Smart Water flooding: Part 1: Laboratory workflow for screening EOR potential

Keywords:

The National IOR Centre of Norway, smart water flooding, EOR, reservoir systems, COBR

Synopsis

This report aims to provide guidance on the type of analyses to be performed to screen Smart Water EOR potential for various Crude Oil-Brine-Rock (COBR) systems. The objective of the report is to highlight the most important screening parameters and provide recommendations for laboratory tests. The recommended methodological approach is based on practical and fundamental knowledge gained during the lifetime of the National IOR Centre of Norway.

The document describes the main steps of the Smart Water EOR workflow with a simplified description of the experimental procedures. These guidelines can be addressed to both laboratory engineers/researchers and project managers. The authors hope that the recommendations presented will ultimately help facilitate the implementation of Smart Water technology in real reservoir systems including the Norwegian Continental Shelf (NCS).

Author Biographies

Aleksandr Mamonov

Researcher
Faculty of Science and Technology
Department of Energy Resources
University of Stavanger
aleksandr.mamonov@uis.no

Skule Strand

Associate professor
Faculty of Science and Technology
Department of Energy Resources
skule.strand@uis.no

Tina Puntervold

Associate professor
Faculty of Science and Technology
Department of Energy Resources
University of Stavanger
tina.puntervold@uis.no

Ivan Dario Pinerez Torrijos

Researcher
Faculty of Science and Technology
Department of Energy Resources
University of Stavanger
ivan.d.pinereztorrijos@uis.no

References

Aghaeifar, Z., Puntervold, T., Strand, S., Austad, T., Maghsoudi, B., & Ferreira, J. d. (2018). Low Salinity EOR Effects After Seawater Flooding in a High Temperature and High Salinity Offshore Sandstone Reservoir. SPE Norway One Day Seminar,
https://doi.org/10.2118/191334-MS

Aghaeifar, Z., Strand, S., Austad, T., Puntervold, T., Aksulu, H., Navratil, K., Storås, S., & Håmsø, D. (2015). Influence of Formation Water Salinity/Composition on the Low-Salinity Enhanced Oil Recovery Effect in High-Temperature Sandstone Reservoirs. Energy & Fuels, 29(8), 4747-4754.
https://doi.org/10.1021/acs.energyfuels.5b01621

Aghaeifar, Z., Strand, S., & Puntervold, T. (2019). Significance of Capillary Forces during Low-Rate Waterflooding. Energy & Fuels, 33(5), 3989-3997.
https://doi.org/10.1021/acs.energyfuels.9b00023

Al-Qattan, A., Sanaseeri, A., Al-Saleh, Z., Singh, B. B. B., Al-Kaaoud, H., Delshad, M., Hernandez, R., Winoto, W., Badham, S., Bouma, C., Brown, J., & Kumer, K. (2018). Low Salinity Waterflood and Low Salinity Polymer Injection in the Wara Reservoir of the Greater Burgan Field. SPE EOR Conference at Oil and Gas West Asia,
https://doi.org/10.2118/190481-MS

Allard, B., Tullborg, E.-L., Larson, S. Å., & Karlsson, M. (1983). Ion exchange capacities and surface areas of some major components and common fracture filling materials of igneous rocks. KBS' technical report.

Austad, T., Rezaeidoust, A., & Puntervold, T. (2010). Chemical Mechanism of Low Salinity Water Flooding in Sandstone Reservoirs SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA.
https://doi.org/10.2118/129767-MS

Batias, J., Hamon, G., Lalanne, B., & Romero, C. (2009). Field and laboratory observations of remaining oil saturations in a light oil reservoir flooded by a low salinity aquifer. SCA2009-01,

Bjørlykke, K., Nedkvitne, T., Ramm, M., & Saigal, G. C. (1992). Diagenetic processes in the Brent Group (Middle Jurassic) reservoirs of the North Sea: an overview. Geological Society, London, Special Publications, 61(1), 263.
https://doi.org/10.1144/GSL.SP.1992.061.01.15

Buckley, J. S., & Morrow, N. R. (1990). Characterization of Crude Oil Wetting Behavior by Adhesion Tests SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma.
https://doi.org/10.2118/20263-MS

Cissokho, M., Bertin, H., Boussour, S., Cordier, P., & Hamon, G. (2010). Low Salinity Oil Recovery On Clayey Sandstone: Experimental Study. Petrophysics - The SPWLA Journal of Formation Evaluation and Reservoir Description, 51(05).

Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the rock-forming minerals (3rd ed.). The Mineralogical Society.
https://doi.org/10.1180/DHZ

Erke, S. I., Volokitin, Y. E., Edelman, I. Y., Karpan, V. M., Nasralla, R. A., Bondar, M. Y., Mikhaylenko, E. E., & Evseeva, M. (2016). Low Salinity Flooding Trial at West Salym Field. SPE Improved Oil Recovery Conference,
https://doi.org/10.2118/179629-MS

Fathi, S. J., Austad, T., & Strand, S. (2010). "Smart Water" as a Wettability Modifier in Chalk: The Effect of Salinity and Ionic Composition. Energy & Fuels, 24(4), 2514-2519.
https://doi.org/10.1021/ef901304m

Hamon, G. (2016). Low-Salinity Waterflooding: Facts, Inconsistencies and the Way Forward. Petrophysics - The SPWLA Journal of Formation Evaluation and Reservoir Description, 57(01), 41-50.

Jerauld, G. R., Webb, K. J., Lin, C.-Y., & Seccombe, J. C. (2008). Modeling Low-Salinity Waterflooding. SPE Reservoir Evaluation & Engineering, 11(06), 1000-1012.
https://doi.org/10.2118/102239-PA

Lager, A., Webb, K. J., Black, C. J. J., Singleton, M., & Sorbie, K. S. (2008). Low Salinity Oil Recovery - An Experimental Investigation1. Petrophysics, 49(01), 8.

Lee, K. S., & Lee, J. H. (2019). Hybrid Enhanced Oil Recovery using Smart Waterflooding. Gulf Professional Publishing.
https://doi.org/10.1016/C2018-0-01195-0

Ligthelm, D. J., Gronsveld, J., Hofman, J., Brussee, N., Marcelis, F., & van der Linde, H. (2009, 2009/1/1/). Novel Waterflooding Strategy By Manipulation Of Injection Brine Composition EUROPEC/EAGE Conference and Exhibition, Amsterdam, The Netherlands.
https://doi.org/10.2118/119835-MS

Mamonov, A. (2019). EOR by Smart Water Flooding in Sandstone Reservoirs - Effect of Mineralogy on Rock Wetting and Wettability Alteration (Publication Number 468) University of Stavanger, Norway].

Mamonov, A., Kvandal, O. A., Strand, S., & Puntervold, T. (2019). Adsorption of polar organic components onto sandstone rock minerals and its effect on wettability and EOR potential by Smart Water. Energy & Fuels.
https://doi.org/10.1021/acs.energyfuels.9b00101

Mamonov, A., Puntervold, T., Strand, S., Hetland, B., Andersen, Y., Wealth, A., & Nadeau, P. H. (2020). Contribution of Feldspar Minerals to pH during Smart Water EOR Processes in Sandstones. Energy & Fuels, 34(1), 55-64.
https://doi.org/10.1021/acs.energyfuels.9b01064

Morrow, N., & Buckley, J. (2011). Improved Oil Recovery by Low-Salinity Waterflooding. Journal of Petroleum Technology, 63(05), 106-112.
https://doi.org/10.2118/129421-JPT

Piñerez Torrijos, I. D., Mamonov, A., Strand, S., & Puntervold, T. (2020). The role of polar organic components in dynamic crude oil adsorption on sandstones and carbonates. CT&F - Ciencia, Tecnología y Futuro, 10(2), 5-16.
https://doi.org/10.29047/01225383.251

Piñerez Torrijos, I. D., Puntervold, T., Strand, S., Austad, T., Bleivik, T. H., & Abdullah, H. I. (2018). An experimental study of the low salinity Smart Water - Polymer hybrid EOR effect in sandstone material. Journal of Petroleum Science and Engineering, 164, 219-229.
https://doi.org/10.1016/j.petrol.2018.01.031

Piñerez Torrijos, I. D., Puntervold, T., Strand, S., Austad, T., Tran, V. V., & Olsen, K. (2017). Impact of temperature on the low salinity EOR effect for sandstone cores containing reactive plagioclase. Journal of Petroleum Science and Engineering, 156, 102-109.
https://doi.org/10.1016/j.petrol.2017.05.014

Piñerez Torrijos, I. D., Puntervold, T., Strand, S., & Rezaeidoust, A. (2016). Optimizing the Low Salinity Water for EOR Effects in Sandstone Reservoirs - Composition vs Salinity 78th EAGE Conference & Exhibition, Vienna, Austria.
https://doi.org/10.3997/2214-4609.201600763

Puntervold, T., Mamonov, A., Aghaeifar, Z., Frafjord, G. O., Moldestad, G. M., Strand, S., & Austad, T. (2018). Role of Kaolinite Clay Minerals in Enhanced Oil Recovery by Low Salinity Water Injection. Energy & Fuels, 32(7), 7374-7382.
https://doi.org/10.1021/acs.energyfuels.8b00790

Puntervold, T., Mamonov, A., Piñerez Torrijos, I. D., & Strand, S. (2021). Adsorption of Crude Oil Components onto Carbonate and Sandstone Outcrop Rocks and Its Effect on Wettability. Energy & Fuels, 35(7), 5738-5747.
https://doi.org/10.1021/acs.energyfuels.0c03003

Reinholdtsen, A. J., Rezaeidoust, A., Strand, S., & Austad, T. (2011, 12-14 April ). Why Such a Small Low Salinity EOR - Potential from the Snorre Formation? 16th European Symposium on Improved Oil Recovery, Cambridge, UK.
https://doi.org/10.3997/2214-4609.201404796

RezaeiDoust, A., Puntervold, T., & Austad, T. (2011). Chemical Verification of the EOR Mechanism by Using Low Saline/Smart Water in Sandstone. Energy & Fuels, 25(5), 2151-2162.
https://doi.org/10.1021/ef200215y

RezaeiDoust, A., Puntervold, T., Strand, S., & Austad, T. (2009). Smart Water as Wettability Modifier in Carbonate and Sandstone: A Discussion of Similarities/Differences in the Chemical Mechanisms. Energy Fuels Energy & Fuels, 23(9), 4479-4485.
https://doi.org/10.1021/ef900185q

Smalley, P. C., Muggeridge, A. H., Amundrud, S. S., Dalland, M., Helvig, O. S., Høgnesen, E. J., Valvatne, P., & Østhus, A. (2020). EOR Screening Including Technical, Operational, Environmental and Economic Factors Reveals Practical EOR Potential Offshore on the Norwegian Continental Shelf. SPE Improved Oil Recovery Conference,
https://doi.org/10.2118/200376-MS

Smalley, P. C., Muggeridge, A. H., Dalland, M., Helvig, O. S., Høgnesen, E. J., Hetland, M., & Østhus, A. (2018). Screening for EOR and Estimating Potential Incremental Oil Recovery on the Norwegian Continental Shelf. SPE Improved Oil Recovery Conference,
https://doi.org/10.2118/190230-MS

Strand, S., Puntervold, T., & Austad, T. (2016). Water based EOR from clastic oil reservoirs by wettability alteration: A review of chemical aspects. Journal of Petroleum Science and Engineering, 146, 1079-1091.
https://doi.org/10.1016/j.petrol.2016.08.012

Strand, S., Standnes, D. C., & Austad, T. (2006). New wettability test for chalk based on chromatographic separation of SCN− and SO42−. Journal of Petroleum Science and Engineering, 52(1), 187-197.
https://doi.org/10.1016/j.petrol.2006.03.021

Tang, G.-Q., & Morrow, N. R. (1999). Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. Journal of Petroleum Science and Engineering, 24(2), 99-111.
https://doi.org/10.1016/S0920-4105(99)00034-0

Yousef, A. A., Liu, J., Blanchard, G., Al-Saleh, S., Al-Zahrani, T., Al-Zahrani, R., Al-Tammar, H., & Al-Mulhim, N. (2012). SmartWater Flooding: Industry's First Field Test in Carbonate Reservoirs. SPE Annual Technical Conference and Exhibition,
https://doi.org/10.2118/159526-MS

Zhang, P., Tweheyo, M. T., & Austad, T. (2007). Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1), 199-208.
https://doi.org/10.1016/j.colsurfa.2006.12.058
Cover image

Downloads

Published

June 24, 2022

Online ISSN

2387-6662

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.