Divergent Synthesis of Indolo[3,2- c]quinolines, Neocryptolepines and Related Tetracyclic Ring-Systems Containing Promising Biological Activities
Keywords:
malaria, indoloquinoline natural products, cryptolepine, neocryptolepine, isocryptolepine, indoloquinoline alkaloidsSynopsis
Malaria is a devastating tropical disease, claiming approximately 627 000 lives in 2020. Due to the appearance of resistance towards artemisinin-based therapies, the discovery of novel treatments are of paramount importance. The indoloquinoline natural products cryptolepine, neocryptolepine and isocryptolepine, first discovered in the extracts of the African bush plant Cryptolepis sanguinolenta, have been found to exhibit potent antimalarial properties. More- over, several functionalized derivatives of these compounds have shown great promise as an- tiplasmodial agents. The indoloquinoline alkaloids have also been found to possess significant antiproliferative and antimicrobial properties, making them ideal targets for the development into novel drug candidates.
The first project in this work details the application of a synthetic approach first devel- oped by Helgeland and Sydnes to assemble various tetracyclic ring systems. The key synthetic strategies being a Suzuki-Miyaura cross-coupling reaction followed by a palladium-catalyzed intramolecular cyclization. Though the approach was unsuitable to construct all the intended target molecules, it furnished the unexpected pyridophenanthridine scaffold. By further inves- tigating alternative protocols for the construction of indoloquinolines, a regiodivergent inter- mediate was discovered, which allowed for the synthesis of both novel pyridophenanthridine and pyridocarbazole scaffolds by utilizing two different reaction protocols. By subjecting this common intermediate to a diazotization-azidation-nitrene insertion approach, the novel pyrido- carbazoles could be furnished in excellent yields.
The unexpected formation of a biquinoline bridged by an aniline during a Suzuki-Miyaura cross-coupling reaction, was deemed interesting for development into a transition metal com- plex for catalysis. Through a collaborative effort with Dr. Eugene Khaskin’s group at Oki- nawa Institute of Science and Technology, five quinoline/pyridine N,N,N ligands were designed and synthesized. The key synthetic tools utilized in their construction was either a sequential Suzuki-Miyaura cross-coupling reaction and Buchwald-Hartwig amination or reductive amina- tion.
A novel two-step approach for the synthesis of the natural product neocryptolepine from commercially available bromoquinolines was developed. The key transformations being re- gioselective N-alkylations followed by a cascade Suzuki-Miyaura cross-coupling reaction and intramolecular nucleophilic C-N bond formation. The scope and limitations for the novel pro- tocol was evaluated through the preparation of 24 neocryptolepine derivatives, bearing a diverse range of functional groups, where electron-withdrawing group substitutions were generally su- perior.
It became apparent that it would also be possible to prepare a library of indolo[3,2-c]quino- lines from the same starting material as the newly devised strategy to produce neocryptolepines. By utilizing a reaction sequence consisting of a Suzuki-Miyaura cross-coupling reaction, in- stallation of an azido moiety and finally photochemical cyclization, this goal was realized, producing a total of 19 indoloquinolines. This protocol was less robost towards substrate func- tionalizations than the neocryptolepine approach, with no apparent trend concerning electron- withdrawing and electron-donating groups being apparent. The photochemical cyclization was hypothesized to proceed via the formation of a reactive singlet nitrene intermediate.
Finally, a selection of the prepared tetracyclic compounds assembled during this work was evaluated for their antiplasmodial, antiproliferative and antimicrobial activities by the help of various external collaborators. The most successful compound was revealed to be the novel pyridophenanthridines, displaying more potent antiproliferative activities than doxoru- bicin against human prostate cancer (IC50 = 24 nM). The novel pyridocarbazoles moreover showed excellent inhibition of biofilm formation, with the potential to be developed into a dual anticancer-antimicrobial agent. Of all the tested compounds, only N-methylated pyridocar- bazole was found to contain any significant activity against the evaluated Plasmodium falci- parum strain. The antimicrobial assays revealed the importance of the inclusion of a methyl group for activity, but not strictly in the form of an N-methyl unit, which is the general con- census in the literature thus far. Further, chlorinated indoloquinolines were revealed to contain excellent antimicrobial activity against both Gram-positive and Gram-negative bacterial cell lines.
References
Cox-Singh, J.; Singh, B. Trends Parasitol. 2008, 24, 406-410.
https://doi.org/10.1016/j.pt.2008.06.001
World Health Organization, World Malaria Report 2021. Available from: www.who.int/malaria/publications/world-malaria-report-2021/en/, Accessed: 7 March 2022.
Collins, F. H.; Paskewitz, S. M. Annu. Rev. Entomol. 1995, 40, 195-219.
https://doi.org/10.1146/annurev.en.40.010195.001211
Amambua-Ngwa, A. et al. Science 2019, 365, 813-816.
https://doi.org/10.1126/science.aav5427
Rosenthal, P. J. et al. Am. J. Trop. Med. Hyg. 2022, 1-3.
Cox, F. E. G. Parasites Vectors 2010, 3, 1-9.
https://doi.org/10.1186/1756-3305-3-9
King, A. Nature 2019, 575, 51-54.
https://doi.org/10.1038/d41586-019-03639-5
Chemison, A.; Ramstein, G.; Tompkins, A. M.; Defrance, D.; Camus, G.; Charra, M.; Caminade, C. Nat. Commun. 2021, 12, 1-12.
https://doi.org/10.1038/s41467-021-24134-4
Baelen, G. V. et al. Bioorg. Med. Chem. 2009, 17, 7209-7217.
https://doi.org/10.1016/j.bmc.2009.08.057
van Dorp, L. et al. Mol. Biol. Evol. 2020, 37, 773-785.
https://doi.org/10.1093/molbev/msz264
Fischer, L.; Gültekin, N.; Kaelin, M. B.; Fehr, J.; Schlagenhauf, P. Travel Med. Infect. Dis. 2020, 36, 101815.
https://doi.org/10.1016/j.tmaid.2020.101815
Hertig, E. Parasites Vectors 2019, 12, 1-9.
https://doi.org/10.1186/s13071-018-3278-6
Anthony, M. P.; Burrows, J. N.; Duparc, S.; Moehrle, J. J.; Wells, T. N. C. Malar. J. 2012, 11, 1-25.
https://doi.org/10.1186/1475-2875-11-316
Achan, J.; Talisuna, A. O.; Erhart, A.; Yeka, A.; Tibenderana, J. K.; Baliraine, F. N.; Rosenthal, P. J.; D'Alessandro, U. Malar. J. 2011, 10, 1-12.
https://doi.org/10.1186/1475-2875-10-144
Tse, E. G.; Korsik, M.; Todd, M. H. Malar. J. 2019, 18, 1-21.
https://doi.org/10.1186/s12936-019-2724-z
Wang, N.; Wicht, K. J.; Imai, K.; Wang, M.; Ngoc, T. A.; Kiguchi, R.; Kaiser, M.; Egan, T. J.; Inokuchi, T. Bioorg. Med. Chem. 2014, 22, 2629-2642.
https://doi.org/10.1016/j.bmc.2014.03.030
Krafts, K.; Hempelmann, E.; Skórska-Stania, A. Parasitol. Res. 2012, 111, 1-6.
https://doi.org/10.1007/s00436-012-2886-x
Nzila, A. J. Antimicrob. Chemother. 2006, 57, 1043-1054.
https://doi.org/10.1093/jac/dkl104
Hurwitz, E. S.; Johnson, D.; Campbell, C. C. Lancet 1981, 317, 1068-1070.
https://doi.org/10.1016/S0140-6736(81)92239-X
Gregson, A.; Plowe, C. V. Pharmacol. Rev. 2005, 57, 117-145.
https://doi.org/10.1124/pr.57.1.4
Andersson, J.; Forssberg, H.; Zierath, J. R. Avermectin and Artemisinin - Revolu- tionary Therapies against Parasitic Diseases. Nobelförsamlingen 2015, 1-11, Available from: www.nobelprize.org/nobel_prizes/medicine/laureates/2015/press.html, Accessed: 11 July 2018.
Su, X.-Z.; Miller, L. H. Sci. China Life Sci. 2015, 58, 1175-1179.
https://doi.org/10.1007/s11427-015-4948-7
van Agtmael, M. A.; Eggelte, T. A.; van Boxtel, C. J. Trends Pharmacol. Sci. 1999, 20, 199-205.
https://doi.org/10.1016/S0165-6147(99)01302-4
Ansari, M. T.; Saify, Z. S.; Sultana, N.; Ahmad, I.; Saeed-Ul-Hassan, S.; Tariq, I.; Khanum, M. Mini-Rev. Med. Chem. 2013, 13, 1879-1902.
https://doi.org/10.2174/13895575113136660097
Bridgford, J. L.; Xie, S. C.; Cobbold, S. A.; Pasaje, C. F. A.; Herrmann, S.; Yang, T.; Gillett, D. L.; Dick, L. R.; Ralph, S. A.; Dogovski, C.; Spillman, N. J.; Tilley, L. Nat. Commun. 2018, 9, 1-9.
https://doi.org/10.1038/s41467-018-06221-1
Yeung, S.; Vornpinyo, W. P.; Hastings, I. M.; Mills, A. J.; White, N. J. Am. J. Trop. Med. Hyg. 2004, 71, 179-186.
https://doi.org/10.4269/ajtmh.2004.71.179
Noedl, H.; Se, Y.; Scaecher, K.; Smith, B. L.; Socheat, D.; Fukuda, M. N. N. Engl. J. Med. 2008, 359, 2619-2620.
https://doi.org/10.1056/NEJMc0805011
Amato, R.; Pearson, R. D.; Almagro-Garcia, J.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Drury, E.; Stalker, J.; Miotto, O.; Fairhurst, R. M.; Kwiatkowski, D. P. Lancet Infect. Dis. 2018, 18, 337-345.
https://doi.org/10.1016/S1473-3099(18)30068-9
Asua, V.; Conrad, M. D.; Aydemir, O.; Duvalsaint, M.; Legac, J.; Duarte, E.; Tumwe- baze, P.; Chin, D. M.; Cooper, R. A.; Yeka, A.; Kamya, M. R.; Dorsey, G.; Nsobya, S. L.; Bailey, J.; Rosenthal, P. J. J. Infect. Dis. 2021, 223, 985-994.
https://doi.org/10.1093/infdis/jiaa687
Bergmann, C.; van Loon, W.; Habarugira, F.; Tacoli, C.; Jäger, J. C.; Savelsberg, D.; Nshimiyimana, F.; Rwamugema, E.; Mbarushimana, D.; Ndoli, J.; Sendegeya, A.; Bayingana, C.; Mockenhaupt, F. P. Emerg. Infect. Dis. 2021, 27, 294-296.
https://doi.org/10.3201/eid2701.203527
Uwimana, A. et al. Nat. Med. 2020, 26, 1602-1608.
https://doi.org/10.1038/s41591-020-1005-2
Uwimana, A. et al. Lancet Infect. Dis. 2021, 21, 1120-1128.
Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O. T.; Tachibana, S.-I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D. A.; Kimura, E.; Palacpac, N. M. Q.; Odongo- Aginya, E. I.; Ogwang, M.; Horii, T.; Mita, T. N. Engl. J. Med. 2021, 385, 1163-1171.
https://doi.org/10.1056/NEJMoa2101746
Straimer, J.; Gandhi, P.; Renner, K. C.; Schmitt, E. K. J. Infect. Dis. 2022, 225, 1411- 1414.
https://doi.org/10.1093/infdis/jiab352
Ndwiga, L. et al. Int. J. Parasotol. Drugs Drug Resist. 2021, 16, 155-161.
Kumar, S.; Bhardwaj, T. R.; Prasad, D. N.; Singh, R. K. Biomed. Pharmacother. 2018, 104, 8-27.
https://doi.org/10.1016/j.biopha.2018.05.009
RTS,S Clinical Trial Partnership. Lancet 2015, 386, 31-45.
https://doi.org/10.1016/S0140-6736(15)60721-8
World Health Organization, WHO Urges Countries to Move Quickly to Save Lives From Malaria in Sub-Saharan Africa, Available online at: https://www.who.int/news-room/questions-and-answers/item/malaria-vaccine-implementation-programme, Ac- cessed: June 7, 2022. 2020.
Nghochuzie, N. N.; Olwal, C. O.; Udoakang, A. J.; Amenga-Etego, L.; Amambua- Ngwa, A. Front. Microbiol. 2020, 18, 1-5.
Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A. G.; Bishayee, A. Eur. J. Pharma- col. 2019, 858, 172472.
https://doi.org/10.1016/j.ejphar.2019.172472
Qui, S.; Sun, H.; Zhang, A.-H.; Xu, H.-Y.; Yan, G.-L.; Ying, H.; Wang, X.-J. Chin. J. Nat. Med. 2014, 12, 401-406.
https://doi.org/10.1016/S1875-5364(14)60063-7
Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2020, 83, 770-803.
https://doi.org/10.1021/acs.jnatprod.9b01285
Daley, S.-K.; Cordell, G. A. Molecules 2021, 26, 3800.
https://doi.org/10.3390/molecules26133800
Brook, K.; Bennett, J.; Desai, S. P. J. Anesth. Hist. 2017, 3, 50-55.
https://doi.org/10.1016/j.janh.2017.02.001
Tillhon, M.; Oriz, L. M. G.; Lombardi, P.; Scovassi, A. I. Biochem. Pharmacol. 2012, 84, 1260-1267.
https://doi.org/10.1016/j.bcp.2012.07.018
Abourashed, E. A.; El-Alfy, A. T.; Khan, I. A.; Walker, L. Phytother. Res. 2003, 17, 703-712.
https://doi.org/10.1002/ptr.1337
Osafo, N.; Mensah, K. B.; Yeboah, O. K. Adv. Pharmacol. Sci. 2017, 1-13.
https://doi.org/10.1155/2017/3026370
Gellért, E.; Schlittler, R.-H. E. Helv. Chim. Acta 1951, 34, 642-651.
https://doi.org/10.1002/hlca.19510340228
Grycovà, L.; Dommisse, R.; Pieters, L.; Marek, R. Magn. Reson. Chem. 2009, 47, 977- 981.
https://doi.org/10.1002/mrc.2494
Sofowora, A. Medicinal Plants and Traditional Medicine in Africa; John Wiley & Sons: Chichester, 1982; pp 183-256.
Kirby, G. C.; Paine, A.; Warhurst, D. C.; Noamese, B. K.; Phillipson, J. D. Phytother. Res. 1995, 9, 359-363.
https://doi.org/10.1002/ptr.2650090510
Grellier, P.; Ramiaramanana, L.; Millerioux, V.; Deharo, E.; Shrèvel, K.; Frappier, F.; Trigalo, F.; Bodo, B.; Pousset, J. L. Phytother. Res. 1996, 10, 317-321.
https://doi.org/10.1002/(SICI)1099-1573(199606)10:4<317::AID-PTR858>3.0.CO;2-0
Olajide, O. A.; Heiss, E. H.; Schachener, D.; Wright, C. W.; Vollmar, A. M.; Dirsch, V. M. Bioorg. Med. Chem. 2007, 15, 43-49.
https://doi.org/10.1016/j.bmc.2006.10.018
Bierer, D. E. et al. J. Med. Chem. 1998, 41, 894-901.
https://doi.org/10.1021/jm9704816
Rauwald, H. W.; Kober, M.; Mutschler, E.; Lambrecht, G. Planta Med. 1992, 58, 486- 488.
https://doi.org/10.1055/s-2006-961531
Chen, Y.-J.; Liu, H.; Zhang, S.-Y.; Li, H.; Ma, K.-Y.; Liu, Y.-Q.; Yin, X.-D.; Zhou, R.; Yan, Y.-F.; Wang, R.-X.; He, Y.-H.; Chu, Q.-R.; Tang, C. J. Agric. Food. Chem. 2021, 69, 1259-1271.
https://doi.org/10.1021/acs.jafc.0c06480
Ablordeppey, S. Y.; Fan, P.; Li, S.; Clark, A. M.; Hufford, C. D. Bioorg. Med. Chem. 2002, 10, 1337-1346.
https://doi.org/10.1016/S0968-0896(01)00401-1
Singh, M.; Singh, M. P. Drug Dev. Ind. Pharm. 1996, 22, 377-381.
https://doi.org/10.3109/03639049609042003
Paulo, A.; Duarte, A.; Gomes, E. T. J. Ethnopharmacol. 1994, 44, 127-130.
https://doi.org/10.1016/0378-8741(94)90079-5
Cimanga, K.; Bruyne, T. D.; Lasure, A.; Poel, B. V.; Pieters, L.; Claeys, M.; Berghe, D. V.; Kambu, K.; Tona, L.; Vlietinch, A. Planta Med. 1996, 62, 22-27.
https://doi.org/10.1055/s-2006-957789
Zhao, M.; Kamada, T.; Takeuchi, A.; Nishioka, H.; Kuroda, T.; Takeuchi, Y. Bioorg. Med. Chem. 2015, 25, 5551-5554.
https://doi.org/10.1016/j.bmcl.2015.10.058
Karou, D.; Savadogo, A.; Canini, A.; Yameogo, S.; Montesano, C.; Simpore, J.; Col- izzi, V.; Traore, A. S. Afr. J. Biotechnol. 2007, 5, 195-200.
Lu, C.-M.; Chen, Y.-L.; Chen, H.-L.; Chen, C.-A.; Yang, P.-J.; Tzeng, C.-C. Bioorg. Med. Chem. 2010, 18, 1948-1957.
https://doi.org/10.1016/j.bmc.2010.01.033
Dassonneville, L.; Lansiaux, A.; Wattelet, A.; Watterz, N.; Mahieu, C.; Miert, S. V.; Pieters, L.; Bailly, C. Eur. J. Pharmacol. 2000, 409, 9-18.
https://doi.org/10.1016/S0014-2999(00)00805-0
Zhu, H.; Gooderham, N. J. Toxicol. Sci. 2006, 91, 132-139.
https://doi.org/10.1093/toxsci/kfj146
Matsui, T.-A.; Sowa, Y.; Murata, H.; Takagi, K.; Nakanishi, R.; Aoki, S.; Kobayashi, M.; Sakabe, T.; Kubo, T.; Sakai, T. Int. J. Oncol. 2007, 31, 915-922.
Bonjean, K.; Pauw-Gillet, M. C. D.; Defresne, M. P.; Colson, P.; Houssier, C.; Das- sonneville, L.; Bailly, C.; Greimers, R.; Wright, C. W.; Quetin-Leclercq, J.; Tits, M.; Angenot, L. Biochemistry 1998, 37, 5136-5146.
https://doi.org/10.1021/bi972927q
Mimanga, K.; Bruyne, T. D.; Pieters, L.; Vlietinck, A. J.; Turger, C. A. J. Nat. Prod. 1997, 60, 688-691.
https://doi.org/10.1021/np9605246
Pousset, J.-L.; Martin, M.-T.; Jossang, A.; Bodo, B. Phytochemistry 1995, 39, 735-736.
https://doi.org/10.1016/0031-9422(94)00925-J
Sharaf, M. M. H.; Schiff, P. L.; Tackie, A. N.; Phoebe, C. H.; Martin, G. E. J. Heterocycl. Chem. 1996, 33, 239-243.
https://doi.org/10.1002/jhet.5570330204
Sharaf, M. M. H.; Schiff, P. L.; Tackie, A. N.; Phoebe, C. H.; Johnson, R. L.; Minick, D.; Crouch, R. C.; Martin, G. E.; Andrews, C. W. J. Heterocycl. Chem. 1996, 33, 789-797.
https://doi.org/10.1002/jhet.5570330343
Lavrado, J.; Moreira, R.; Paulo, A. Curr. Med. Chem. 2010, 17, 2348-2370.
https://doi.org/10.2174/092986710791698521
Paulo, A.; Gomes, E. T.; Houghton, P. J. J. Nat. Prod. 1995, 58, 1485-1491.
https://doi.org/10.1021/np50124a002
Crouch, R. C.; Davis, A. O.; Spitzer, T. D.; Martin, G. E.; Sharaf, M. M. H.; Schiff, P. L.; Phoebe, C. H.; Tackie, A. N. J. Heterocycl. Chem. 1995, 32, 1077-1080.
https://doi.org/10.1002/jhet.5570320369
Wright, C. W.; Addae-Kyereme, J.; Breen, A. G.; Brown, J. E.; Cox, M. F.; Croft, S. L.; Gökçek, Y.; Kendrick, H.; Phillips, R. M.; Pollet, P. L. J. Med. Chem. 2001, 44, 3187- 3194.
https://doi.org/10.1021/jm010929+
Onyeibor, O.; Croft, S. L.; Dodson, H. I.; Feiz-Haddad, M.; Kendrick, H.; Milling- ton, N. J.; Parapini, S.; Phillips, R. M.; Seville, S.; Shnyder, S. D.; Tarameli, D.; Wright, C. W. J. Med. Chem. 2005, 48, 2701-2709.
https://doi.org/10.1021/jm040893w
Wang, N.; S'witalska, M.; Wang, L.; Shaban, E.; Hossain, M. I.; Sayed, I. E. T. E.; Wietryzk, J.; Inokuchi, T. Molecules 2019, 24, 1-12.
https://doi.org/10.3390/molecules24112121
Baker, N. C.; Ekins, S.; Williams, A. J.; Tropsha, A. Drug Discov. 2018, 23, 661-672.
https://doi.org/10.1016/j.drudis.2018.01.018
PATH, From Pipeline to Product: Malaria R&D malaria funding needs into the next decade; WHO Press: Seattle, 2013.
Hao, Y.; Wang, K.; Wang, Z.; Liu, Y.; Ma, D.; Wang, Q. J. Agric. Food Chem. 2020, 68, 8764-8773.
https://doi.org/10.1021/acs.jafc.0c04278
World Health Organization, World Cancer Report 2020: Cancer Research for Cancer Prevention. Available from: www.iarc.who.int/cards_page/world-cancer-report/, Ac- cessed: 11 June 2022.
Sidoryk, K.; Jaromin, A.; Edwards, J. A.; S'witalska, M.; Stefánska, J.; Cmoch, P.; Zagrodzka, J.; Szczepek, Q.; Peczyn'sla-Czoch, W.; Wietrzyk, J.; Kozubek, A.; Zarnowski, R.; Anders, D. R.; łL. Kaczmarek, Eur. J. Med. Chem. 2014, 78, 304-313.
https://doi.org/10.1016/j.ejmech.2014.03.060
Carvalho, C.; Santos, R. X.; Cardoso, S.; Correia, S.; Oliveira, P. J.; Santos, M. S.; Moreira, P. I. Curr. Med. Chem. 2009, 16, 3267-3285.
https://doi.org/10.2174/092986709788803312
Amari, M. R.; Wiraswati, H. L.; Fauziah, N.; Ma'ruf, I. F. Biomed. & Pharmacol. J. 2022, 15, 313-320.
https://doi.org/10.13005/bpj/2369
Moore, A.; Pinkerton, R. Pediatr. Blood Cancer 2009, 53, 1180-1187.
https://doi.org/10.1002/pbc.22161
Shaban, E.; S'witalska, M.; Wang, L.; Xiu, F.; Hayashi, I.; Ngoc, T. A.; Nagae, S.; El-Ghlban, S.; Shimoda, S.; Gokha, A. A. A. E.; Sayed, I. E. T. E.; Wietrzyk, J.; Inokuchi, T. Molecules 2017, 22, 1-11.
https://doi.org/10.3390/molecules22111954
Wang, N.; S'witalska, M.; Wu, M.-Y.; Imai, K.; Ngoc, T. A.; Pang, C.-Q.; Wietrzyk, J.; Inokuchi, T. Eur. J. Med. Chem. 2014, 78, 314-323.
https://doi.org/10.1016/j.ejmech.2014.03.038
Nuthakki, V. K.; Mudududdla, R.; Bharate, S. B. Eur. J. Med. Chem. 2022, 227, 113938.
https://doi.org/10.1016/j.ejmech.2021.113938
Holmes, A. H.; Moore, L. S. P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P. J.; Piddock, L. J. V. Lancet 2016, 387, 176-187.
https://doi.org/10.1016/S0140-6736(15)00473-0
Antimicrobial Resistance Collaborators, Lancet 2022, 399, 629-655.
Durand, G. A.; Raoult, D.; Dubourg, G. Int. J. Antimicrob. Agents 2019, 53, 371-382.
https://doi.org/10.1016/j.ijantimicag.2018.11.010
O'Neill, J. Tackling drug-resistant infections globally: final report and recommenda- tions. London: Review on Antimicrobial Resistance. 2016.
Stamm, A. M.; Long, M. N.; Belcher, B. Am. J. Infect. Control 1993, 21, 70-74.
https://doi.org/10.1016/0196-6553(93)90227-U
Drenkard, E. Microb. Infect. 2003, 5, 1213-1219.
https://doi.org/10.1016/j.micinf.2003.08.009
Teng, C. P.; Zhou, T.; Ye, E.; Liu, S.; Koh, L. D.; Low, M.; Loh, X. J.; Win, Y.; Zhang, L.; Han, M.-Y. Adv. Healthcare Mater. 2016, 5, 2122-2130.
https://doi.org/10.1002/adhm.201600346
Ligon, B. L. Semin. Pediatr. Infect. Dis. 2004, 15, 52-57.
https://doi.org/10.1053/j.spid.2004.02.001
Rodvold, K. A.; Piscitelli, S. C. Clin. Infect. Dis. 1993, 17, S192-S199.
https://doi.org/10.1093/clinids/17.Supplement_1.S192
Rehman, A.; Patrick, W. M.; Lamont, I. L. J. Med. Microbiol. 2019, 68, 1-10.
https://doi.org/10.1099/jmm.0.000873
Aroonkit, P.; Thongsornkleeb, C.; Tummatorn, J.; Krajangsri, S.; Mungthin, M.; Ruchi- rawat, S. Eur. J. Med. Chem. 2015, 94, 56-62.
https://doi.org/10.1016/j.ejmech.2015.02.047
Kumar, E. V. K. S.; Etukala, J. R.; Ablordeppey, S. Y. Mini Rev. Med. Chem. 2008, 8, 538-554.
https://doi.org/10.2174/138955708784534418
Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Curr. Org. Chem. 2011, 15, 1036- 1057.
https://doi.org/10.2174/138527211794785118
Bracca, A. B. J.; Heredia, D. A.; Larghi, E. L.; Kaufman, T. S. Eur. J. Org. Chem. 2014, 7979-8003.
https://doi.org/10.1002/ejoc.201402910
Parvatkar, P. T.; Parameswaran, P. S. Curr. Org. Synth. 2016, 13, 58-72.
https://doi.org/10.2174/1570179412666150511224648
Thongsornkleeb, C.; Tummatorn, J.; Ruchirawat, S. Chem. Asian J. 2022, 17, 1-19.
https://doi.org/10.1002/asia.202200040
Akitake, M.; Noda, S.; Miyoshi, K.; Sonoda, M.; Tanimori, S. J. Org. Chem. 2021, 86, 17727-17737.
https://doi.org/10.1021/acs.joc.1c02026
Aksenov, A. V.; Aksenov, D. A.; Orazova, N. A.; Aksenov, N. A.; Griaznov, G. D.; Carvalho, A. D.; Kiss, R.; Mathieu, V.; Kornienko, A.; Rubin, M. J. Org. Chem. 2017, 82, 3011-3018.
https://doi.org/10.1021/acs.joc.6b03084
Xu, M.; Wang, Q. H. S.; Wang, H.; Yao, Z.-J. Synthesis 2011, 4, 626-634.
https://doi.org/10.1055/s-0030-1258411
Scriven, E.; Ramsden, C. A. Advances in Heterocyclic Chemistry, Volume 132; Elsevier: Cambridge, 2020; pp 116-134.
Dilek, O.; Patir, S.; Tilki, T.; Ertürk, E. J. Org. Chem. 2019, 84, 7901-7916.
https://doi.org/10.1021/acs.joc.9b00706
Miller, C. M.; McCarthy, F. O. RCS Adv. 2012, 2, 8883-8918.
https://doi.org/10.1039/c2ra20584j
Sainsbury, M. Synthesis 1977, 437-448.
https://doi.org/10.1055/s-1977-24433
Hewlins, M. J.; Oliveira-Campos, A. M.; Shannon, P. V. Synthesis 1984, 289-302.
https://doi.org/10.1055/s-1984-30816
Gribble, G. W.; Saulnier, M. G. Heterocycles 1985, 23, 1277-1315.
https://doi.org/10.3987/R-1985-05-1277
Kansal, V. K.; Potier, P. Tetrahedron 1986, 42, 2389-2408.
https://doi.org/10.1016/0040-4020(86)80002-3
Alvares, M.; Joule, J. A. Alkaloids: Chem. Biol. 2001, 57, 235-273.
https://doi.org/10.1016/S0099-9598(01)57005-4
Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303-4428.
https://doi.org/10.1021/cr020059j
Schmutz, J.; Wittwer, H. Helv. Chim. Acta 1960, 43, 793-799.
https://doi.org/10.1002/hlca.19600430322
Liu, B.; Wang, S.; Bian, C.; Liao, H.; Lin, H.-W. Chin. J. Chem. 2021, 39, 1905-1910.
https://doi.org/10.1002/cjoc.202100094
Beauchard, A.; Chabane, H.; Sinbandhit, S.; Guenot, P.; Thiéry, V.; Besson, T. Tetrahe- dron 2006, 62, 1895-1903.
https://doi.org/10.1016/j.tet.2005.09.153
Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. Chem. Rev. 1998, 98, 409-548.
https://doi.org/10.1021/cr941170v
Kalinowski, J.; Rykowski, A.; Nantka-Namiriski, P. Pol. J. Chem. 1984, 58, 125-126.
Alekseev, R. S.; Kurkin, A. V.; Yurovskaya, M. A. Chem. Heterocycl. Compd. 2012, 48, 1235-1250.
https://doi.org/10.1007/s10593-012-1127-7
Mehra, M. K.; Sharma, S.; Rangan, K.; Kumar, D. Eur. J. Org. Chem. 2020, 2409-2413s.
https://doi.org/10.1002/ejoc.202000013
Helgeland, I. T. U.; Sydnes, M. O. SynOpen 2017, 1, 41-44.
Heravi, M. M.; Hashemi, E. Tetrahedron 2012, 68, 9145-9178.
https://doi.org/10.1016/j.tet.2012.08.058
Melchor, M. G. A. A Theoretical Study of Pd-Catalyzed C-C Cross-Coupling Reactions; Springer Science & Business Media: Barcelona, 2013; pp 113-115.
https://doi.org/10.1007/978-3-319-01490-6
Suzuki, A. Organomet. Chem. 1999, 576, 147-168.
https://doi.org/10.1016/S0022-328X(98)01055-9
Xia, Y.; Bao, Q.-F.; Li, Y.; Wang, L.-J.; Zhang, B.-S.; Liu, H.-C.; Liang, Y.-M. Chem. Commun. 2019, 55, 4675-4678.
https://doi.org/10.1039/C9CC00611G
Pacchioni, G.; Bagus, P. S. Inorg. Chem. 1992, 31, 4391-4398.
https://doi.org/10.1021/ic00047a029
Amatore, C.; Jutand, A.; Duc, G. L. Chem. Eur. J. 2011, 17, 2492-2503.
https://doi.org/10.1002/chem.201001911
Osakada, K.; Yamamoto, T. Coord. Chem. Rev. 2000, 198, 379-399.
https://doi.org/10.1016/S0010-8545(99)00210-6
Håheim, K. S.; Helgeland, I. T. U.; Lindbäck, E.; Sydnes, M. O. Tetrahedron 2019, 75, 2949-2957.
https://doi.org/10.1016/j.tet.2019.04.026
Chakraborty, M.; Umrigar, V.; Parikh, P. A. Int. J. Chem. React. Eng. 2008, 6, 1-12.
Charville, H.; Jackson, D. A.; Hodges, G.; Whiting, A.; Wilson, W. R. Eur. J. Org. Chem. 2011, 5981-5990.
https://doi.org/10.1002/ejoc.201100714
Ciufolini, M. A.; Byrne, N. E. J. Am. Chem. Soc. 1991, 113, 8016-8024.
https://doi.org/10.1021/ja00021a031
Casadei, M. A.; Galli, C.; Mandolini, L. J. Am. Chem. Soc. 1984, 106, 1051-1056.
https://doi.org/10.1021/ja00316a039
Bjørsvik, H.-R.; Elumalai, V. Eur. J. Org. Chem. 2016, 5474-5479.
https://doi.org/10.1002/ejoc.201601191
Landagaray, E.; Ettaoussi, M.; Rami, M.; Boutin, J. A.; Caignard, D.-H.; Delagrange, P.; Melnyk, P.; Berthelot, P.; Yous, S. Eur. J. Med. Chem. 2017, 127, 621-631.
https://doi.org/10.1016/j.ejmech.2016.12.013
Landagaray, E.; Ettaoussi, M.; Rami, M.; Boutin, J. A.; Caignard, D.-H.; Delagrange, P.; Melnyk, P.; Berthelot, P.; Yous, S. Eur. J. Med. Chem. 2017, 127, 621-631.
https://doi.org/10.1016/j.ejmech.2016.12.013
Tsang, W. C.; Munday, R. H.; Brasche, G.; Zheng, N.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7603-7610.
https://doi.org/10.1021/jo801273q
Lautens, M.; Fang, Y.-Q. Org. Lett. 2003, 5, 3679-3682.
https://doi.org/10.1021/ol035354k
Kato, T.; Yosihazawa, K.; Hirao, K. J. Chem. Phys. 2002, 116, 3420-3429.
https://doi.org/10.1063/1.1445102
Balaban, A. T. Pure Appl. Chem. 1980, 52, 1409-1429.
https://doi.org/10.1351/pac198052061409
Fukui, K. Science 1982, 218, 747-754.
https://doi.org/10.1126/science.218.4574.747
Cyran'ski, M. K.; Ste¸pién, B. T.; Krygowski, T. M. Tetrahedron 2000, 56, 9663-9667.
https://doi.org/10.1016/S0040-4020(00)00919-4
Portella, G.; Poater, J.; Bofill, J. M.; Alemany, P.; Solà, M. J. Org. Chem. 2005, 70, 2509-2521.
https://doi.org/10.1021/jo0480388
Hemelsoet, K.; Speybroeck, V. V.; Marin, G. B.; Proft, F. D.; Geerlings, P.; Waro- quier, M. J. Phys. Chem. A 2004, 108, 7281-7290.
https://doi.org/10.1021/jp048743k
Poater, J.; Visser, R.; Solà, M.; Bickelhaupt, F. M. J. Org. Chem. 2007, 72, 1134-1142.
https://doi.org/10.1021/jo061637p
Håheim, K. S.; Lindbäck, E.; Tan, K. N.; Albrigtsen, M.; Helgeland, I. T. U.; Lauga, C.; Matringe, T.; Kennedy, E. K.; Andersen, J. H.; Avery, V. M.; Sydnes, M. O. Molecules 2021, 26, 3268-3290.
https://doi.org/10.3390/molecules26113268
Timàri, G.; Soòs, T.; Hajòs, G. Synlett 1997, 1067-1068.
https://doi.org/10.1055/s-1997-1523
Hostyn, S.; Tehrani, K. A.; Lemière, F.; Smout, V.; Maes, B. U. W. Tetrahedron 2011, 67, 655-659.
https://doi.org/10.1016/j.tet.2010.10.077
Nàjera, C.; Beletskaya, I. P.; Yus, M. Chem. Soc. Rev. 2019, 48, 4515-4618.
https://doi.org/10.1039/C8CS00872H
Ho, T.-L.; Jou, D.-G. Helv. Chim. Acta 2002, 85, 3823-3827.
https://doi.org/10.1002/1522-2675(200211)85:11<3823::AID-HLCA3823>3.0.CO;2-S
Castejon, H.; Wiberg, K. B. J. Am. Chem. Soc. 1999, 121, 2139-2146.
https://doi.org/10.1021/ja983736t
Chelucci, G.; Thummel, R. P. Chem. Rev. 2002, 102, 3129-3170.
https://doi.org/10.1021/cr0101914
Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159- 2232.
https://doi.org/10.1021/cr9902897
Ma, W.-A.; Wang, Z.-X. Organometallics 2011, 30, 4364-4373.
https://doi.org/10.1021/om200423g
Gong, D.-P.; Gao, T.-B.; Cao, D.-K.; Ward, M. D. Dalton Trans. 2017, 46, 275-286.
https://doi.org/10.1039/C6DT04091H
Durand, J.; Milani, B. Coord. Chem. Rev. 2006, 250, 542-560.
https://doi.org/10.1016/j.ccr.2005.08.012
Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. Nat. Rev. 2017, 2, 17045.
https://doi.org/10.1038/natrevmats.2017.45
Qian, J.; Li, Q.; Liang, L.; Li, T.-T.; Hu, Y.; Huang, S. Dalton Trans. 2017, 46, 14102- 14106.
https://doi.org/10.1039/C7DT03255B
Busemann, A.; Flaspohler, I.; Zhou, X.-Q.; Schmidt, C.; Goetzfried, S. K.; Rixel, V. H. S.; Ott, I.; Siegler, M. A.; Bonnet, S. J. Biol. Inorg. Chem. 2021, 26, 667-674.
https://doi.org/10.1007/s00775-021-01882-8
Zayat, L.; Filevich, O.; Baraldo, L. M.; Etchenique, R. Phil. Trans. R. Soc. A 2013, 371, 1-12.
https://doi.org/10.1098/rsta.2012.0330
Lessing, T.; Müller, T. J. J. Appl. Sci. 2015, 5, 1803-1836.
https://doi.org/10.3390/app5041803
Stephens, D. E.; Lakey-Beitia, J.; Burch, J. E.; Arman, H. D.; Larionov, O. V. Chem. Commun. 2016, 52, 9945-9948.
https://doi.org/10.1039/C6CC04816A
Maddess, M. L.; Li, C. Organometallics 2019, 38, 81-84.
https://doi.org/10.1021/acs.organomet.8b00322
Dorel, R.; Grugel, C. P.; Haydl, A. M. Angew. Chem. Int. Ed. 2019, 58, 17118-17129.
https://doi.org/10.1002/anie.201904795
Hartwig, J. F. Synlett 1997, 4, 329-340.
https://doi.org/10.1055/s-1997-789
Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969-5970.
https://doi.org/10.1021/ja00092a058
Whitesides, G. M.; Gaasch, J. F.; Stedronsky, E. R. J. Am. Chem. Soc. 1972, 94, 5258- 5270.
https://doi.org/10.1021/ja00770a021
Cook, X. A. F.; Gombert, A.; McKnight, J.; Pantaine, L. R. E.; Willis, M. C. Angew. Chem. Int. Ed. 2021, 60, 11068-11091.
https://doi.org/10.1002/anie.202010631
Salvatore, R. N.; Nagle, A. S.; Jung, K. W. J. Org. Chem. 2002, 67, 674-683.
https://doi.org/10.1021/jo010643c
Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849-3862.
https://doi.org/10.1021/jo960057x
Adkins, H.; Billica, H. R. J. Am. Chem. Soc. 1948, 70, 695-698.
https://doi.org/10.1021/ja01182a080
Suzuki, Y.; Kaneno, D.; Tomoda, S. J. Phys. Chem. A 2009, 113, 2578-2583.
https://doi.org/10.1021/jp809966u
Nadein, O. M.; Aksenov, D. A.; Aksenov, G. M.; Aksenov, N. A.; Voskressensky, L. G.; Aksenov, A. V. Chem. Heterocycl. Compd. 2019, 55, 905-932.
https://doi.org/10.1007/s10593-019-02557-8
C-Thongsornkleeb,; Tummatorn, J.; Ruchirawat, S. Chem. Asian J. 2022, 17, 1-19.
https://doi.org/10.1002/asia.202200040
Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40-49.
https://doi.org/10.1021/ar700155p
Kadam, H. K.; Tilve, S. G. J. Heterocyclic Chem. 2016, 53, 2066-2069.
https://doi.org/10.1002/jhet.2213
Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc. 2018, 140, 8429- 8433.
https://doi.org/10.1021/jacs.8b05343
Proter, T. C.; Smalley, R. K.; Teguiche, M.; Purwono, B. Synthesis 1997, 1997, 773-777.
https://doi.org/10.1055/s-1997-1416
Roy, S. K.; Purkait, A.; Aziz, S. M. T.; Jana, C. K. Chem. Commun. 2020, 56, 3167- 3170.
https://doi.org/10.1039/C9CC09616G
Yeh, L.-H.; Wang, H.-K.; Pallikonda, G.; Ciou, Y.-L.; Hsieh, J.-C. Org. Lett. 2019, 21, 1730-1734.
https://doi.org/10.1021/acs.orglett.9b00287
Aksenov, D. A.; Arutyunov, N. A.; Gasanova, A. Z.; Aksenov, N. A.; Aksenov, A. V.; Lower, C.; Rubin, M. Tetrahedron Lett. 2021, 82, 153395.
https://doi.org/10.1016/j.tetlet.2021.153395
Akkachairin, B.; Tummatorn, J.; Khamsuwan, N.; Thongsornkleeb, C.; Ruchirawat, S. J. Org. Chem. 2018, 83, 11254-11268.
https://doi.org/10.1021/acs.joc.8b01851
Vecchione, M. K.; Sun, A. X.; Seidel, D. Chem. Sci. 2011, 2, 2178-2181.
https://doi.org/10.1039/c1sc00506e
Kraus, G. A.; Guo, H. A. Tetrahedron Lett. 2010, 51, 4137-4139.
https://doi.org/10.1016/j.tetlet.2010.05.141
Parvatkar, P. T.; Ajay, A. K.; Bhat, M. K.; Parameswaran, P. S.; Tilve, S. G. Med. Chem. Res. 2013, 22, 88-93.
https://doi.org/10.1007/s00044-012-0015-0
Kearney, A. M.; Vanderwal, C. D. Angew. Chem. Int. Ed. 2006, 45, 7803-7806.
https://doi.org/10.1002/anie.200602996
Sowmiah, S.; Esperança, J. M. S. S.; Rebelo, L. P. N.; Afonso, C. A. M. Org. Chem. Front. 2018, 5, 453-493.
https://doi.org/10.1039/C7QO00836H
Lavilla, R. J. J. Chem. Soc., Perkin Trans. 2002, 1, 1141-1156.
https://doi.org/10.1039/b101371h
Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642- 2713.
https://doi.org/10.1021/cr200251d
Bennasar, M.-L.; Alvares, M.; Lavilla, R.; Zulaica, E.; Bosch, J. J. Org. Chem. 1990, 55, 1156-1168.
https://doi.org/10.1021/jo00291a013
Mayr, H.; Breugst, M.; Ofial, A. R. Angew. Chem. Int. Ed. 2011, 50, 6470-6505.
https://doi.org/10.1002/anie.201007100
Poddubnyi, I. S. Chem. Heterocycl. Compd. 1995, 31, 682-714.
https://doi.org/10.1007/BF01169068
Crowley, J. D.; Steele, I. M.; Bosnich, B. Chem. Eur. J. 2006, 12, 8935-8951.
https://doi.org/10.1002/chem.200500519
Barré, A.; T¸ înta¸s, M.-L.; Alix, F.; Gembus, V.; Papamicaël, C.; Levacher, V. J. Org. Chem. 2015, 80, 6537-6544.
https://doi.org/10.1021/acs.joc.5b01119
Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471-479.
https://doi.org/10.1038/nature10702
Ullmann, F.; Bielecki, J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174-2185.
https://doi.org/10.1002/cber.190103402141
Hassan, J.; Sévignon, M.; Gozzi, G.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1469.
https://doi.org/10.1021/cr000664r
Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795-10798.
https://doi.org/10.1021/ja304410x
Jana, N.; Nguyen, Q.; Driver, T. G. J. Org. Chem. 2014, 79, 2781-2791.
https://doi.org/10.1021/jo500252e
Zhou, F.; Driver, T. G. Org. Lett. 2014, 16, 2916-2919.
https://doi.org/10.1021/ol5010615
Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458-6459.
https://doi.org/10.1021/jo970963p
Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. J. Org. Chem. 2000, 65, 164-168.
https://doi.org/10.1021/jo991337q
Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508-.
https://doi.org/10.1021/jo00128a024
Chow, W. K.; Yuen, O. Y.; Choy, P. Y.; So, C. M.; Lau, C. P.; Wong, W. T.; Kwong, F. Y. RSC Adv. 2013, 3, 12518-12539.
https://doi.org/10.1039/c3ra22905j
Kam, K. C.; Marder, T. B.; Lin, Z. Organometallics 2010, 29, 1849-1857.
https://doi.org/10.1021/om9010802
Nasri, N. S.; Jones, J. M.; Dupont, V. A.; Williams, A. Energy Fuels 1998, 12, 1130- 1134.
https://doi.org/10.1021/ef980104j
Hao, F.; Nishiwaki, N. Molecules 2020, 25, 673.
https://doi.org/10.3390/molecules25030673
Zhang, Z.; Pi, C.; Tong, H.; Cui, X.; Wu, Y. Org. Lett. 2017, 19, 440-443.
https://doi.org/10.1021/acs.orglett.6b03399
Vanderwal, C. D. J. Org. Chem. 2011, 76, 9555-9567.
https://doi.org/10.1021/jo201625e
Zincke, T. Liebigs Ann. Chem. 1904, 330, 361-374.
https://doi.org/10.1002/jlac.19043300217
Zincke, T.; Möller, W. Liebigs Ann. Chem. 1904, 333, 296-345.
https://doi.org/10.1002/jlac.19043330212
Zincke, T.; Wurker, W. Liebigs Ann. Chem. 1905, 338, 107-141.
https://doi.org/10.1002/jlac.19043380107
Kassel, V. M.; Hanneman, C. M.; Delaney, C. P.; Denmark, S. E. J. Am. Chem. Soc. 2021, 143, 13845-13853.
https://doi.org/10.1021/jacs.1c06419
Katritzky, A. R.; Lunt, E. Tetrahedron 1969, 25, 4291-4305.
https://doi.org/10.1016/S0040-4020(01)82968-9
Gritsan, N. P.; Platz, M. S. Chem. Rev. 2006, 106, 3844-3867.
https://doi.org/10.1021/cr040055+
Rehm, T. H. Chem. Eur. J. 2020, 18, 16952-16974.
https://doi.org/10.1002/chem.202000381
Hoffmann, N. Chem. Rev. 2008, 108, 1052-1103.
https://doi.org/10.1021/cr0680336
Schendera, E.; Unkel, L.-N.; Quyen, P. P. H.; Salkewitz, G.; Hoffmann, F.; Villinger, A.; Brasholz, M. Chem. Eur. J. 2020, 26, 269-274.
https://doi.org/10.1002/chem.201903921
Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Liu, Z.; Zhan, F.; Li, Z.-J.; Zhong, J.-J.; Xiao, H.; Feng, K.; Chen, B.; Tao, Y.; Tung, C.-H.; Wu, L.-Z. Sci. Adv. 2017, 3, 1-10.
https://doi.org/10.1126/sciadv.1700666
Scriven, E. F. V. Azides and Nitrenes: Reactivity and Utility; Academic Press INC: Indi- anapolis, 1984; pp 95-487.
Borden, W. T.; Gritsan, N. P.; Hadad, C. M.; Karney, W. L.; Kemnitz, C. R.; Platz, M. S. Acc. Chem. Res. 2000, 33, 765-771.
https://doi.org/10.1021/ar990030a
Belloli, R. J. Chem. Edu. 1971, 48, 422-426.
https://doi.org/10.1021/ed048p422
Karila, D.; Dodd, R. H. Curr. Org. Chem. 2011, 15, 1507-1538.
https://doi.org/10.2174/138527211795378128
Wang, J.; Burdzinski, G.; Platz, M. S.; Vyas, S.; Winter, A. H.; Hadad, C. M. In Nitrenes and Nitrenium Ions; Falvey, D. E., Gudmundsdottir, A. D., Eds.; John Wiley & Sons: Hoboken, 2013; pp 1-33.
https://doi.org/10.1002/9781118560907.ch1
Lindley, J. M.; McRobbie, I. M.; Meth-Cohn, O.; Suschitzky, H. Tetrahedron Lett. 1976, 49, 4513-4516.
https://doi.org/10.1016/0040-4039(76)80157-8
Sundberg, R. J.; Brenner, M.; Suter, S. R.; Das, B. P. Tetrahedron Lett. 1970, 31, 2715.
https://doi.org/10.1016/S0040-4039(01)98320-0
Sundberg, R. J.; Heintzelman, R. W. J. Org. Chem. 1974, 39, 2546.
https://doi.org/10.1021/jo00931a020
Klán, P.; Wirz, J. Photochemistry of Organic Compounds: From Concenpts to Practice; John Wiley & Sons: Wiltshire, 2009; p 25.
Coyle, J. D. Introduction to Organic Photochemistry; John Wiley & Sons: Chichester, 1986.
Wilkinson, F.; Kelly, G. P. J. Chem. Soc. Faraday Trans. 1991, 87, 547-552.
https://doi.org/10.1039/ft9918700547
Turro, N. J. Modern Molecular Photochemistry; University Science Books: Sausalito, 1991; p 421.
Schmidt, M. W.; Lee, E. K. C. J. Am. Chem. Soc. 1970, 92, 3579-3586.
https://doi.org/10.1021/ja00715a009
Feixas, F.; Matito, E.; Poater, J.; Sola, M. Chem. Soc. Rev. 2015, 44, 6434-6451.
https://doi.org/10.1039/C5CS00066A
Peterson, D. B.; Mains, G. J. J. Am. Chem. Soc. 1959, 81, 3510-3515.
https://doi.org/10.1021/ja01523a006
Ikeda, N.; Nakashima, N.; Yoshihara, K. J. Chem. Phys. 1985, 82, 5285-5286.
https://doi.org/10.1063/1.448603
Tsao, M.-L.; Gritsan, N. P.; James, T. R.; Platz, M. S.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 2003, 125, 9343-9358.
https://doi.org/10.1021/ja0351591
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
https://doi.org/10.1021/cr00039a007
Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437-3440.
https://doi.org/10.1016/S0040-4039(01)95429-2
Liu, M.; Tan, L.; Rashid, R. T.; Cen, Y.; Cheng, S.; Botton, G.; Mi, Z.; Li, C.-J. Chem. Sci. 2020, 11, 7864-7870.
https://doi.org/10.1039/D0SC02718A
Kuivila, H. G.; Reuwer, J. F.; Mangravite, J. A. Can. J. Chem. 1963, 41, 3081-3090.
https://doi.org/10.1139/v63-451
Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412-443.
https://doi.org/10.1039/C3CS60197H
Hayes, H. L. D.; Wei, R.; Assante, M.; Geogheghan, K. J.; Jin, N.; Tomasi, S.; Noo- nan, G.; Leach, A. G.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2021, 143, 14814-14826.
https://doi.org/10.1021/jacs.1c06863
Xu, L.; Wang, G.; Zhang, S.; Wang, H.; Wang, L.; Liu, L.; Jiao, J.; Li, P. Tetrahedron 2017, 73, 7123-7157.
https://doi.org/10.1016/j.tet.2017.11.005
Jones, R. G. J. Am. Chem. Soc. 1947, 69, 2346-2350.
https://doi.org/10.1021/ja01202a028
Merritt, J. M.; Andiappan, M.; Pietz, M. A.; Richey, R. N.; Sullivan, K. A.; Kjell, D. P. Org. Process Res. Dev. 2016, 20, 176-188.
https://doi.org/10.1021/acs.oprd.5b00324
Lieber, E.; Rao, C. N. R.; Thomas, A. E.; Oftedahl, E.; Minnis, R.; Nambury, C. V. N. Spectrochim. Acta 1963, 19, 1135-1144.
https://doi.org/10.1016/0371-1951(63)80033-8
Keicher, T.; Löbbecke, S. In Organic Azides: Syntheses and Applications; Bräse, S. Banert, K., Eds.; John Wiley & Sons: Chichester, 2010; pp 3-4.
Kalsi, P. S. Organic Reactions and Their Mechanisms; New Age International (P) Limited, Publishers: New Delhi, 1996.
Butler, R. N.; Fox, A.; Collier, S.; Burke, L. A. J. Chem. Soc., Perkin Trans. 2 1998, 2243-2248.
https://doi.org/10.1039/a804040k
Burke, L. A.; Fazen, P. J. Int. J. Quantum Chem. 2009, 109, 3613-3618.
https://doi.org/10.1002/qua.22408
Kazakevich, Y. V.; LoBrutto, R. HPLC for Pharmaceutical Scientists; John Wiley & Sons: Hoboken, 2007; p 146.
https://doi.org/10.1002/0470087951
Kalbag, S. M.; Roeske, R. W. J. Am. Chem. Soc. 1975, 97, 440-441.
https://doi.org/10.1021/ja00835a046
Tousek, J.; Miert, S. V.; Pieters, L.; Baelen, G. V.; Hostyn, S.; Maes, B. U. W.; Lemiére, G.; Dommisse, R.; Marek, R. Magn. Reson. Chem. 2008, 46, 42-51.
https://doi.org/10.1002/mrc.2125
Barltrop, J. A.; Bunce, N. J. J. Chem. Soc. C. 1968, 1467-1474.
https://doi.org/10.1039/j39680001467
Iddon, B.; Meth-Cohn, O.; Scriven, E. F. V.; Suschitzky, H.; Gallagher, P. T. Angew. Chem. Int. Ed. Engl. 1979, 18, 900-917.
https://doi.org/10.1002/anie.197909001
Reiser, A.; Marley, R. Trans. Faraday Soc. 1968, 64, 1806-1815.
https://doi.org/10.1039/TF9686401806
Jonckers, T. H. M. et al. J. Med. Chem. 2002, 45, 3497-3508.
https://doi.org/10.1021/jm011102i
Whittell, L. R.; Batty, K. T.; Wong, R. P. M.; Bolitho, E. M.; Fox, S. A.; Davis, T. M. E.; Murray, P. E. Bioorg. Med. Chem. 2011, 19, 7519-7525.
https://doi.org/10.1016/j.bmc.2011.10.037
Lu, W.-J.; Switalska, M.; Wang, L.; Yonezawa, M.; El-Sayed, I. E.-T.; Wietrzyk, J.; Inokuchi, T. Med. Chem. Res. 2013, 22, 4492-4504.
https://doi.org/10.1007/s00044-012-0443-x
Iorio, F.; Bosotti, R.; Scacheri, E.; Belcastro, V.; Mithboakar, P.; Ferriero, R.; Murino, L.; Tagliaferri, R.; Brunetti-Pierri, N.; Isacchi, A.; di Bernardo, D. Proc. Natl. Acad. Sci. USA 2012, 107, 14621-14626.
https://doi.org/10.1073/pnas.1000138107
Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176-2179.
https://doi.org/10.1021/om100106e
Rosenau, C. P.; Jelier, B. J.; Gossert, A. D.; Togni, A. Angew. Chem. Int. Ed. 2018, 57, 9528-9533.
https://doi.org/10.1002/anie.201802620
Pedersen, D. S.; Rosenbohm, C. Synthesis 2001, 16, 2431-2434.
Preshlock, S. M.; Plattner, D. L.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E.; Smith, M. R. Angew. Chem. Int. Ed. 2013, 52, 12915-12919.
https://doi.org/10.1002/anie.201306511
Smith, M. R.; Bisht, R.; Haldar, C.; Pandey, G.; Dannatt, J. E.; Glaffari, B.; Jr., R. E. M.; Chattopadhay, B. ACS Catal. 2018, 7, 6216-6223.
https://doi.org/10.1021/acscatal.8b00641
Bogányiab, B.; Kámána, J. Tetrahedron 2013, 69, 9512-9519.
https://doi.org/10.1016/j.tet.2013.08.019
Reddy, Y. P.; Reddy, K. K. Indian J. Chem. 1988, 27B, 563-564.
Wippich, J.; Truchan, N.; Bach, T. Adv. Synth. Catal. 2016, 358, 2083-2087.
https://doi.org/10.1002/adsc.201600410
Lescot, E.; Muzard, G.; Markovits, J.; Belleney, J.; Roques, B. P.; LePecq, J.-B. J. Med. Chem. 1986, 63, 1731-1737.
https://doi.org/10.1021/jm00159a028
Chatterjee, T.; Choi, M. G.; Kim, J.; Chang, S.-K.; Cho, E. J. Chem. Commun. 2016, 52, 4203-4206.
https://doi.org/10.1039/C6CC00562D
Rao, M. S.; Sarkar, S.; Hussain, S. Tetrahedron Lett. 2019, 60, 1221-1225.
https://doi.org/10.1016/j.tetlet.2019.03.047
Bag, S.; Jana, S.; Pradhan, S.; Bhowmich, S.; Goswami, N.; Sinha, S. K. Nat. Commun. 2021, 12, 1-8.
https://doi.org/10.1038/s41467-021-21633-2
Long, C.-Y.; Ni, S.-F.; Su, M.-H.; Wang, X.-Q.; Tan, W. ACS Catal. 2020, 10, 13641- 13649.
https://doi.org/10.1021/acscatal.0c03428
Scarborough, C. C.; M. J. W. Grady, I. A. G.; Gandhi, B. A.; Bunel, E. E.; Stahl, S. S. Angew. Chem. Int. Ed. 2005, 117, 5403-5406.
https://doi.org/10.1002/ange.200501522
Hostyn, S.; Maes, B. U.; Pieters, L.; Lemière, G. L. F.; Mátyus, P.; Hajòs, G.; Dom- misse, R. A. Tetrahedron 2005, 61, 1571-1577.
https://doi.org/10.1016/j.tet.2004.11.073
Alajarin, M.; Molina, P.; Vidal, A. J. Nat. Prod. 1997, 60, 747.
https://doi.org/10.1021/np970177f
F.,; Hardesty, J.; Thummel, R. P. J. Org. Chem. 1998, 63, 4055-4061.
https://doi.org/10.1021/jo980134j
Kulka, M.; Manske, R. H. F. Can. J. Med. 1952, 30, 711-719.
https://doi.org/10.1139/v52-084
Meyers, C.; Rombouts, G.; Loones, K. T. J.; Maes, B. U. W. Adv. Synth. Catal. 2008, 350, 465-470.
https://doi.org/10.1002/adsc.200700328
Uchuskin, M. G.; Pilipenko, A. S.; Serdyuk, O. V.; Trushkov, I. V.; Butin, A. V. Org. Biomol. Chem. 2012, 10, 7262-7265.
https://doi.org/10.1039/c2ob25836f
He, L.; Chang, H.-X.; Chou, T.-C.; Savaraj, N.; Cheng, C. C. Eur. J. Med. Chem. 2003, 38, 101-107.
Meyers, C.; Rombouts, G.; Loones, K. T. J.; Coelho, A.; Maes, B. U. W. Adv. Synth. Catal. 2008, 350, 465-470.
https://doi.org/10.1002/adsc.200700328
Caneque, T.; Cuadro, A. M.; Alvarez-Builla, J.; Pérez-Moreno, J.; Clays, K.; Marcelo, G.; Mendicuti, F.; Castano, O.; Andrés, J. L.; Vaquero, J. J. Eur. J. Org. Chem. 2010, 6323-6330.
https://doi.org/10.1002/ejoc.201000816
Xiang, S.-K.; Zhang, B.; Cui, Y.; Jiao, N. Chem. Commun. 2011, 47, 8097-8099.
https://doi.org/10.1039/c1cc12220g
Zhu, J.-K.; Gao, J.-M.; Yang, C.-J.; Shang, X.-F.; Zhao, Z.-M.; Lawoe, R. K.; Zhou, R.; Sun, Y.; Yin, X.-D.; Liu, Y.-Q. J. Agric. Food Chem. 2020, 68, 2306-2315.
https://doi.org/10.1021/acs.jafc.9b06793
Miller, M.; Vogel, J. C.; Tsang, W.; Merrit, A.; Procter, D. J. Org. Biomol. Chem. 2009, 7, 589-597.