Development of Advanced Numerical Tools for Dynamic Analysis of Aquaculture Structures

Authors

Hui Cheng

Keywords:

marine aquaculture structures, Finite Element Analysis

Synopsis

Numerical methods to accurately predict dynamic responses of marine aquaculture structures are essential in the engineering design process, because these structures can be subjected to large wave and current loads in the ocean environment, which causes complex structural motion and deformation. However, only a few numerical programs for the dynamic analysis of aquaculture structures can be accessed by the public without permission.

In order to meet the high demand for a ready-for-use program, a numerical module for an open-source Finite Element Analysis (FEA) program, Code_Aster, is developed in this PhD study. This numerical module includes various wave models (e.g., Airy waves, Stokes 2nd order waves and irregular waves) and hydrodynamic force models (e.g., Morison model, Screen model and flow velocity reduction due to wake effects). Moreover, a coupling algorithm to handle the wake effects of thin, flexible and highly permeable structures with complex geometries is also implemented to solve the complex fluid-structure interaction (FSI) problem in marine aquaculture engineering. The accuracy of structural response prediction can be improved using the coupling algorithm with the open-source Computational Fluid Dynamics (CFD) solver, OpenFOAM, which can solve the complex flow field around the structures. Detailed verifications and validations are firstly conducted with considerations of different net solidities, inflow angles, incoming current velocities and net dimensions. Subsequently, the newly developed numerical module is applied to study dynamic responses of traditional fish cages, grid moored fish farms and a large semi-submersible aquaculture structure for practical engineering design and optimization purposes.

The structural responses of traditional fish cages with different design parameters (including circumferences of floating collar, depths of net bag, submerged weights) are comprehensively analyzed under pure current conditions. Based on the parametric analysis with a large number of numerical simulations, regression functions for the most concerning aspects are provided for engineering usages in the design process. These regression functions can save considerable time for experiments and numerical simulations in the design of traditional fish cages.

The structural responses of grid moored fish farms are analyzed with respect to combinations of mooring line breakages and current directions. Based on the numerical results, suggestions to improve the design of the mooring system are given. It is also recommended to monitor the positions of buoys during in-situ operations. When one of the mooring line breaks, the maximum tension increment in the mooring system can be estimated based on the displacement of the buoys. This estimation can help the farmer to decide whether the damaged mooring line should be repaired immediately.

The global responses of a semi-submersible offshore aquaculture structure are investigated under irregular waves and current conditions which correspond to a return period of 50 years. The numerical model shows a reasonable agreement with published experimental results and demonstrates that the newly developed numerical module can be applied to the dynamic analysis of offshore aquaculture structures.

Author Biography

Hui Cheng

PhD Fellow
Faculty of Science and Technology
Department of Mechanical and Structural Engineering and Materials Science
University of Stavanger
hui.cheng@uis.no

References

Aarsnes, J.V., Rudi, H., Løland, G., 1990. Current forces on cage, net deflection. Engineering for offshore fish farming. Proceedings of a conference organised by the Institution of Civil Engineers, Glasgow, UK, 17-18 October 1990. 137-152.

AKVA Group, 2020. Pen Farming Aquaculture Catalogue (English).

Alver, M.O., Skøien, K.R., Føre, M., Aas, T.S., Oehme, M., Alfredsen, J.A., 2016. Modelling of surface and 3D pellet distribution in Atlantic salmon (Salmo salar L.) cages. Aquacultural Engineering 72-73, 20-29.

https://doi.org/10.1016/j.aquaeng.2016.03.003

Antonutti, R., Peyrard, C., Incecik, A., Ingram, D., Johanning, L., 2018. Dynamic mooring simulation with Code_Aster with application to a floating wind turbine. Ocean Engineering 151, 366-377.

https://doi.org/10.1016/j.oceaneng.2017.11.018

Arnold, D.N., Logg, A., 2014. Periodic Table of the Finite Elements. SIAM News 47(9).

Aryai, V., Abbassi, R., Abdussamie, N., Salehi, F., Garaniya, V., Asadnia, M., Baksh, A.-A., Penesis, I., Karampour, H., Draper, S., Magee, A., Keng, A.K., Shearer, C., Sivandran, S., Yew, L.K., Cook, D., Underwood, M., Martini, A., Heasman, K., Abrahams, J., Wang, C.-M., 2021. Reliability of multi-purpose offshore- facilities: Present status and future direction in Australia. Process Safety and Environmental Protection 148, 437-461.

https://doi.org/10.1016/j.psep.2020.10.016

Aubry, J.-P., 2019. Beginning with Code_Aster: a practical introduction to finite element method using Code_Aster Gmsh and Salome ; Version 2.1.2.

Balash, C., Colbourne, B., Bose, N., Raman-Nair, W., 2009. Aquaculture Net Drag Force and Added Mass. Aquacultural Engineering 41, 14-21.

https://doi.org/10.1016/j.aquaeng.2009.04.003

Berstad, A.J., Heimstad, L.F., Walaunet, J., 2014. Model Testing of Fish Farms for Validation of Analysis Programs. Presented at the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2014-24647

Berstad, A.J., Tronstad, H., Sivertsen, S.-A., Leite, E., 2008. Enhancement of Design Criteria for Fish Farm Facilities Including Operations. Presented at the ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers Digital Collection, pp. 825-832.

https://doi.org/10.1115/OMAE2005-67451

Berstad, A.J., Tronstad, H., Ytterland, A., 2004. Design Rules for Marine Fish Farms in Norway: Calculation of the Structural Response of Such Flexible Structures to Verify Structural Integrity, in: 23rd International Conference on Offshore Mechanics and Arctic Engineering, Volume 3. Presented at the ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering, ASMEDC, Vancouver, British Columbia, Canada, pp. 867-874.

https://doi.org/10.1115/OMAE2004-51577

Berstad, A.J., Walaunet, J., Heimstad, L.F., 2013. Loads From Currents and Waves on Net Structures. Presented at the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection, pp. 95-104.

https://doi.org/10.1115/OMAE2012-83757

Bessonneau, J.S., Marichal, D., 1998. Study of the dynamics of submerged supple nets (applications to trawls). Ocean Engineering 25, 563-583.

https://doi.org/10.1016/S0029-8018(97)00035-8

Beveridge, M.C.M., 2004. Cage aquaculture, 3rd ed. ed. Oxford, UK : Blackwell Pub. ; Ames, Iowa.

https://doi.org/10.1002/9780470995761

Bi, C.-W., Xu, T.-J., 2018. Numerical study on the flow field around a fish farm in tidal current. Turk. J. Fish. Aquat. Sci. 18.

https://doi.org/10.4194/1303-2712-v18_5_06

Bi, C.-W., Zhao, Y.-P., Dong, G.-H., 2020a. Experimental study on the effects of farmed fish on the hydrodynamic characteristics of the net cage. Aquaculture 524, 735239.

https://doi.org/10.1016/j.aquaculture.2020.735239

Bi, C.-W., Zhao, Y.-P., Dong, G.-H., Cui, Y., Gui, F.-K., 2015. Experimental and numerical investigation on the damping effect of net cages in waves. Journal of Fluids and Structures 55, 122-138.

https://doi.org/10.1016/j.jfluidstructs.2015.02.010

Bi, C.-W., Zhao, Y.-P., Dong, G.-H., Wu, Z.-M., Zhang, Y., Xu, T.-J., 2018. Drag on and flow through the hydroid-fouled nets in currents. Ocean Engineering 161, 195-204.

https://doi.org/10.1016/j.oceaneng.2018.05.005

Bi, C.-W., Zhao, Y.-P., Dong, G.-H., Xu, T.-J., Gui, F.-K., 2014a. Numerical simulation of the interaction between flow and flexible nets. Journal of Fluids and Structures 45, 180-201.

https://doi.org/10.1016/j.jfluidstructs.2013.11.015

Bi, C.-W., Zhao, Y.-P., Dong, G.-H., Xu, T.-J., Gui, F.-K., 2013. Experimental investigation of the reduction in flow velocity downstream from a fishing net. Aquacultural Engineering 57, 71-81.

https://doi.org/10.1016/j.aquaeng.2013.08.002

Bi, C.-W., Zhao, Y.-P., Dong, G.-H., Zheng, Y.-N., Gui, F.-K., 2014b. A numerical analysis on the hydrodynamic characteristics of net cages using coupled fluid-structure interaction model. Aquacultural Engineering 59, 1-12.

https://doi.org/10.1016/j.aquaeng.2014.01.002

Bi, C.-W., Zhao, Y.-P., Sun, X.-X., Zhang, Y., Guo, Z.-X., Wang, B., Dong, G.-H., 2020b. An efficient artificial neural network model to predict the structural failure of high-density polyethylene offshore net cages in typhoon waves. Ocean Engineering 196, 106793.

https://doi.org/10.1016/j.oceaneng.2019.106793

Blevins, R.D., 1984. Applied Fluid Dynamics Handbook. Van Nostrand Reinhold Company.

Bondevik, H.L., 2019. Fish Escape and Models to Assess Influential Factors (Master Thesis). Norwegian University of Science and Technology, Trondheim, Norway.

Bore, P.T., Amdahl, J., 2017. Determination of Environmental Conditions Relevant for the Ultimate Limit State at an Exposed Aquaculture Location. Presented at the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2017-61413

Bos, W.J.T., 2020. Production and dissipation of kinetic energy in grid turbulence. Phys. Rev. Fluids 5, 104607.

https://doi.org/10.1103/PhysRevFluids.5.104607

Brizzi, G., Sabbagh, M., 2021. A new criterion for multi-purpose platforms siting: Fish endurance to wave motion within offshore farming cages. Ocean Engineering 224, 108751.

https://doi.org/10.1016/j.oceaneng.2021.108751

Buck, B.H., Langan, R. (Eds.), 2017. Aquaculture Perspective of Multi- Use Sites in the Open Ocean. Springer International Publishing, Cham.

https://doi.org/10.1007/978-3-319-51159-7

Cardia, F., Lovatelli, A., 2015. Aquaculture operations in floating HDPE cages: a field handbook. Food and Agriculture Organization of the United States, Rome.

Cha, B.-J., Lee, C.-W., 2002. Dynamic Simulation of a Midwater Trawl System's Behavior. Fisheries science 68, 1865-1868.

https://doi.org/10.2331/fishsci.68.sup2_1865

Cha, B.-J., Lee, G.-H., 2018. Performance of a model fish cage with copper-alloy net in a circulating water channel and wave tank. Ocean Engineering 151, 290-297.

https://doi.org/10.1016/j.oceaneng.2018.01.053

Chen, D., Wang, C.M., Zhang, H., 2021. Examination of net volume reduction of gravity-type open-net fish cages under sea currents. Aquacultural Engineering 92, 102128.

https://doi.org/10.1016/j.aquaeng.2020.102128

Chen, H., Christensen, E.D., 2017. Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage. OCEAN ENG 142, 597-615.

https://doi.org/10.1016/j.oceaneng.2017.07.033

Chen, H., Christensen, E.D., 2016. Investigations on the porous resistance coefficients for fishing net structures. Journal of Fluids and Structures 65, 76-107.

https://doi.org/10.1016/j.jfluidstructs.2016.05.005

Cheng, H., 2017. Study on the anti-current characteristics of a new type gravity fish cage and design optimising (Master Thesis). Ocean University of China, Qingdao, China.

Cheng, H., Aarsæther, K.G., Li, L., Ong, M.C., 2020a. Numerical Study of a Single-Point Mooring Gravity Fish Cage with Different Deformation-Suppression Methods. Journal of Offshore Mechanics and Arctic Engineering 142, 041301.

https://doi.org/10.1115/1.4046115

Cheng, H., Huang, L., Ni, Y., Xu, Q., Zhao, F., Wang, X., Liang, Z., 2018a. Numerical and Experimental Study of SPM Fish Cage: Comparison and Validation, in: Volume 7B: Ocean Engineering. Presented at the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Madrid, Spain, p. V07BT06A053.

https://doi.org/10.1115/OMAE2018-78204

Cheng, H., Huang, L., Ni, Y., Zhao, F., Wang, X., Tang, Y., Liang, Z., 2018b. Study on the Flow Characteristics of Rope and Cylinder With Large-Eddy Simulation, in: Volume 7A: Ocean Engineering. Presented at the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Madrid, Spain, p. V07AT06A029.

https://doi.org/10.1115/OMAE2018-78212

Cheng, H., Li, L., Aarsæther, K.G., Ong, M.C., 2020b. Typical hydrodynamic models for aquaculture nets: A comparative study under pure current conditions. Aquacultural Engineering 90, 102070.

https://doi.org/10.1016/j.aquaeng.2020.102070

Cheng, H., Li, L., Ong, M.C., Aarsæther, K.G., Sim, J., 2021. Effects of mooring line breakage on dynamic responses of grid moored fish farms under pure current conditions. Ocean Engineering 237, 109638.

https://doi.org/10.1016/j.oceaneng.2021.109638

Cheng, H., Ong, M.C., Li, L., Chen, H., 2022. Development of a coupling algorithm for fluid-structure interaction analysis of submerged aquaculture nets. Ocean Engineering 243, 110208.

https://doi.org/10.1016/j.oceaneng.2021.110208

Chu, Y.I., Wang, C.M., Park, J.C., Lader, P.F., 2020. Review of cage and containment tank designs for offshore fish farming. Aquaculture 519, 734928.

https://doi.org/10.1016/j.aquaculture.2020.734928

Costello, C., Cao, L., Gelcich, S., Cisneros-Mata, M.Á., Free, C.M., Froehlich, H.E., Golden, C.D., Ishimura, G., Maier, J., Macadam- Somer, I., Mangin, T., Melnychuk, M.C., Miyahara, M., de Moor, C.L., Naylor, R., Nøstbakken, L., Ojea, E., O'Reilly, E., Parma, A.M., Plantinga, A.J., Thilsted, S.H., Lubchenco, J., 2020. The future of food from the sea. Nature 588, 95-100.

https://doi.org/10.1038/s41586-020-2616-y

Davis, K.F., Gephart, J.A., Emery, K.A., Leach, A.M., Galloway, J.N., D'Odorico, P., 2016. Meeting future food demand with current agricultural resources. Global Environmental Change 39, 125-132.

https://doi.org/10.1016/j.gloenvcha.2016.05.004

de Tullio, M.D., Pascazio, G., 2016. A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness. Journal of Computational Physics 325, 201-225.

https://doi.org/10.1016/j.jcp.2016.08.020

DeCew, J., 2011. Development of engineering tools to analyze and design flexible structures in open ocean environments. Doctoral Dissertations.

DeCew, J., Tsukrov, I., Risso, A., Swift, M.R., Celikkol, B., 2010. Modelling of dynamic behavior of a single-point moored submersible fish cage under currents. Aquacultural Engineering 43, 38-45.

https://doi.org/10.1016/j.aquaeng.2010.05.002

DNV GL, 2018. Aquaculture going offshore- seizing the opportunity, managing the risk.

Dong, S., You, X., Hu, F., 2021. Experimental investigation on the fluid-structure interaction of a flexible net cage used to farm Pacific bluefin tuna (Thunnus orientalis). Ocean Engineering 226, 108872.

https://doi.org/10.1016/j.oceaneng.2021.108872

Drach, A., Tsukrov, I., DeCew, J., Celikkol, B., 2016. Engineering procedures for design and analysis of submersible fish cages with copper netting for exposed marine environment. Aquacultural Engineering 70, 1-14.

https://doi.org/10.1016/j.aquaeng.2015.11.001

Edwards, P., 2015. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 447, 2-14.

https://doi.org/10.1016/j.aquaculture.2015.02.001

Electricité de France (EDF), 1989. Finite Element Code_Aster, Analysis of Structures and Thermomechanics for Studies and Research.

Endresen, P.C., Birkevold, J., Føre, M., Fredheim, A., Kristiansen, D., Lader, P., 2014. Simulation and Validation of a Numerical Model of a Full Aquaculture Net-Cage System, in: Volume 7: Ocean Space Utilization

https://doi.org/10.1115/OMAE2014-23382

Professor Emeritus J. Randolph Paulling Honoring Symposium on Ocean Technology. Presented at the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, San Francisco, California, USA, p. V007T05A006.

https://doi.org/10.1115/OMAE2014-23382

Endresen, P.C., Føre, M., Fredheim, A., Kristiansen, D., Enerhaug, B., 2013. Numerical Modelling of Wake Effect on Aquaculture Nets, in: Volume 3: Materials Technology

https://doi.org/10.1115/OMAE2013-11446

Ocean Space Utilization. Presented at the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Nantes, France, p. V003T05A027.

https://doi.org/10.1115/OMAE2013-11446

Endresen, P.C., Klebert, P., 2020. Loads and response on flexible conical and cylindrical fish cages: A numerical and experimental study based on full-scale values. Ocean Engineering 216, 107672.

https://doi.org/10.1016/j.oceaneng.2020.107672

Enerhaug, B., Føre, M., Endresen, P.C., Madsen, N., Hansen, K., 2012. Current Loads on Net Panels with Rhombic Meshes, in: Volume 7: Ocean Space Utilization

https://doi.org/10.1115/OMAE2012-83394

Ocean Renewable Energy. Presented at the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Rio de Janeiro, Brazil, pp. 49-60.

https://doi.org/10.1115/OMAE2012-83394

Faltinsen, O.M., Shen, Y., 2018. Wave and Current Effects on Floating Fish Farms. J. Marine. Sci. Appl. 17, 284-296.

https://doi.org/10.1007/s11804-018-0033-5

FAO, 2020. The State of World Fisheries and Aquaculture 2020: Sustainability in action, The State of World Fisheries and Aquaculture (SOFIA). FAO, Rome, Italy.

https://doi.org/10.4060/ca9229en

FAO, 1984. Inland Aquaculture Engineering: Lectures Presented at the ADCP Inter-regional Training Course in Inland Aquaculture Engineering, Budapest, 6 June-3 September 1983. Food & Agriculture Org.

FAO, IFAD, UNICEF, WFP, WHO, 2020. The State of Food Security and Nutrition in the World 2020, Transforming food systems for affordable healthy diets. FAO, IFAD, UNICEF, WFP and WHO.

https://doi.org/10.4060/ca9692en

Févotte, F., Lathuilière, B., 2017. Studying the Numerical Quality of an Industrial Computing Code: A Case Study on Code_aster, in: Abate, A., Boldo, S. (Eds.), Numerical Software Verification, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 61-80.

https://doi.org/10.1007/978-3-319-63501-9_5

Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J.A., Dempster, T., Eguiraun, H., Watson, W., Stahl, A., Sunde, L.M., Schellewald, C., Skøien, K.R., Alver, M.O., Berckmans, D., 2018. Precision fish farming: A new framework to improve production in aquaculture. Biosystems Engineering, Advances in the Engineering of Sensor-based Monitoring and Management Systems for Precision Livestock Farming 173, 176-193.

https://doi.org/10.1016/j.biosystemseng.2017.10.014

Fredheim, A., Reve, T., 2018. Future Prospects of Marine Aquaculture, in: OCEANS 2018 MTS/IEEE Charleston. Presented at the OCEANS 2018 MTS/IEEE Charleston, pp. 1-8.

https://doi.org/10.1109/OCEANS.2018.8604735

Fredriksson, D.W., DeCew, J., Lader, P., Volent, Z., Jensen, Ø., Willumsen, F.V., 2014. A finite element modelling technique for an aquaculture net with laboratory measurement comparisons. Ocean Engineering 83, 99-110.

https://doi.org/10.1016/j.oceaneng.2014.03.005

Frenkiel, F.N., Klebanoff, P.S., Huang, T.T., 1979. Grid turbulence in air and water. The Physics of Fluids 22, 1606-1617.

https://doi.org/10.1063/1.862820

Fridman, A.L., 1973. Theory and Design of Commercial Fishing Gear. Israel Program for Scientific Translations.

Froehlich, H.E., Gentry, R.R., Halpern, B.S., 2018. Global change in marine aquaculture production potential under climate change. Nat Ecol Evol 2, 1745-1750.

https://doi.org/10.1038/s41559-018-0669-1

Gansel, L.C., McClimans, T.A., Myrhaug, D., 2012. The Effects of Fish Cages on Ambient Currents. J. Offshore Mech. Arct. Eng 134.

https://doi.org/10.1115/1.4003696

Gansel, L.C., Oppedal, F., Birkevold, J., Tuene, S.A., 2018. Drag forces and deformation of aquaculture cages-Full-scale towing tests in the field. Aquacultural Engineering 81, 46-56.

https://doi.org/10.1016/j.aquaeng.2018.02.001

Gijón Mancheño, A., Jansen, W., Winterwerp, J.C., Uijttewaal, W.S.J., 2021. Predictive model of bulk drag coefficient for a nature-based structure exposed to currents. Sci Rep 11, 3517.

https://doi.org/10.1038/s41598-021-83035-0

Griffith, B.E., Patankar, N.A., 2020. Immersed Methods for Fluid- Structure Interaction. Annual Review of Fluid Mechanics 52, 421-448.

https://doi.org/10.1146/annurev-fluid-010719-060228

Guo, Y.C., Mohapatra, S.C., Guedes Soares, C., 2020. Review of developments in porous membranes and net-type structures for breakwaters and fish cages. Ocean Engineering 200, 107027.

https://doi.org/10.1016/j.oceaneng.2020.107027

Gutiérrez-Romero, J.E., Lorente-López, A.J., Zamora-Parra, B., 2020. Numerical analysis of fish farm behaviour in real operational conditions. Ships and Offshore Structures 15, 737-752.

https://doi.org/10.1080/17445302.2019.1671674

Guyonnet, B., Grall, J., Vincent, B., 2008. Modified otter trawl legs to reduce damage and mortality of benthic organisms in North East Atlantic fisheries (Bay of Biscay). Journal of Marine Systems, Oceanography of the Bay of Biscay 72, 2-16.

https://doi.org/10.1016/j.jmarsys.2007.05.017

Halwart, M., Soto, D., Arthur, J.R. (Eds.), 2007. Cage aquaculture: regional reviews and global overview, FAO fisheries technical paper. FAO, Rome.

Hilber, H.M., Hughes, T.J.R., Taylor, R.L., 1977. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics 5, 283-292.

https://doi.org/10.1002/eqe.4290050306

Holen, S.M., Yang, X., Utne, I.B., Haugen, S., 2019. Major accidents in Norwegian fish farming. Safety Science 120, 32-43.

https://doi.org/10.1016/j.ssci.2019.05.036

Høyli, R., 2016. Assessing the Risk of Escape from Marine Fish Farms- Improving Data Collection Strategies and Development of Risk Indicators (Master Thesis). UiT The Arctic University of Norway, Tromsø, Norway.

Huang, C.-C., Tang, H.-J., Liu, J.-Y., 2007. Modelling volume deformation in gravity-type cages with distributed bottom weights or a rigid tube-sinker. Aquacultural Engineering 37, 144-157.

https://doi.org/10.1016/j.aquaeng.2007.04.003

Huang, C.-C., Tang, H.-J., Liu, J.-Y., 2006. Dynamical analysis of net cage structures for marine aquaculture: Numerical simulation and model testing. Aquacultural Engineering 35, 258-270.

https://doi.org/10.1016/j.aquaeng.2006.03.003

Huang, L., Li, Y., Ni, Y., Cheng, H., Wang, X., Wang, G., Zhao, F., 2019. Study on the Influence of Mesh Grouping on Numerical Simulation Results of Fish Cages. Presented at the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2019-95706

Huang, X.-H., Liu, H.-Y., Hu, Y., Yuan, T.-P., Tao, Q.-Y., Wang, S.- M., Liu, Z.-X., 2020. Hydrodynamic performance of a semi- submersible offshore fish farm with a single point mooring system in pure waves and current. Aquacultural Engineering 90, 102075.

https://doi.org/10.1016/j.aquaeng.2020.102075

Huguenin, J.E., 1997. The design, operations and economics of cage culture systems. Aquacultural Engineering 16, 167-203.

https://doi.org/10.1016/S0144-8609(96)01018-7

Hvas, M., Folkedal, O., Oppedal, F., 2021. Fish welfare in offshore salmon aquaculture. Rev. Aquacult. 13, 836-852.

https://doi.org/10.1111/raq.12501

Jensen, B., Jacobsen, N.G., Christensen, E.D., 2014. Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering 84, 56-72.

https://doi.org/10.1016/j.coastaleng.2013.11.004

Jiang, C., Yao, J.-Y., Zhang, Z.-Q., Gao, G.-J., Liu, G.R., 2018. A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids. Computer Methods in Applied Mechanics and Engineering 340, 24-53. h

https://doi.org/10.1016/j.cma.2018.04.032

Jin, J., Su, B., Dou, R., Luan, C., Li, L., Nygaard, I., Fonseca, N., Gao, Z., 2021. Numerical modelling of hydrodynamic responses of Ocean Farm 1 in waves and current and validation against model test measurements. Marine Structures 78, 103017.

https://doi.org/10.1016/j.marstruc.2021.103017

Johannesen, Á., Patursson, Ø., Kristmundsson, J., Dam, S.P., Mulelid, M., Klebert, P., 2021. Waves and currents decrease the available space in a salmon cage (preprint). Animal Behavior and Cognition.

https://doi.org/10.1101/2021.07.23.453560

Johansen, V., 2007. Modelling of flexible slender systems for real-time simulation and control applications (Doctoral thesis). Norwegian University of Science and Technology, Trondheim, Norway.

Jones, W.P., Launder, B.E., 1972. The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer 15, 301-314.

https://doi.org/10.1016/0017-9310(72)90076-2

Jónsdóttir, K.E., Hvas, M., Alfredsen, J.A., Føre, M., Alver, M.O., Bjelland, H.V., Oppedal, F., 2019. Fish welfare based classification method of ocean current speeds at aquaculture sites. Aquaculture Environment Interactions 11, 249-261.

https://doi.org/10.3354/aei00310

Kajishima, T., Taira, K., 2017. Computational Fluid Dynamics. Springer International Publishing, Cham.

https://doi.org/10.1007/978-3-319-45304-0

Kebede, G.E., Winger, P.D., DeLouche, H., Legge, G., Cheng, Z., Kelly, D., Einarsson, H., 2020. Flume tank evaluation of the hydrodynamic lift and drag of helix ropes compared to conventional ropes used in midwater trawls. Ocean Engineering 195, 106674.

https://doi.org/10.1016/j.oceaneng.2019.106674

Klebert, P., Lader, P., Gansel, L., Oppedal, F., 2013. Hydrodynamic interactions on net panel and aquaculture fish cages: A review. Ocean Engineering 58, 260-274.

https://doi.org/10.1016/j.oceaneng.2012.11.006

Klebert, P., Su, B., 2020. Turbulence and flow field alterations inside a fish sea cage and its wake. Applied Ocean Research 98, 102113.

https://doi.org/10.1016/j.apor.2020.102113

Knysh, A., Coyle, J., DeCew, J., Drach, A., Swift, M.R., Tsukrov, I., 2021. Floating protective barriers: evaluation of seaworthiness through physical testing, numerical simulations and field deployment. Ocean Engineering 227, 108707.

https://doi.org/10.1016/j.oceaneng.2021.108707

Knysh, A., Tsukrov, I., Chambers, M., Swift, M.R., Sullivan, C., Drach, A., 2020. Numerical modelling of submerged mussel longlines with protective sleeves. Aquacultural Engineering 88, 102027.

https://doi.org/10.1016/j.aquaeng.2019.102027

Kollmannsberger, S., Geller, S., Düster, A., Tölke, J., Sorger, C., Krafczyk, M., Rank, E., 2009. Fixed-grid fluid-structure interaction in two dimensions based on a partitioned Lattice Boltzmann and p-FEM approach. International Journal for Numerical Methods in Engineering 79, 817-845.

https://doi.org/10.1002/nme.2581

Kristiansen, T., 2013. A Numerical Parameter Study on Current Forces on Circular Aquaculture Net Cages. Presented at the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2013-10915

Kristiansen, T., Faltinsen, O.M., 2012. Modelling of current loads on aquaculture net cages. Journal of Fluids and Structures 34, 218-235.

https://doi.org/10.1016/j.jfluidstructs.2012.04.001

Krogstad, P.-Å., Davidson, P.A., 2011. Freely decaying, homogeneous turbulence generated by multi-scale grids. Journal of Fluid Mechanics 680, 417-434.

https://doi.org/10.1017/jfm.2011.169

Kumar, V., Karnatak, G., 2014. Engineering consideration for cage aquaculture. IOSR Journal of Engineering 4, 11-18.

https://doi.org/10.9790/3021-04661118

Kurian, T., Fransson, J.H.M., 2009. Grid-generated turbulence revisited. Fluid Dyn. Res. 41, 021403.

https://doi.org/10.1088/0169-5983/41/2/021403

Lader, P., Dempster, T., Fredheim, A., Jensen, Ø., 2008. Current induced net deformations in full-scale sea-cages for Atlantic salmon (Salmo salar). Aquacultural Engineering 38, 52-65.

https://doi.org/10.1016/j.aquaeng.2007.11.001

Lader, P., Enerhaug, B., Fredheim, A., Klebert, P., Pettersen, B., 2014. Forces on a cruciform/sphere structure in uniform current. Ocean Engineering 82, 180-190.

https://doi.org/10.1016/j.oceaneng.2014.03.007

Lader, P., Jensen, A., Sveen, J.K., Fredheim, A., Enerhaug, B., Fredriksson, D., 2007a. Experimental investigation of wave forces on net structures. Applied Ocean Research 29, 112-127.

https://doi.org/10.1016/j.apor.2007.10.003

Lader, P., Olsen, A., Jensen, A., Sveen, J.K., Fredheim, A., Enerhaug, B., 2007b. Experimental investigation of the interaction between waves and net structures-Damping mechanism. Aquacultural Engineering 37, 100-114.

https://doi.org/10.1016/j.aquaeng.2007.03.001

Lader, P.F., Enerhaug, B., 2005. Experimental Investigation of Forces and Geometry of a Net Cage in Uniform Flow. IEEE J. Oceanic Eng. 30, 79-84.

https://doi.org/10.1109/JOE.2004.841390

Lader, P.F., Enerhaug, B., Fredheim, A., Krokstad, J., 2003. Modelling of 3D net structures exposed to waves and current. Presented at the Proceedings of the 3rd International Conference on Hydroelasticity in Marine Technology, Department of Engineering Science, The University of Oxford, Oxford, UK.

Lader, P.F., Fredheim, A., 2006. Dynamic properties of a flexible net sheet in waves and current-A numerical approach. Aquacultural Engineering 35, 228-238.

https://doi.org/10.1016/j.aquaeng.2006.02.002

Lader, P.F., Fredheim, A., Lien, E., 2001. Dynamic behaviour of 3D nets exposed to waves and current. Presented at the Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil.

Laws, E.M., Livesey, J.L., 1978. Flow Through Screens. Annual Review of Fluid Mechanics 10, 247-266.

https://doi.org/10.1146/annurev.fl.10.010178.001335

Lee, C.-W., 2002. Dynamic Analysis and Control Technology in a Fishing Gear System. Fisheries science 68, 1835-1840.

https://doi.org/10.2331/fishsci.68.sup2_1835

Lee, C.-W., Kim, Y.-B., Lee, G.-H., Choe, M.-Y., Lee, M.-K., Koo, K.-Y., 2008. Dynamic simulation of a fish cage system subjected to currents and waves. Ocean Engineering 35, 1521-1532.

https://doi.org/10.1016/j.oceaneng.2008.06.009

Lee, C.W., Lee, G.H., Choe, M.Y., Song, D.H., Hosseini, S.A., 2010. Dynamic Behavior of a Submersible Fish Cage. Presented at the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection, pp. 201-206.

https://doi.org/10.1115/OMAE2009-79328

Lee, C.W., Lee, J., Park, S., 2015. Dynamic behavior and deformation analysis of the fish cage system using mass-spring model. China Ocean Eng 29, 311-324.

https://doi.org/10.1007/s13344-015-0022-2

Lee, C.-W., Lee, Ju-Hee, Cha, B.-J., Kim, H.-Y., Lee, Ji-Hoon, 2005. Physical modelling for underwater flexible systems dynamic simulation. Ocean Engineering 32, 331-347.

https://doi.org/10.1016/j.oceaneng.2004.08.007

Lekang, O.-I., 2019. Aquaculture Engineering, Third edition. ed. Wiley-Blackwell, Hoboken.

https://doi.org/10.1002/9781119489047

Lester, S.E., Gentry, R.R., Kappel, C.V., White, C., Gaines, S.D., 2018. Opinion: Offshore aquaculture in the United States: Untapped potential in need of smart policy. PNAS 115, 7162-7165.

https://doi.org/10.1073/pnas.1808737115

Li, L., Bruset, M., Ong, M.C., Wu, X., 2020. Numerical Analysis of a Floating Fish Cage With Feeding Systems. Presented at the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2020-18112

Li, L., Fu, S., Xu, Y., Wang, J., Yang, J., 2013. Dynamic responses of floating fish cage in waves and current. Ocean Engineering 72, 297-303.

https://doi.org/10.1016/j.oceaneng.2013.07.004

Li, L., Jiang, Z., Høiland, A.V., Ong, M.C., 2018. Numerical Analysis of a Vessel-Shaped Offshore Fish Farm. Journal of Offshore Mechanics and Arctic Engineering 140.

https://doi.org/10.1115/1.4039131

Li, L., Jiang, Z., Ong, M.C., Hu, W., 2019. Design optimization of mooring system: An application to a vessel-shaped offshore fish farm. Engineering Structures 197, 109363.

https://doi.org/10.1016/j.engstruct.2019.109363

Li, L., Ong, M.C., 2017. A Preliminary Study of a Rigid Semi- Submersible Fish Farm for Open Seas. Presented at the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2017-61520

Li, Y., Zhao, Y., Gui, F., Teng, B., Guan, C., 2006. Numerical analysis of the effects of sinker weight on the hydrodynamics behaviour of gravity cage net in uniform flow. Journal of Hydrodynamics, Ser. B 18, 77-83.

https://doi.org/10.1016/S1001-6058(06)60034-6

Li, Y.-C., Zhao, Y.-P., Gui, F.-K., Teng, B., Dong, G.-H., 2006. Numerical simulation of the influences of sinker weight on the deformation and load of net of gravity sea cage in uniform flow. hyxb 125-137.

Little, D.C., Newton, R.W., Beveridge, M.C.M., 2016. Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential. Proceedings of the Nutrition Society 75, 274-286.

https://doi.org/10.1017/S0029665116000665

Liu, H.-F., Bi, C.-W., Zhao, Y.-P., 2020. Experimental and numerical study of the hydrodynamic characteristics of a semisubmersible aquaculture facility in waves. Ocean Engineering 214, 107714.

https://doi.org/10.1016/j.oceaneng.2020.107714

Liu, H.-Y., Huang, X.-H., Wang, S.-M., Hu, Y., Yuan, T., Guo, G.-X., 2019. Evaluation of the structural strength and failure for floating collar of a single-point mooring fish cage based on finite element method. Aquacultural Engineering 85, 32-48.

https://doi.org/10.1016/j.aquaeng.2018.12.007

Løland, G., 1991. Current forces on and flow through fish farms (Doctoral thesis). Norwegian Institute of Technology, Trondheim, Norway.

Løland, G., Slaattelid, O.H., 1993. NETSIM, PC program for calculation of motion and tension in net cages. MARINTEK Report MT40-F93-0021, Trondheim, Norway.

Lupandin, A.I., 2005. Effect of Flow Turbulence on Swimming Speed of Fish. Biol Bull Russ Acad Sci 32, 461-466.

https://doi.org/10.1007/s10525-005-0125-z

Martin, T., Kamath, A., Bihs, H., 2020. A Lagrangian approach for the coupled simulation of fixed net structures in a Eulerian fluid model. Journal of Fluids and Structures 94, 102962.

https://doi.org/10.1016/j.jfluidstructs.2020.102962

Martin, T., Tsarau, A., Bihs, H., 2021. A numerical framework for modelling the dynamics of open ocean aquaculture structures in viscous fluids. Applied Ocean Research 106, 102410.

https://doi.org/10.1016/j.apor.2020.102410

Mjåtveit, M.A., Cheng, H., Ong, M.C., Lee, J., 2021. Numerical study of two typical gravity-based fish cages with different dimensions under pure current conditions. Aquacultural Engineering.

https://doi.org/10.1016/j.aquaeng.2021.102223

Moe, H., Fredheim, A., Hopperstad, O.S., 2010. Structural analysis of aquaculture net cages in current. Journal of Fluids and Structures 26, 503-516.

https://doi.org/10.1016/j.jfluidstructs.2010.01.007

Moe-Føre, H., Christian Endresen, P., Gunnar Aarsæther, K., Jensen, J., Føre, M., Kristiansen, D., Fredheim, A., Lader, P., Reite, K.-J., 2015. Structural Analysis of Aquaculture Nets: Comparison and Validation of Different Numerical Modelling Approaches. Journal of Offshore Mechanics and Arctic Engineering 137.

https://doi.org/10.1115/1.4030255

Moe-Føre, H., Lader, P.F., Lien, E., Hopperstad, O.S., 2016. Structural response of high solidity net cage models in uniform flow. Journal of Fluids and Structures 65, 180-195.

https://doi.org/10.1016/j.jfluidstructs.2016.05.013

Moe-Føre, H., Thorvaldsen, T., 2021. Causal analysis of escape of Atlantic salmon and rainbow trout from Norwegian fish farms during 2010-2018. Aquaculture 532, 736002.

https://doi.org/10.1016/j.aquaculture.2020.736002

Moe-Føre, H., Thorvaldsen, T., Astrid, B., Eivind, L., Fagertun, J.T., 2019. Tekniske årsaker til rømming av oppdrettslaks og regnbueørret for perioden 2014-2018. SINTEF Ocean AS.

Moore, G.E., 1968. Cramming more components onto integrated circuits. IEEE Solid-State Circuits Society Newsletter 38, 114.

https://doi.org/10.1109/N-SSC.2006.4785860

Morison, J.R., Johnson, J.W., Schaaf, S.A., 1950. The Force Exerted by Surface Waves on Piles. Journal of Petroleum Technology 2, 149-154.

https://doi.org/10.2118/950149-G

Morro, B., Davidson, K., Adams, T.P., Falconer, L., Holloway, M., Dale, A., Aleynik, D., Thies, P.R., Khalid, F., Hardwick, J., Smith, H., Gillibrand, P.A., Rey‐Planellas, S., 2021. Offshore aquaculture of finfish: Big expectations at sea. Rev Aquac raq.12625.

https://doi.org/10.1111/raq.12625

Næss, A., Moan, T., 2013. Stochastic dynamics of marine structures. Cambridge University Press, New York, NY.

https://doi.org/10.1017/CBO9781139021364

Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., Troell, M., 2000. Effect of aquaculture on world fish supplies. Nature 405, 1017-1024.

https://doi.org/10.1038/35016500

Naylor, R.L., Hardy, R.W., Buschmann, A.H., Bush, S.R., Cao, L., Klinger, D.H., Little, D.C., Lubchenco, J., Shumway, S.E., Troell, M., 2021. A 20-year retrospective review of global aquaculture. Nature 591, 551-563.

https://doi.org/10.1038/s41586-021-03308-6

Nilsen, A., 2019. Production of Atlantic salmon (Salmo salar) in closed confinement systems (CCS) : salmon lice, growth rates, mortality and fish welfare. Norwegian University of Life Sciences, Ås.

Nordlaks Produkter AS, 2020. Transport of Hav Farm. URL https://www.nordlaks.no/nyheter-fra-nordlaks/2020/5/28/mediekit-transport-av-havfarmen

Norway Royal Salmon ASA, 2017. Artic Offshore Farming. URL https://www.arcticoffshorefarming.no/

Norwegian Directorate of Fisheries, 2005. Aquaculture Act [WWW Document]. URL http://fiskeridir.no/English/Aquaculture/Aquaculture-Act (accessed 11.22.20).

Okereke, M., Keates, S., 2018. Finite element applications: a practical guide to the FEM process.

https://doi.org/10.1007/978-3-319-67125-3

Oldham, T., Oppedal, F., Dempster, T., 2018. Cage size affects dissolved oxygen distribution in salmon aquaculture. Aquaculture Environment Interactions 10, 149-156.

https://doi.org/10.3354/aei00263

O'Neill, F.G., 2006. Source models of flow through and around screens and gauzes. Ocean Engineering 33, 1884-1895.

https://doi.org/10.1016/j.oceaneng.2005.10.009

Oppedal, F., Dempster, T., Stien, L.H., 2011. Environmental drivers of Atlantic salmon behaviour in sea-cages: A review. Aquaculture 311, 1-18.

https://doi.org/10.1016/j.aquaculture.2010.11.020

Park, S., Lee, J., Lee, C.-W., 2021. Design evaluation of a fish cage mooring system with different bridle line connections using model experiments and simulations. Aquacultural Engineering 94, 102177.

https://doi.org/10.1016/j.aquaeng.2021.102177

Patursson, Ø., 2008. Flow Through and Around Fish Farming Nets. University of New Hampshire, Durham, USA.

Patursson, Ø., Swift, M.R., Tsukrov, I., Simonsen, K., Baldwin, K., Fredriksson, D.W., Celikkol, B., 2010. Development of a porous media model with application to flow through and around a net panel. Ocean Engineering 37, 314-324.

https://doi.org/10.1016/j.oceaneng.2009.10.001

Pepona, M., Favier, J., 2016. A coupled Immersed Boundary - Lattice Boltzmann method for incompressible flows through moving porous media A coupled Immersed Boundary -Lattice Boltzmann method for incompressible flows through moving porous media. Journal of Computational Physics 321, 1170-1184.

https://doi.org/10.1016/j.jcp.2016.06.026

Peskin, C.S., 1972. Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10, 252-271.

https://doi.org/10.1016/0021-9991(72)90065-4

Piperno, S., Farhat, C., 2001. Partitioned procedures for the transient solution of coupled aeroelastic problems - part II: Energy transfer analysis and three-dimensional applications. Computer Methods in Applied Mechanics and Engineering 190, 3147-3170.

https://doi.org/10.1016/S0045-7825(00)00386-8

Priour, D., 2014. Modelling axisymmetric codends made of hexagonal mesh types. Ocean Engineering 92, 1-11.

https://doi.org/10.1016/j.oceaneng.2014.09.037

Priour, D., 2013. A Finite Element Method for Netting: Application to fish cages and fishing gear, 1st ed. 2013. ed. Springer Netherlands, Dordrecht.

https://doi.org/10.1007/978-94-007-6844-4

Priour, D., 2005. FEM modelling of flexible structures made of cables, bars and nets, in: Marinetime Transportation and Exploitation of Ocean and Coastal Resources.

https://doi.org/10.1201/9781439833728.ch158

Priour, D., 1999. Calculation of net shapes by the finite element method with triangular elements. Communications in Numerical Methods in Engineering 15, 755-763. https://doi.org/10.1002/(SICI)1099- 0887(199910)15:10

https://doi.org/10.1002/(SICI)1099-0887(199910)15:10<755::AID-CNM299>3.0.CO;2-M

Provot, X., 1995. Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior. undefined.

Puvanendran, V., Mortensen, A., Johansen, L., Kettunen, A., Hansen, Ø.J., Henriksen, E., Heide, M., 2021. Development of cod farming in Norway: Past and current biological and market status and future prospects and directions. Rev Aquacult raq.12599.

https://doi.org/10.1111/raq.12599

Qu, X., Hu, F., Kumazawa, T., Takeuchi, Y., Dong, S., Shiode, D., Tokai, T., 2019. Deformation and drag force of model square fish cages in a uniform flow. Ocean Engineering 171, 619-624.

https://doi.org/10.1016/j.oceaneng.2018.12.016

Reite, K.-J., Føre, M., Aarsæther, K.G., Jensen, J., Rundtop, P., Kyllingstad, L.T., Endresen, P.C., Kristiansen, D., Johansen, V., Fredheim, A., 2014. FHSIM - Time Domain Simulation of Marine Systems. Presented at the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection, San Francisco, California, USA.

https://doi.org/10.1115/OMAE2014-23165

Reynolds, A.J., 1969. Flow Deflection by Gauze Screens. Journal of Mechanical Engineering Science 11, 290-294.

https://doi.org/10.1243/JMES_JOUR_1969_011_036_02

Rickard, G., 2020. Three-dimensional hydrodynamic modelling of tidal flows interacting with aquaculture fish cages. Journal of Fluids and Structures 93, 102871.

https://doi.org/10.1016/j.jfluidstructs.2020.102871

Robertson, E., Choudhury, V., Bhushan, S., Walters, D.K., 2015. Validation of OpenFOAM numerical methods and turbulence models for incompressible bluff body flows. Computers & Fluids 123, 122-145.

https://doi.org/10.1016/j.compfluid.2015.09.010

Roelofs, F., Shams, A., 2019. "CFD-Introduction," in: Roelofs, Ferry (Ed.), Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors. Woodhead Publishing, pp. 213-218.

https://doi.org/10.1016/B978-0-08-101980-1.00006-5

Ruzzo, C., Muggiasca, S., Malara, G., Taruffi, F., Belloli, M., Collu, M., Li, L., Brizzi, G., Arena, F., 2021. Scaling strategies for multi- purpose floating structures physical modelling: state of art and new perspectives. Applied Ocean Research 108, 102487.

https://doi.org/10.1016/j.apor.2020.102487

SalMar ASA, 2021. Salmar Gallery. URL https://www.salmar.no/en/gallery/

Schubel, J.R., Thompson, K., 2019. Farming the Sea: The Only Way to Meet Humanity's Future Food Needs. GeoHealth 3, 238-244.

https://doi.org/10.1029/2019GH000204

Shainee, M., Ellingsen, H., Leira, B.J., Fredheim, A., 2013. Design theory in offshore fish cage designing. Aquaculture 392-395, 134-141. h

https://doi.org/10.1016/j.aquaculture.2013.02.016

Shainee, Mohamed, Leira, B.J., Ellingsen, H., Fredheim, A., 2013. An Optimum Design Concept for Offshore Cage Culture. Presented at the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection, pp. 85-93.

https://doi.org/10.1115/OMAE2012-83601

Shen, Y., Greco, M., Faltinsen, O.M., 2019a. Numerical study of a well boat operating at a fish farm in current. Journal of Fluids and Structures 84, 77-96.

https://doi.org/10.1016/j.jfluidstructs.2018.10.006

Shen, Y., Greco, M., Faltinsen, O.M., 2019b. Numerical study of a well boat operating at a fish farm in long-crested irregular waves and current. Journal of Fluids and Structures 84, 97-121.

https://doi.org/10.1016/j.jfluidstructs.2018.10.007

Shen, Y., Greco, M., Faltinsen, O.M., Nygaard, I., 2018. Numerical and experimental investigations on mooring loads of a marine fish farm in waves and current. Journal of Fluids and Structures 79, 115-136.

https://doi.org/10.1016/j.jfluidstructs.2018.02.004

Shimizu, H., Mizukami, Y., Kitazawa, D., 2018. Experimental study of the drag on fine-mesh netting. Aquacultural Engineering 81, 101-106.

https://doi.org/10.1016/j.aquaeng.2018.03.005

Shimizu, T., Takagi, T., Korte, H., Hiraishi, T., Yamamoto, K., 2007. Application of NaLA, a fishing net configuration and loading analysis system, to bottom gill nets. Fish Sci 73, 489-499.

https://doi.org/10.1111/j.1444-2906.2007.01361.x

Sievers, M., Korsøen, Ø., Warren‐Myers, F., Oppedal, F., Macaulay, G., Folkedal, O., Dempster, T., 2021. Submerged cage aquaculture of marine fish: A review of the biological challenges and opportunities. Rev Aquacult raq.12587.

https://doi.org/10.1111/raq.12587

Sim, J., Cheng, H., Aarsæther, K.G., Li, L., Ong, M.C., 2021. Numerical Investigation on the Cage-to-Cage Wake Effect: A Case Study of a 4 × 2 Cage Array. Journal of Offshore Mechanics and Arctic Engineering 143, 051301.

https://doi.org/10.1115/1.4049831

Simonsen, K., Tsukrov, I., Baldwin, K., Swift, M.R., Patursson, O.E., Simonsen, K., Tsukrov, I., Baldwin, K., Swift, M.R., Patursson, O.E., 2006. Modelling Flow Through and Around a Net Panel Using Computational Fluid Dynamics, in: OCEANS 2006. Presented at the OCEANS 2006, pp. 1-5.

https://doi.org/10.1109/OCEANS.2006.306909

Skjong, S., Reite, K.J., Aarsæther, K.G., 2021. Lumped, Constrained Cable Modelling With Explicit State-Space Formulation Using An Elastic Version of Baumgarte Stabilization. Journal of Offshore Mechanics and Arctic Engineering 143.

https://doi.org/10.1115/1.4050422

Skøien, K.R., 2017. Feed Distribution in Large Scale Sea Cage Aquaculture: Experiments, modelling and simulation. Norwegian University of Science and Technology, Trondheim, Norway.

Standards Norway, 2009. NS 9415 marine fish farms-requirements for design. In: Dimensioning, Production, Installation and Operation.

Statistics Norway, 2020. Aquaculture [WWW Document]. URL https://www.ssb.no/en/jord-skog-jakt-og-fiskeri/statistikker/fiskeoppdrett/aar/2020-10-29 (accessed 11.22.20).

Su, B., Reite, K.-J., Føre, M., Aarsæther, K.G., Alver, M.O., Endresen, P.C., Kristiansen, D., Haugen, J., Caharija, W., Tsarau, A., 2019. A Multipurpose Framework for Modelling and Simulation of Marine Aquaculture Systems. Presented at the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection, Glasgow, Scotland, UK.

https://doi.org/10.1115/OMAE2019-95414

Su, B., Tsarau, A., Endresen, P.C., Kristiansen, D., Lader, P.F., 2021. Numerical study of closed rigid fish cages in waves and comparison with experimental data. Ocean Engineering 233, 109210.

https://doi.org/10.1016/j.oceaneng.2021.109210

Suzuki, K., Takagi, T., Shimizu, T., Hiraishi, T., Yamamoto, K., Nashimoto, K., 2003. Validity and visualization of a numerical model used to determine dynamic configurations of fishing nets. Fisheries science 69, 695-705.

https://doi.org/10.1046/j.1444-2906.2003.00676.x

Takagi, T., Miyata, S., Fusejima, I., Oshima, T., Uehara, T., Suzuki, K., Nomura, Y., Kanechiku, M., Torisawa, S., 2014. Effect of Mesh Size on Sinking Characteristics of Purse Seine Net. Journal of Fisheries Engineering 51, 11-19. https://doi.org/10.18903/fisheng.51.1_11

Takagi, T., Shimizu, T., Suzuki, K., Hiraishi, T., Yamamoto, K., 2004. Validity and layout of "NaLA": a net configuration and loading analysis system. Fisheries Research 66, 235-243.

https://doi.org/10.1016/S0165-7836(03)00204-2

Takagi, T., Suzuki, K., Hiraishi, T., 2002. Modelling of net for calculation method of dynamic fishing net shape. Fisheries science 68, 1857-1860.

https://doi.org/10.2331/fishsci.68.sup2_1857

Tang, H., Hu, F., Xu, L., Dong, S., Zhou, C., Wang, X., 2019. Variations in hydrodynamic characteristics of netting panels with various twine materials, knot types, and weave patterns at small attack angles. Sci Rep 9, 1923.

https://doi.org/10.1038/s41598-018-35907-1

Tang, H., Xu, L., Hu, F., 2018a. Hydrodynamic characteristics of knotted and knotless purse seine netting panels as determined in a flume tank. PLOS ONE 13, e0192206.

https://doi.org/10.1371/journal.pone.0192206

Tang, H.-J., Yang, R.-Y., Huang, C.-C., 2019. Numerical Modelling of the Mooring Line Failure Induced Performance Changes of a Marine Fish Cage in Irregular Waves and Currents. Presented at the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2019-95730

Tang, H.-J., Yeh, P.-H., Huang, C.-C., Yang, R.-Y., 2020. Numerical study of the mooring system failure of aquaculture net cages under irregular waves and current. Ocean Engineering 216, 108110.

https://doi.org/10.1016/j.oceaneng.2020.108110

Tang, M.-F., Dong, G.-H., Xu, T.-J., Zhao, Y.-P., Bi, C.-W., Guo, W.-J., 2018b. Experimental analysis of the hydrodynamic coefficients of net panels in current. Applied Ocean Research 79, 253-261.

https://doi.org/10.1016/j.apor.2018.08.009

Theret, F., 1993. Etude de l'équilibre de surfaces réticulées placées dans le courant uniforme. Application aux chaluts. Université de Nantes.

Thorvaldsen, T., Holmen, I.M., Moe, H.K., 2015. The escape of fish from Norwegian fish farms: Causes, risks and the influence of organisational aspects. Marine Policy 55, 33-38.

https://doi.org/10.1016/j.marpol.2015.01.008

Thorvaldsen, T., Moe Føre, H., Tinmannsvik, R.K., Okstad, E.H., 2018. Menneskelige og organisatoriske årsaker til rømming av oppdrettslaks og regnbueørret (SINTEF Report).

Tsukrov, I., Drach, A., DeCew, J., Robinson Swift, M., Celikkol, B., 2011. Characterization of geometry and normal drag coefficients of copper nets. Ocean Engineering 38, 1979-1988.

https://doi.org/10.1016/j.oceaneng.2011.09.019

Tsukrov, I., Eroshkin, O., Fredriksson, D., Swift, M.R., Celikkol, B., 2003. Finite element modelling of net panels using a consistent net element. Ocean Engineering 30, 251-270.

https://doi.org/10.1016/S0029-8018(02)00021-5

Turner, A.A., Jeans, T.L., Reid, G.K., 2016. Experimental Investigation of Fish Farm Hydrodynamics on 1:15 Scale Model Square Aquaculture Cages. Journal of Offshore Mechanics and Arctic Engineering 138.

https://doi.org/10.1115/1.4034176

Turner, A.A., Jeans, T.L., Reid, G.K., 2015. Experimental Investigation of Fish Farm Hydrodynamic Wake Properties on 1:15 Scale Model Circular Aquaculture Cages. Presented at the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2015-42140

Turner, A.A., Steinke, D.M., Nicoll, R.S., 2017. Application of Wake Shielding Effects With a Finite Element Net Model in Determining Hydrodynamic Loading on Aquaculture Net Pens. Presented at the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2017-61330

van Doorn, E., White, C.M., Sreenivasan, K.R., 1999. The decay of grid turbulence in polymer and surfactant solutions. Physics of Fluids 11, 2387-2393.

https://doi.org/10.1063/1.870100

Vassilicos, J.C., 2015. Dissipation in Turbulent Flows. Annu. Rev. Fluid Mech. 47, 95-114.

https://doi.org/10.1146/annurev-fluid-010814-014637

Vincent, B., 1999. A new generation of tools for trawls Dynamic numerical simulation, in: DEMaT '99 - Fourth International Workshop on Methods for the Development and Evaluation of Maritime Technologies. Rostock.

Wan, R., Guan, Q., Li, Z., Hu, F., Dong, S., You, X., 2020. Study on hydrodynamic performance of a set-net in current based on numerical simulation and physical model test. Ocean Engineering 195, 106660.

https://doi.org/10.1016/j.oceaneng.2019.106660

Wang, D., Zhang, D., Wang, S., Ge, S., 2013. Finite element analysis of hoisting rope and fretting wear evolution and fatigue life estimation of steel wires. Engineering Failure Analysis 27, 173-193.

https://doi.org/10.1016/j.engfailanal.2012.08.014

Wang, G., Martin, T., Huang, L., Bihs, H., 2021a. Modelling the flow around and wake behind net panels using large eddy simulations. Ocean Engineering 239, 109846.

https://doi.org/10.1016/j.oceaneng.2021.109846

Wang, G., Martin, T., Huang, L., Bihs, H., 2021b. A Numerical Study of the Hydrodynamics of an Offshore Fish Farm Using REEF3D. Journal of Offshore Mechanics and Arctic Engineering 144.

https://doi.org/10.1115/1.4052865

Wang, S., Zhang, G., Zhang, Z., Hui, D., Zong, Z., 2017. An immersed smoothed point interpolation method (IS-PIM) for fluid-structure interaction problems. International Journal for Numerical Methods in Fluids 85, 213-234.

https://doi.org/10.1002/fld.4379

Wang, X., Wan, R., Zhao, F., Huang, L., Sun, P., Tang, Y., 2016. Comparative Study of Dynamics of Gravity Cages With Different Meshes in Waves and Current. Presented at the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection.

https://doi.org/10.1115/OMAE2016-54549

Wang, X., Zhang, L.T., 2009. Interpolation functions in the immersed boundary and finite element methods. Comput Mech 45, 321.

https://doi.org/10.1007/s00466-009-0449-5

Wanzefeng Fisheries, 2018. Salmon farming. URL http://www.wanzefeng.com/product/sanwenyuyangzhi/

Winthereig-Rasmussen, H., Simonsen, K., Patursson, Ø., 2016. Flow through fish farming sea cages: Comparing computational fluid dynamics simulations with scaled and full-scale experimental data. Ocean Engineering 124, 21-31.

https://doi.org/10.1016/j.oceaneng.2016.07.027

Xu, Z., Qin, H., 2020. Fluid-structure interactions of cage based aquaculture: From structures to organisms. Ocean Engineering 217, 107961.

https://doi.org/10.1016/j.oceaneng.2020.107961

Yan, B., Wang, S., Zhang, G., Jiang, C., Xiao, Q., Sun, Z., 2020. A sharp-interface immersed smoothed point interpolation method with improved mass conservation for fluid-structure interaction problems. J Hydrodyn 32, 267-285.

https://doi.org/10.1007/s42241-020-0025-1

Yang, R.-Y., Tang, H.-J., Huang, C.-C., 2020. Numerical Modelling of the Mooring System Failure of an Aquaculture Net Cage System Under Waves and Currents. IEEE J. Oceanic Eng. 45, 1396-1410.

https://doi.org/10.1109/JOE.2019.2941768

Yang, X., Utne, I.B., Holmen, I.M., 2020a. Methodology for hazard identification in aquaculture operations (MHIAO). Safety Science 121, 430-450.

https://doi.org/10.1016/j.ssci.2019.09.021

Yang, X., Utne, I.B., Sandøy, S.S., Ramos, M.A., Rokseth, B., 2020b. A systems-theoretic approach to hazard identification of marine systems with dynamic autonomy. Ocean Engineering 217, 107930.

https://doi.org/10.1016/j.oceaneng.2020.107930

Yao, Y., Chen, Y., Zhou, H., Yang, H., 2016. Numerical modelling of current loads on a net cage considering fluid-structure interaction. Journal of Fluids and Structures 62, 350-366.

https://doi.org/10.1016/j.jfluidstructs.2016.01.004

Zhao, F., Kinoshita, T., Bao, W., Wan, R., Liang, Z., Huang, L., 2011. Hydrodynamics identities and wave-drift force of a porous body. Applied Ocean Research 3, 169-177.

https://doi.org/10.1016/j.apor.2011.04.001

Zhao, Y., Guan, C., Bi, C., Liu, H., Cui, Y., 2019. Experimental Investigations on Hydrodynamic Responses of a Semi-Submersible Offshore Fish Farm in Waves. Journal of Marine Science and Engineering 7, 238.

https://doi.org/10.3390/jmse7070238

Zhao, Y.-P., Bi, C.-W., Chen, C.-P., Li, Y.-C., Dong, G.-H., 2015a. Experimental study on flow velocity and mooring loads for multiple net cages in steady current. Aquacultural Engineering 67, 24-31.

https://doi.org/10.1016/j.aquaeng.2015.05.005

Zhao, Y.-P., Bi, C.-W., Dong, G.-H., Gui, F.-K., Cui, Y., Guan, C.-T., Xu, T.-J., 2013a. Numerical simulation of the flow around fishing plane nets using the porous media model. Ocean Engineering 62, 25-37.

https://doi.org/10.1016/j.oceaneng.2013.01.009

Zhao, Y.-P., Bi, C.-W., Dong, G.-H., Gui, F.-K., Cui, Y., Xu, T.-J., 2013b. Numerical simulation of the flow field inside and around gravity cages. Aquacultural Engineering 52, 1-13.

https://doi.org/10.1016/j.aquaeng.2012.06.001

Zhao, Y.-P., Bi, C.-W., Sun, X.-X., Dong, G.-H., 2019. A prediction on structural stress and deformation of fish cage in waves using machine-learning method. Aquacultural Engineering 85, 15-21.

https://doi.org/10.1016/j.aquaeng.2019.01.003

Zhao, Y.-P., Li, Y.-C., Dong, G.-H., Gui, F.-K., Teng, B., 2007a. Numerical simulation of the effects of structure size ratio and mesh type on three-dimensional deformation of the fishing-net gravity cage in current. Aquacultural Engineering 36, 285-301.

https://doi.org/10.1016/j.aquaeng.2007.01.003

Zhao, Y.-P., Li, Y.-C., Dong, G.-H., Gui, F.-K., Teng, B., 2007b. A numerical study on dynamic properties of the gravity cage in combined wave-current flow. Ocean Engineering 34, 2350-2363.

https://doi.org/10.1016/j.oceaneng.2007.05.003

Zhao, Y.-P., Li, Y.-C., Gui, F., Dong, G., 2007c. Numerical Simulation of the Effects of Weight System on the Hydrodynamic Behavior of 3-D Net of Gravity Cage in Current. J Hydrodyn 19, 442-452.

https://doi.org/10.1016/S1001-6058(07)60138-3

Zhao, Y.-P., Wang, X.-X., Decew, J., Tsukrov, I., Bai, X.-D., Bi, C.- W., 2015b. Comparative study of two approaches to model the offshore fish cages. China Ocean Eng 29, 459-472.

https://doi.org/10.1007/s13344-015-0032-0

Zhong, W., Li, X., Liu, F., Tao, G., Lu, B., Kagawa, T., 2014. Measurement and Correlation of Pressure Drop Characteristics for Air Flow Through Sintered Metal Porous Media. Transp Porous Med 101, 53-67.

https://doi.org/10.1007/s11242-013-0230-2

Cover image

Downloads

Published

May 18, 2022

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.