. S. Eur. J. Org. Chem. 2014, 7979-8003.

https://doi.org/10.1002/ejoc.201402910

Parvatkar, P. T.; Parameswaran, P. S. Curr. Org. Synth. 2016, 13, 58-72.

https://doi.org/10.2174/1570179412666150511224648

Thongsornkleeb, C.; Tummatorn, J.; Ruchirawat, S. Chem. Asian J. 2022, 17, 1-19.

https://doi.org/10.1002/asia.202200040

Akitake, M.; Noda, S.; Miyoshi, K.; Sonoda, M.; Tanimori, S. J. Org. Chem. 2021, 86, 17727-17737.

https://doi.org/10.1021/acs.joc.1c02026

Aksenov, A. V.; Aksenov, D. A.; Orazova, N. A.; Aksenov, N. A.; Griaznov, G. D.; Carvalho, A. D.; Kiss, R.; Mathieu, V.; Kornienko, A.; Rubin, M. J. Org. Chem. 2017, 82, 3011-3018.

https://doi.org/10.1021/acs.joc.6b03084

Xu, M.; Wang, Q. H. S.; Wang, H.; Yao, Z.-J. Synthesis 2011, 4, 626-634.

https://doi.org/10.1055/s-0030-1258411

Scriven, E.; Ramsden, C. A. Advances in Heterocyclic Chemistry, Volume 132; Elsevier: Cambridge, 2020; pp 116-134.

Dilek, O.; Patir, S.; Tilki, T.; Ertürk, E. J. Org. Chem. 2019, 84, 7901-7916.

https://doi.org/10.1021/acs.joc.9b00706

Miller, C. M.; McCarthy, F. O. RCS Adv. 2012, 2, 8883-8918.

https://doi.org/10.1039/c2ra20584j

Sainsbury, M. Synthesis 1977, 437-448.

https://doi.org/10.1055/s-1977-24433

Hewlins, M. J.; Oliveira-Campos, A. M.; Shannon, P. V. Synthesis 1984, 289-302.

https://doi.org/10.1055/s-1984-30816

Gribble, G. W.; Saulnier, M. G. Heterocycles 1985, 23, 1277-1315.

https://doi.org/10.3987/R-1985-05-1277

Kansal, V. K.; Potier, P. Tetrahedron 1986, 42, 2389-2408.

https://doi.org/10.1016/0040-4020(86)80002-3

Alvares, M.; Joule, J. A. Alkaloids: Chem. Biol. 2001, 57, 235-273.

https://doi.org/10.1016/S0099-9598(01)57005-4

Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303-4428.

https://doi.org/10.1021/cr020059j

Schmutz, J.; Wittwer, H. Helv. Chim. Acta 1960, 43, 793-799.

https://doi.org/10.1002/hlca.19600430322

Liu, B.; Wang, S.; Bian, C.; Liao, H.; Lin, H.-W. Chin. J. Chem. 2021, 39, 1905-1910.

https://doi.org/10.1002/cjoc.202100094

Beauchard, A.; Chabane, H.; Sinbandhit, S.; Guenot, P.; Thiéry, V.; Besson, T. Tetrahe- dron 2006, 62, 1895-1903.

https://doi.org/10.1016/j.tet.2005.09.153

Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. Chem. Rev. 1998, 98, 409-548.

https://doi.org/10.1021/cr941170v

Kalinowski, J.; Rykowski, A.; Nantka-Namiriski, P. Pol. J. Chem. 1984, 58, 125-126.

Alekseev, R. S.; Kurkin, A. V.; Yurovskaya, M. A. Chem. Heterocycl. Compd. 2012, 48, 1235-1250.

https://doi.org/10.1007/s10593-012-1127-7

Mehra, M. K.; Sharma, S.; Rangan, K.; Kumar, D. Eur. J. Org. Chem. 2020, 2409-2413s.

https://doi.org/10.1002/ejoc.202000013

Helgeland, I. T. U.; Sydnes, M. O. SynOpen 2017, 1, 41-44.

Heravi, M. M.; Hashemi, E. Tetrahedron 2012, 68, 9145-9178.

https://doi.org/10.1016/j.tet.2012.08.058

Melchor, M. G. A. A Theoretical Study of Pd-Catalyzed C-C Cross-Coupling Reactions; Springer Science & Business Media: Barcelona, 2013; pp 113-115.

https://doi.org/10.1007/978-3-319-01490-6

Suzuki, A. Organomet. Chem. 1999, 576, 147-168.

https://doi.org/10.1016/S0022-328X(98)01055-9

Xia, Y.; Bao, Q.-F.; Li, Y.; Wang, L.-J.; Zhang, B.-S.; Liu, H.-C.; Liang, Y.-M. Chem. Commun. 2019, 55, 4675-4678.

https://doi.org/10.1039/C9CC00611G

Pacchioni, G.; Bagus, P. S. Inorg. Chem. 1992, 31, 4391-4398.

https://doi.org/10.1021/ic00047a029

Amatore, C.; Jutand, A.; Duc, G. L. Chem. Eur. J. 2011, 17, 2492-2503.

https://doi.org/10.1002/chem.201001911

Osakada, K.; Yamamoto, T. Coord. Chem. Rev. 2000, 198, 379-399.

https://doi.org/10.1016/S0010-8545(99)00210-6

Håheim, K. S.; Helgeland, I. T. U.; Lindbäck, E.; Sydnes, M. O. Tetrahedron 2019, 75, 2949-2957.

https://doi.org/10.1016/j.tet.2019.04.026

Chakraborty, M.; Umrigar, V.; Parikh, P. A. Int. J. Chem. React. Eng. 2008, 6, 1-12.

Charville, H.; Jackson, D. A.; Hodges, G.; Whiting, A.; Wilson, W. R. Eur. J. Org. Chem. 2011, 5981-5990.

https://doi.org/10.1002/ejoc.201100714

Ciufolini, M. A.; Byrne, N. E. J. Am. Chem. Soc. 1991, 113, 8016-8024.

https://doi.org/10.1021/ja00021a031

Casadei, M. A.; Galli, C.; Mandolini, L. J. Am. Chem. Soc. 1984, 106, 1051-1056.

https://doi.org/10.1021/ja00316a039

Bjørsvik, H.-R.; Elumalai, V. Eur. J. Org. Chem. 2016, 5474-5479.

https://doi.org/10.1002/ejoc.201601191

Landagaray, E.; Ettaoussi, M.; Rami, M.; Boutin, J. A.; Caignard, D.-H.; Delagrange, P.; Melnyk, P.; Berthelot, P.; Yous, S. Eur. J. Med. Chem. 2017, 127, 621-631.

https://doi.org/10.1016/j.ejmech.2016.12.013

Landagaray, E.; Ettaoussi, M.; Rami, M.; Boutin, J. A.; Caignard, D.-H.; Delagrange, P.; Melnyk, P.; Berthelot, P.; Yous, S. Eur. J. Med. Chem. 2017, 127, 621-631.

https://doi.org/10.1016/j.ejmech.2016.12.013

Tsang, W. C.; Munday, R. H.; Brasche, G.; Zheng, N.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7603-7610.

https://doi.org/10.1021/jo801273q

Lautens, M.; Fang, Y.-Q. Org. Lett. 2003, 5, 3679-3682.

https://doi.org/10.1021/ol035354k

Kato, T.; Yosihazawa, K.; Hirao, K. J. Chem. Phys. 2002, 116, 3420-3429.

https://doi.org/10.1063/1.1445102

Balaban, A. T. Pure Appl. Chem. 1980, 52, 1409-1429.

https://doi.org/10.1351/pac198052061409

Fukui, K. Science 1982, 218, 747-754.

https://doi.org/10.1126/science.218.4574.747

Cyran'ski, M. K.; Ste¸pién, B. T.; Krygowski, T. M. Tetrahedron 2000, 56, 9663-9667.

https://doi.org/10.1016/S0040-4020(00)00919-4

Portella, G.; Poater, J.; Bofill, J. M.; Alemany, P.; Solà, M. J. Org. Chem. 2005, 70, 2509-2521.

https://doi.org/10.1021/jo0480388

Hemelsoet, K.; Speybroeck, V. V.; Marin, G. B.; Proft, F. D.; Geerlings, P.; Waro- quier, M. J. Phys. Chem. A 2004, 108, 7281-7290.

https://doi.org/10.1021/jp048743k

Poater, J.; Visser, R.; Solà, M.; Bickelhaupt, F. M. J. Org. Chem. 2007, 72, 1134-1142.

https://doi.org/10.1021/jo061637p

Håheim, K. S.; Lindbäck, E.; Tan, K. N.; Albrigtsen, M.; Helgeland, I. T. U.; Lauga, C.; Matringe, T.; Kennedy, E. K.; Andersen, J. H.; Avery, V. M.; Sydnes, M. O. Molecules 2021, 26, 3268-3290.

https://doi.org/10.3390/molecules26113268

Timàri, G.; Soòs, T.; Hajòs, G. Synlett 1997, 1067-1068.

https://doi.org/10.1055/s-1997-1523

Hostyn, S.; Tehrani, K. A.; Lemière, F.; Smout, V.; Maes, B. U. W. Tetrahedron 2011, 67, 655-659.

https://doi.org/10.1016/j.tet.2010.10.077

Nàjera, C.; Beletskaya, I. P.; Yus, M. Chem. Soc. Rev. 2019, 48, 4515-4618.

https://doi.org/10.1039/C8CS00872H

Ho, T.-L.; Jou, D.-G. Helv. Chim. Acta 2002, 85, 3823-3827.

https://doi.org/10.1002/1522-2675(200211)85:11<3823::AID-HLCA3823>3.0.CO;2-S

Castejon, H.; Wiberg, K. B. J. Am. Chem. Soc. 1999, 121, 2139-2146.

https://doi.org/10.1021/ja983736t

Chelucci, G.; Thummel, R. P. Chem. Rev. 2002, 102, 3129-3170.

https://doi.org/10.1021/cr0101914

Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159- 2232.

https://doi.org/10.1021/cr9902897

Ma, W.-A.; Wang, Z.-X. Organometallics 2011, 30, 4364-4373.

https://doi.org/10.1021/om200423g

Gong, D.-P.; Gao, T.-B.; Cao, D.-K.; Ward, M. D. Dalton Trans. 2017, 46, 275-286.

https://doi.org/10.1039/C6DT04091H

Durand, J.; Milani, B. Coord. Chem. Rev. 2006, 250, 542-560.

https://doi.org/10.1016/j.ccr.2005.08.012

Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. Nat. Rev. 2017, 2, 17045.

https://doi.org/10.1038/natrevmats.2017.45

Qian, J.; Li, Q.; Liang, L.; Li, T.-T.; Hu, Y.; Huang, S. Dalton Trans. 2017, 46, 14102- 14106.

https://doi.org/10.1039/C7DT03255B

Busemann, A.; Flaspohler, I.; Zhou, X.-Q.; Schmidt, C.; Goetzfried, S. K.; Rixel, V. H. S.; Ott, I.; Siegler, M. A.; Bonnet, S. J. Biol. Inorg. Chem. 2021, 26, 667-674.

https://doi.org/10.1007/s00775-021-01882-8

Zayat, L.; Filevich, O.; Baraldo, L. M.; Etchenique, R. Phil. Trans. R. Soc. A 2013, 371, 1-12.

https://doi.org/10.1098/rsta.2012.0330

Lessing, T.; Müller, T. J. J. Appl. Sci. 2015, 5, 1803-1836.

https://doi.org/10.3390/app5041803

Stephens, D. E.; Lakey-Beitia, J.; Burch, J. E.; Arman, H. D.; Larionov, O. V. Chem. Commun. 2016, 52, 9945-9948.

https://doi.org/10.1039/C6CC04816A

Maddess, M. L.; Li, C. Organometallics 2019, 38, 81-84.

https://doi.org/10.1021/acs.organomet.8b00322

Dorel, R.; Grugel, C. P.; Haydl, A. M. Angew. Chem. Int. Ed. 2019, 58, 17118-17129.

https://doi.org/10.1002/anie.201904795

Hartwig, J. F. Synlett 1997, 4, 329-340.

https://doi.org/10.1055/s-1997-789

Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969-5970.

https://doi.org/10.1021/ja00092a058

Whitesides, G. M.; Gaasch, J. F.; Stedronsky, E. R. J. Am. Chem. Soc. 1972, 94, 5258- 5270.

https://doi.org/10.1021/ja00770a021

Cook, X. A. F.; Gombert, A.; McKnight, J.; Pantaine, L. R. E.; Willis, M. C. Angew. Chem. Int. Ed. 2021, 60, 11068-11091.

https://doi.org/10.1002/anie.202010631

Salvatore, R. N.; Nagle, A. S.; Jung, K. W. J. Org. Chem. 2002, 67, 674-683.

https://doi.org/10.1021/jo010643c

Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849-3862.

https://doi.org/10.1021/jo960057x

Adkins, H.; Billica, H. R. J. Am. Chem. Soc. 1948, 70, 695-698.

https://doi.org/10.1021/ja01182a080

Suzuki, Y.; Kaneno, D.; Tomoda, S. J. Phys. Chem. A 2009, 113, 2578-2583.

https://doi.org/10.1021/jp809966u

Nadein, O. M.; Aksenov, D. A.; Aksenov, G. M.; Aksenov, N. A.; Voskressensky, L. G.; Aksenov, A. V. Chem. Heterocycl. Compd. 2019, 55, 905-932.

https://doi.org/10.1007/s10593-019-02557-8

C-Thongsornkleeb,; Tummatorn, J.; Ruchirawat, S. Chem. Asian J. 2022, 17, 1-19.

https://doi.org/10.1002/asia.202200040

Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40-49.

https://doi.org/10.1021/ar700155p

Kadam, H. K.; Tilve, S. G. J. Heterocyclic Chem. 2016, 53, 2066-2069.

https://doi.org/10.1002/jhet.2213

Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc. 2018, 140, 8429- 8433.

https://doi.org/10.1021/jacs.8b05343

Proter, T. C.; Smalley, R. K.; Teguiche, M.; Purwono, B. Synthesis 1997, 1997, 773-777.

https://doi.org/10.1055/s-1997-1416

Roy, S. K.; Purkait, A.; Aziz, S. M. T.; Jana, C. K. Chem. Commun. 2020, 56, 3167- 3170.

https://doi.org/10.1039/C9CC09616G

Yeh, L.-H.; Wang, H.-K.; Pallikonda, G.; Ciou, Y.-L.; Hsieh, J.-C. Org. Lett. 2019, 21, 1730-1734.

https://doi.org/10.1021/acs.orglett.9b00287

Aksenov, D. A.; Arutyunov, N. A.; Gasanova, A. Z.; Aksenov, N. A.; Aksenov, A. V.; Lower, C.; Rubin, M. Tetrahedron Lett. 2021, 82, 153395.

https://doi.org/10.1016/j.tetlet.2021.153395

Akkachairin, B.; Tummatorn, J.; Khamsuwan, N.; Thongsornkleeb, C.; Ruchirawat, S. J. Org. Chem. 2018, 83, 11254-11268.

https://doi.org/10.1021/acs.joc.8b01851

Vecchione, M. K.; Sun, A. X.; Seidel, D. Chem. Sci. 2011, 2, 2178-2181.

https://doi.org/10.1039/c1sc00506e

Kraus, G. A.; Guo, H. A. Tetrahedron Lett. 2010, 51, 4137-4139.

https://doi.org/10.1016/j.tetlet.2010.05.141

Parvatkar, P. T.; Ajay, A. K.; Bhat, M. K.; Parameswaran, P. S.; Tilve, S. G. Med. Chem. Res. 2013, 22, 88-93.

https://doi.org/10.1007/s00044-012-0015-0

Kearney, A. M.; Vanderwal, C. D. Angew. Chem. Int. Ed. 2006, 45, 7803-7806.

https://doi.org/10.1002/anie.200602996

Sowmiah, S.; Esperança, J. M. S. S.; Rebelo, L. P. N.; Afonso, C. A. M. Org. Chem. Front. 2018, 5, 453-493.

https://doi.org/10.1039/C7QO00836H

Lavilla, R. J. J. Chem. Soc., Perkin Trans. 2002, 1, 1141-1156.

https://doi.org/10.1039/b101371h

Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642- 2713.

https://doi.org/10.1021/cr200251d

Bennasar, M.-L.; Alvares, M.; Lavilla, R.; Zulaica, E.; Bosch, J. J. Org. Chem. 1990, 55, 1156-1168.

https://doi.org/10.1021/jo00291a013

Mayr, H.; Breugst, M.; Ofial, A. R. Angew. Chem. Int. Ed. 2011, 50, 6470-6505.

https://doi.org/10.1002/anie.201007100

Poddubnyi, I. S. Chem. Heterocycl. Compd. 1995, 31, 682-714.

https://doi.org/10.1007/BF01169068

Crowley, J. D.; Steele, I. M.; Bosnich, B. Chem. Eur. J. 2006, 12, 8935-8951.

https://doi.org/10.1002/chem.200500519

Barré, A.; T¸ înta¸s, M.-L.; Alix, F.; Gembus, V.; Papamicaël, C.; Levacher, V. J. Org. Chem. 2015, 80, 6537-6544.

https://doi.org/10.1021/acs.joc.5b01119

Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471-479.

https://doi.org/10.1038/nature10702

Ullmann, F.; Bielecki, J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174-2185.

https://doi.org/10.1002/cber.190103402141

Hassan, J.; Sévignon, M.; Gozzi, G.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1469.

https://doi.org/10.1021/cr000664r

Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795-10798.

https://doi.org/10.1021/ja304410x

Jana, N.; Nguyen, Q.; Driver, T. G. J. Org. Chem. 2014, 79, 2781-2791.

https://doi.org/10.1021/jo500252e

Zhou, F.; Driver, T. G. Org. Lett. 2014, 16, 2916-2919.

https://doi.org/10.1021/ol5010615

Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458-6459.

https://doi.org/10.1021/jo970963p

Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. J. Org. Chem. 2000, 65, 164-168.

https://doi.org/10.1021/jo991337q

Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508-.

https://doi.org/10.1021/jo00128a024

Chow, W. K.; Yuen, O. Y.; Choy, P. Y.; So, C. M.; Lau, C. P.; Wong, W. T.; Kwong, F. Y. RSC Adv. 2013, 3, 12518-12539.

https://doi.org/10.1039/c3ra22905j

Kam, K. C.; Marder, T. B.; Lin, Z. Organometallics 2010, 29, 1849-1857.

https://doi.org/10.1021/om9010802

Nasri, N. S.; Jones, J. M.; Dupont, V. A.; Williams, A. Energy Fuels 1998, 12, 1130- 1134.

https://doi.org/10.1021/ef980104j

Hao, F.; Nishiwaki, N. Molecules 2020, 25, 673.

https://doi.org/10.3390/molecules25030673

Zhang, Z.; Pi, C.; Tong, H.; Cui, X.; Wu, Y. Org. Lett. 2017, 19, 440-443.

https://doi.org/10.1021/acs.orglett.6b03399

Vanderwal, C. D. J. Org. Chem. 2011, 76, 9555-9567.

https://doi.org/10.1021/jo201625e

Zincke, T. Liebigs Ann. Chem. 1904, 330, 361-374.

https://doi.org/10.1002/jlac.19043300217

Zincke, T.; Möller, W. Liebigs Ann. Chem. 1904, 333, 296-345.

https://doi.org/10.1002/jlac.19043330212

Zincke, T.; Wurker, W. Liebigs Ann. Chem. 1905, 338, 107-141.

https://doi.org/10.1002/jlac.19043380107

Kassel, V. M.; Hanneman, C. M.; Delaney, C. P.; Denmark, S. E. J. Am. Chem. Soc. 2021, 143, 13845-13853.

https://doi.org/10.1021/jacs.1c06419

Katritzky, A. R.; Lunt, E. Tetrahedron 1969, 25, 4291-4305.

https://doi.org/10.1016/S0040-4020(01)82968-9

Gritsan, N. P.; Platz, M. S. Chem. Rev. 2006, 106, 3844-3867.

https://doi.org/10.1021/cr040055+

Rehm, T. H. Chem. Eur. J. 2020, 18, 16952-16974.

https://doi.org/10.1002/chem.202000381

Hoffmann, N. Chem. Rev. 2008, 108, 1052-1103.

https://doi.org/10.1021/cr0680336

Schendera, E.; Unkel, L.-N.; Quyen, P. P. H.; Salkewitz, G.; Hoffmann, F.; Villinger, A.; Brasholz, M. Chem. Eur. J. 2020, 26, 269-274.

https://doi.org/10.1002/chem.201903921

Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Liu, Z.; Zhan, F.; Li, Z.-J.; Zhong, J.-J.; Xiao, H.; Feng, K.; Chen, B.; Tao, Y.; Tung, C.-H.; Wu, L.-Z. Sci. Adv. 2017, 3, 1-10.

https://doi.org/10.1126/sciadv.1700666

Scriven, E. F. V. Azides and Nitrenes: Reactivity and Utility; Academic Press INC: Indi- anapolis, 1984; pp 95-487.

Borden, W. T.; Gritsan, N. P.; Hadad, C. M.; Karney, W. L.; Kemnitz, C. R.; Platz, M. S. Acc. Chem. Res. 2000, 33, 765-771.

https://doi.org/10.1021/ar990030a

Belloli, R. J. Chem. Edu. 1971, 48, 422-426.

https://doi.org/10.1021/ed048p422

Karila, D.; Dodd, R. H. Curr. Org. Chem. 2011, 15, 1507-1538.

https://doi.org/10.2174/138527211795378128

Wang, J.; Burdzinski, G.; Platz, M. S.; Vyas, S.; Winter, A. H.; Hadad, C. M. In Nitrenes and Nitrenium Ions; Falvey, D. E., Gudmundsdottir, A. D., Eds.; John Wiley & Sons: Hoboken, 2013; pp 1-33.

https://doi.org/10.1002/9781118560907.ch1

Lindley, J. M.; McRobbie, I. M.; Meth-Cohn, O.; Suschitzky, H. Tetrahedron Lett. 1976, 49, 4513-4516.

https://doi.org/10.1016/0040-4039(76)80157-8

Sundberg, R. J.; Brenner, M.; Suter, S. R.; Das, B. P. Tetrahedron Lett. 1970, 31, 2715.

https://doi.org/10.1016/S0040-4039(01)98320-0

Sundberg, R. J.; Heintzelman, R. W. J. Org. Chem. 1974, 39, 2546.

https://doi.org/10.1021/jo00931a020

Klán, P.; Wirz, J. Photochemistry of Organic Compounds: From Concenpts to Practice; John Wiley & Sons: Wiltshire, 2009; p 25.

Coyle, J. D. Introduction to Organic Photochemistry; John Wiley & Sons: Chichester, 1986.

Wilkinson, F.; Kelly, G. P. J. Chem. Soc. Faraday Trans. 1991, 87, 547-552.

https://doi.org/10.1039/ft9918700547

Turro, N. J. Modern Molecular Photochemistry; University Science Books: Sausalito, 1991; p 421.

Schmidt, M. W.; Lee, E. K. C. J. Am. Chem. Soc. 1970, 92, 3579-3586.

https://doi.org/10.1021/ja00715a009

Feixas, F.; Matito, E.; Poater, J.; Sola, M. Chem. Soc. Rev. 2015, 44, 6434-6451.

https://doi.org/10.1039/C5CS00066A

Peterson, D. B.; Mains, G. J. J. Am. Chem. Soc. 1959, 81, 3510-3515.

https://doi.org/10.1021/ja01523a006

Ikeda, N.; Nakashima, N.; Yoshihara, K. J. Chem. Phys. 1985, 82, 5285-5286.

https://doi.org/10.1063/1.448603

Tsao, M.-L.; Gritsan, N. P.; James, T. R.; Platz, M. S.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 2003, 125, 9343-9358.

https://doi.org/10.1021/ja0351591

Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.

https://doi.org/10.1021/cr00039a007

Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437-3440.

https://doi.org/10.1016/S0040-4039(01)95429-2

Liu, M.; Tan, L.; Rashid, R. T.; Cen, Y.; Cheng, S.; Botton, G.; Mi, Z.; Li, C.-J. Chem. Sci. 2020, 11, 7864-7870.

https://doi.org/10.1039/D0SC02718A

Kuivila, H. G.; Reuwer, J. F.; Mangravite, J. A. Can. J. Chem. 1963, 41, 3081-3090.

https://doi.org/10.1139/v63-451

Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412-443.

https://doi.org/10.1039/C3CS60197H

Hayes, H. L. D.; Wei, R.; Assante, M.; Geogheghan, K. J.; Jin, N.; Tomasi, S.; Noo- nan, G.; Leach, A. G.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2021, 143, 14814-14826.

https://doi.org/10.1021/jacs.1c06863

Xu, L.; Wang, G.; Zhang, S.; Wang, H.; Wang, L.; Liu, L.; Jiao, J.; Li, P. Tetrahedron 2017, 73, 7123-7157.

https://doi.org/10.1016/j.tet.2017.11.005

Jones, R. G. J. Am. Chem. Soc. 1947, 69, 2346-2350.

https://doi.org/10.1021/ja01202a028

Merritt, J. M.; Andiappan, M.; Pietz, M. A.; Richey, R. N.; Sullivan, K. A.; Kjell, D. P. Org. Process Res. Dev. 2016, 20, 176-188.

https://doi.org/10.1021/acs.oprd.5b00324

Lieber, E.; Rao, C. N. R.; Thomas, A. E.; Oftedahl, E.; Minnis, R.; Nambury, C. V. N. Spectrochim. Acta 1963, 19, 1135-1144.

https://doi.org/10.1016/0371-1951(63)80033-8

Keicher, T.; Löbbecke, S. In Organic Azides: Syntheses and Applications; Bräse, S. Banert, K., Eds.; John Wiley & Sons: Chichester, 2010; pp 3-4.

Kalsi, P. S. Organic Reactions and Their Mechanisms; New Age International (P) Limited, Publishers: New Delhi, 1996.

Butler, R. N.; Fox, A.; Collier, S.; Burke, L. A. J. Chem. Soc., Perkin Trans. 2 1998, 2243-2248.

https://doi.org/10.1039/a804040k

Burke, L. A.; Fazen, P. J. Int. J. Quantum Chem. 2009, 109, 3613-3618.

https://doi.org/10.1002/qua.22408

Kazakevich, Y. V.; LoBrutto, R. HPLC for Pharmaceutical Scientists; John Wiley & Sons: Hoboken, 2007; p 146.

https://doi.org/10.1002/0470087951

Kalbag, S. M.; Roeske, R. W. J. Am. Chem. Soc. 1975, 97, 440-441.

https://doi.org/10.1021/ja00835a046

Tousek, J.; Miert, S. V.; Pieters, L.; Baelen, G. V.; Hostyn, S.; Maes, B. U. W.; Lemiére, G.; Dommisse, R.; Marek, R. Magn. Reson. Chem. 2008, 46, 42-51.

https://doi.org/10.1002/mrc.2125

Barltrop, J. A.; Bunce, N. J. J. Chem. Soc. C. 1968, 1467-1474.

https://doi.org/10.1039/j39680001467

Iddon, B.; Meth-Cohn, O.; Scriven, E. F. V.; Suschitzky, H.; Gallagher, P. T. Angew. Chem. Int. Ed. Engl. 1979, 18, 900-917.

https://doi.org/10.1002/anie.197909001

Reiser, A.; Marley, R. Trans. Faraday Soc. 1968, 64, 1806-1815.

https://doi.org/10.1039/TF9686401806

Jonckers, T. H. M. et al. J. Med. Chem. 2002, 45, 3497-3508.

https://doi.org/10.1021/jm011102i

Whittell, L. R.; Batty, K. T.; Wong, R. P. M.; Bolitho, E. M.; Fox, S. A.; Davis, T. M. E.; Murray, P. E. Bioorg. Med. Chem. 2011, 19, 7519-7525.

https://doi.org/10.1016/j.bmc.2011.10.037

Lu, W.-J.; Switalska, M.; Wang, L.; Yonezawa, M.; El-Sayed, I. E.-T.; Wietrzyk, J.; Inokuchi, T. Med. Chem. Res. 2013, 22, 4492-4504.

https://doi.org/10.1007/s00044-012-0443-x

Iorio, F.; Bosotti, R.; Scacheri, E.; Belcastro, V.; Mithboakar, P.; Ferriero, R.; Murino, L.; Tagliaferri, R.; Brunetti-Pierri, N.; Isacchi, A.; di Bernardo, D. Proc. Natl. Acad. Sci. USA 2012, 107, 14621-14626.

https://doi.org/10.1073/pnas.1000138107

Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176-2179.

https://doi.org/10.1021/om100106e

Rosenau, C. P.; Jelier, B. J.; Gossert, A. D.; Togni, A. Angew. Chem. Int. Ed. 2018, 57, 9528-9533.

https://doi.org/10.1002/anie.201802620

Pedersen, D. S.; Rosenbohm, C. Synthesis 2001, 16, 2431-2434.

Preshlock, S. M.; Plattner, D. L.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E.; Smith, M. R. Angew. Chem. Int. Ed. 2013, 52, 12915-12919.

https://doi.org/10.1002/anie.201306511

Smith, M. R.; Bisht, R.; Haldar, C.; Pandey, G.; Dannatt, J. E.; Glaffari, B.; Jr., R. E. M.; Chattopadhay, B. ACS Catal. 2018, 7, 6216-6223.

https://doi.org/10.1021/acscatal.8b00641

Bogányiab, B.; Kámána, J. Tetrahedron 2013, 69, 9512-9519.

https://doi.org/10.1016/j.tet.2013.08.019

Reddy, Y. P.; Reddy, K. K. Indian J. Chem. 1988, 27B, 563-564.

Wippich, J.; Truchan, N.; Bach, T. Adv. Synth. Catal. 2016, 358, 2083-2087.

https://doi.org/10.1002/adsc.201600410

Lescot, E.; Muzard, G.; Markovits, J.; Belleney, J.; Roques, B. P.; LePecq, J.-B. J. Med. Chem. 1986, 63, 1731-1737.

https://doi.org/10.1021/jm00159a028

Chatterjee, T.; Choi, M. G.; Kim, J.; Chang, S.-K.; Cho, E. J. Chem. Commun. 2016, 52, 4203-4206.

https://doi.org/10.1039/C6CC00562D

Rao, M. S.; Sarkar, S.; Hussain, S. Tetrahedron Lett. 2019, 60, 1221-1225.

https://doi.org/10.1016/j.tetlet.2019.03.047

Bag, S.; Jana, S.; Pradhan, S.; Bhowmich, S.; Goswami, N.; Sinha, S. K. Nat. Commun. 2021, 12, 1-8.

https://doi.org/10.1038/s41467-021-21633-2

Long, C.-Y.; Ni, S.-F.; Su, M.-H.; Wang, X.-Q.; Tan, W. ACS Catal. 2020, 10, 13641- 13649.

https://doi.org/10.1021/acscatal.0c03428

Scarborough, C. C.; M. J. W. Grady, I. A. G.; Gandhi, B. A.; Bunel, E. E.; Stahl, S. S. Angew. Chem. Int. Ed. 2005, 117, 5403-5406.

https://doi.org/10.1002/ange.200501522

Hostyn, S.; Maes, B. U.; Pieters, L.; Lemière, G. L. F.; Mátyus, P.; Hajòs, G.; Dom- misse, R. A. Tetrahedron 2005, 61, 1571-1577.

https://doi.org/10.1016/j.tet.2004.11.073

Alajarin, M.; Molina, P.; Vidal, A. J. Nat. Prod. 1997, 60, 747.

https://doi.org/10.1021/np970177f

F.,; Hardesty, J.; Thummel, R. P. J. Org. Chem. 1998, 63, 4055-4061.

https://doi.org/10.1021/jo980134j

Kulka, M.; Manske, R. H. F. Can. J. Med. 1952, 30, 711-719.

https://doi.org/10.1139/v52-084

Meyers, C.; Rombouts, G.; Loones, K. T. J.; Maes, B. U. W. Adv. Synth. Catal. 2008, 350, 465-470.

https://doi.org/10.1002/adsc.200700328

Uchuskin, M. G.; Pilipenko, A. S.; Serdyuk, O. V.; Trushkov, I. V.; Butin, A. V. Org. Biomol. Chem. 2012, 10, 7262-7265.

https://doi.org/10.1039/c2ob25836f

He, L.; Chang, H.-X.; Chou, T.-C.; Savaraj, N.; Cheng, C. C. Eur. J. Med. Chem. 2003, 38, 101-107.

Meyers, C.; Rombouts, G.; Loones, K. T. J.; Coelho, A.; Maes, B. U. W. Adv. Synth. Catal. 2008, 350, 465-470.

https://doi.org/10.1002/adsc.200700328

Caneque, T.; Cuadro, A. M.; Alvarez-Builla, J.; Pérez-Moreno, J.; Clays, K.; Marcelo, G.; Mendicuti, F.; Castano, O.; Andrés, J. L.; Vaquero, J. J. Eur. J. Org. Chem. 2010, 6323-6330.

https://doi.org/10.1002/ejoc.201000816

Xiang, S.-K.; Zhang, B.; Cui, Y.; Jiao, N. Chem. Commun. 2011, 47, 8097-8099.

https://doi.org/10.1039/c1cc12220g

Zhu, J.-K.; Gao, J.-M.; Yang, C.-J.; Shang, X.-F.; Zhao, Z.-M.; Lawoe, R. K.; Zhou, R.; Sun, Y.; Yin, X.-D.; Liu, Y.-Q. J. Agric. Food Chem. 2020, 68, 2306-2315.

https://doi.org/10.1021/acs.jafc.9b06793

Miller, M.; Vogel, J. C.; Tsang, W.; Merrit, A.; Procter, D. J. Org. Biomol. Chem. 2009, 7, 589-597.

https://doi.org/10.1039/B816608K

Cover image

Downloads

Published

August 16, 2022

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.