Regioselective Syntheses and Functionalizations of Polycyclic Aromatic Hydrocarbons: Directed Metalation and C─H Activation

Authors

Sindhu Kancherla

Synopsis

Polycyclic aromatic hydrocarbons (PAHs) are well-known as pollutants and carcinogenic compounds. Lately, considering their opto-electronic and photophysical properties, PAHs are being developed as materials to be used in electronics, non-linear optics (NLOs) and light-emitting diodes (LEDs). Surprisingly, their binding affinity towards DNA has evolved into a study of their potential usage as anti-cancer and anti-malarial agents. Within the realm of these possibilities, the syntheses and functionalizations of PAHs has become an important area of research. The classical method of oxidative photocyclization is used to prepare gramscale phenanthrene and chrysene derivatives required as starting materials for all the experiments. The study investigates directed ortho metalation (DoM) and non-directed C─H activation as methods to functionalize chrysene derivatives. DoM proved to be an efficient strategy in the presence of directing metalation group (DMG) affording di-substituted chrysene derivatives in 27% to quant yields. However, C─H activation needs further experiments to develop the catalyst system suitable for activating C(sp2)─H bonds in PAH derivatives. This thesis is also focussed on approaches to synthesize smaller to larger PAHs. In this context, cross-coupling, and directed remote metalation (DreM) are studied. The Suzuki-Miyaura cross-coupling protocol is optimized using a simple commercial catalyst to cross-couple ortho-substituted bulky substrates such as chrysenyl carboxamides and methylnaphthalenyl boronic esters. The importance of electronic and steric factors is discussed when sterically demanding cross-coupling partners are involved. Finally, the cross-coupled products are cyclized following a DreM strategy to achieve the planned larger 6− and 7− ring fluorescent PAHs. The UV-visible and fluorescence spectra of all the synthesized PAHs are presented. The experiments are also aimed to understand the mechanism involved in attaining the products regioselectively.

Author Biography

Sindhu Kancherla

External Consultant
University of Stavanger
Department of Chemistry, Bioscience and Environmental Engineering
E-mail: sindhu.kancherla@uis.no

References

Abdel-Shafy, H. I.; Mansour, M. S. M. Egypt. J. Pet. 2016, 25, 107. https://doi.org/10.1016/j.ejpe.2015.03.011

Kim, K.-H.; Jahan, S. A.; Kabir, E.; Brown, R. J. C. Environ. Int. 2013, 60, 71. https://doi.org/10.1016/j.envint.2013.07.019

Wu, J.; Pisula, W.; Müllen, K. Chem. Rev. 2007, 107, 718. https://doi.org/10.1021/cr068010r

Murai, M.; Iba, S.; Ota, H.; Takai, K. Org. Lett. 2017, 19, 5585. https://doi.org/10.1021/acs.orglett.7b02729

Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A. Chem. Phys. 2011, 384, 19. https://doi.org/10.1016/j.chemphys.2011.04.013

Liu, C.-Y.; Bard, A. J. Nature 2002, 418, 162. https://doi.org/10.1038/nature00875

Anthony, J. E. Chem. Rev. 2006, 106, 5028. https://doi.org/10.1021/cr050966z

Delaunay, W.; Szűcs, R.; Pascal, S.; Mocanu, A.; Bouit, P. A.; Nyulászi, L.; Hissler, M. Dalton Trans. 2016, 45, 1896. https://doi.org/10.1039/C5DT04154F

Martin, C. J.; Gil, B.; Perera, S. D.; Draper, S. M. Chem. Commun. 2011, 47, 3616. https://doi.org/10.1039/c0cc05231k

Gorodetsky, A. A.; Chiu, C.-Y.; Schiros, T.; Palma, M.; Cox, M.; Jia, Z.; Sattler, W.; Kymissis, I.; Steigerwald, M.; Nuckolls, C. Angew. Chem. Int. Ed. 2010, 49, 7909. https://doi.org/10.1002/anie.201004055

Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119.

Hu, J.-y.; Era, M.; Elsegood, M. R. J.; Yamato, T. Eur. J. Org. Chem. 2010, 2010, 72. https://doi.org/10.1002/ejoc.200900806

Sahasithiwat, S.; Mophuang, T.; Menbangpung, L.; Kamtonwong, S.; Sooksimuang, T. Synth. Met. 2010, 160, 1148. https://doi.org/10.1016/j.synthmet.2010.02.039

Shi, L.; Liu, Z.; Dong, G.; Duan, L.; Qiu, Y.; Jia, J.; Guo, W.; Zhao, D.; Cui, D.; Tao, X. Chem. Eur. J. 2012, 18, 8092. https://doi.org/10.1002/chem.201200068

Otero, G.; Biddau, G.; Sánchez-Sánchez, C.; Caillard, R.; López, M. F.; Rogero, C.; Palomares, F. J.; Cabello, N.; Basanta, M. A.; Ortega, J.; Méndez, J.; Echavarren, A. M.; Pérez, R.; Gómez-Lor, B.; Martín-Gago, J. A. Nature 2008, 454, 865. https://doi.org/10.1038/nature07193

Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015, 44, 6616. https://doi.org/10.1039/C5CS00183H

Zhuo, Q.-Q.; Wang, Q.; Zhang, Y.-P.; Zhang, D.; Li, Q.-L.; Gao, C.-H.; Sun, Y.-Q.; Ding, L.; Sun, Q.-J.; Wang, S.-D.; Zhong, J.; Sun, X.-H.; Lee, S.-T. ACS Nano 2015, 9, 594. https://doi.org/10.1021/nn505913v

Reetz, M. T.; Beuttenmüller, E. W.; Goddard, R. Tetrahedron Lett. 1997, 38, 3211. https://doi.org/10.1016/S0040-4039(97)00562-5

Dreher, S. D.; Katz, T. J.; Lam, K.-C.; Rheingold, A. L. J. Org. Chem. 2000, 65, 815. https://doi.org/10.1021/jo991498u

Nakano, D.; Yamaguchi, M. Tetrahedron Lett. 2003, 44, 4969. https://doi.org/10.1016/S0040-4039(03)01183-3

Narcis, M. J.; Takenaka, N. Eur. J. Org. Chem. 2014, 2014, 21. https://doi.org/10.1002/ejoc.201301045

Lerman, L. S. J. Mol. Biol. 1961, 3, 18. https://doi.org/10.1016/S0022-2836(61)80004-1

Lerman, L. S. Proc. Natl. Acad. Sci. 1963, 49, 94.

Brana, M. F.; Cacho, M.; Gradillas, A.; Pascual-Teresa, B. de; Ramos, A. Curr. Pharm. Des. 2001, 7, 1745. https://doi.org/10.2174/1381612013397113

Martinez, R.; Chacon-Garcia, L. Curr. Med. Chem. 2005, 12, 127. https://doi.org/10.2174/0929867053363414

Malonne, H.; Atassi, G. Anticancer Drugs 1997, 8, 811. https://doi.org/10.1097/00001813-199710000-00001

Bandyopadhyay, D.; Granados, J. C.; Short, J. D.; Banik, B. K. Oncol. Lett. 2012, 3, 45. https://doi.org/10.3892/ol.2011.436

Bandyopadhyay, D.; Sanchez, J. L.; Guerrero, A. M.; Chang, F.-M.; Granados, J. C.; Short, J. D.; Banik, B. K. Eur. J. Med. Chem. 2015, 89, 851. https://doi.org/10.1016/j.ejmech.2014.09.072

Bair, K. W.; Andrews, C. W.; Tuttle, R. L.; Knick, V. C.; Cory, M.; McKee, D. D. J. Med. Chem. 1991, 34, 1983. https://doi.org/10.1021/jm00111a010

Banik, B. K.; Becker, F. F. Curr. Med. Chem. 2001, 8, 1513. https://doi.org/10.2174/0929867013372120

Bair, K. W.; Tuttle, R. L.; Knick, V. C.; Cory, M.; McKee, D. D. J. Med. Chem. 1990, 33, 2385. https://doi.org/10.1021/jm00171a012

Bhashyam S. Iyengar; Dorr, R. T.; Alberts, D. S.; Sólyom, A. M.; Krutzsch, M.; Remers, W. A. J. Med. Chem. 1997, 40, 3734. https://doi.org/10.1021/jm970308+

Banik, B. B.; Mukhopadhyay, C.; Becker, F.F. Oncol. Lett. 2010, 1, 309. https://doi.org/10.3892/ol_00000055

Becker, F. F.; Banik, B. K. Front. Chem. 2014, 2. https://doi.org/10.3389/fchem.2014.00055

Becker, F. F.; Banik, B. K. Bioorg. Med. Chem. Lett. 1998, 8, 2877. https://doi.org/10.1016/S0960-894X(98)00520-4

Banik, B. B.; Basu, M. K.; Becker, F. F. Oncol. Lett. 2010, 1, 1033. https://doi.org/10.3892/ol.2010.167

Banik, B. K.; Becker, F. F. Eur. J. Med. Chem. 2010, 45, 4687. https://doi.org/10.1016/j.ejmech.2010.07.033

Banik, B. K.; Becker, F. F. Bioorg. Med. Chem. 2001, 9, 593. https://doi.org/10.1016/S0968-0896(00)00297-2

Dorr, R. T.; Liddil, J. D.; Sami, S. M.; Remers, W.; Hersh, E. M.; Alberts, D. S. Anticancer Drugs 2001, 12, 213. https://doi.org/10.1097/00001813-200103000-00007

Kamal, A.; Ramesh, G.; Ramulu, P.; Srinivas, O.; Rehana, T.; Sheelu, G. Bioorg. Med. Chem. Lett. 2003, 13, 3451. https://doi.org/10.1016/S0960-894X(03)00743-1

Kamal, A.; Ramesh, G.; Srinivas, O.; Ramulu, P. Bioorg. Med. Chem. Lett. 2004, 14, 471. https://doi.org/10.1016/j.bmcl.2003.10.050

Rescifina, A.; Chiacchio, U.; Corsaro, A.; Piperno, A.; Romeo, R. Eur. J. Med. Chem. 2011, 46, 129. https://doi.org/10.1016/j.ejmech.2010.10.023

Rescifina, A.; Varrica, M. G.; Carnovale, C.; Romeo, G.; Chiacchio, U. Eur. J. Med. Chem. 2012, 51, 163. https://doi.org/10.1016/j.ejmech.2012.02.038

Rescifina, A.; Chiacchio, M. A.; Corsaro, A.; De Clercq, E.; Iannazzo, D.; Mastino, A.; Piperno, A.; Romeo, G.; Romeo, R.; Valveri, V. J. Med. Chem. 2006, 49, 709. https://doi.org/10.1021/jm050772b

Rescifina, A.; Zagni, C.; Romeo, G.; Sortino, S. Bioorg. Med. Chem. 2012, 20, 4978. https://doi.org/10.1016/j.bmc.2012.06.035

Wunz, T. P.; Craven, M. T.; Karol, M. D.; Hill, G. C.; Remers, W. A. J. Med. Chem. 1990, 33, 1549. https://doi.org/10.1021/jm00168a005

Iannazzo, D.; Ziccarelli, I.; Pistone, A. J. Mater. Chem. B 2017, 5, 6471. https://doi.org/10.1039/C7TB00747G

Huffman, C. W.; Traxler, J. T.; Krbechek, L.; Riter, R. R.; Wagner, R. G. J. Med. Chem. 1971, 14, 90. https://doi.org/10.1021/jm00284a002

Li, Z.; Jin, Z.; Huang, R. Synthesis 2001, 2001, 2365.

Gellert, E. J. Nat. Prod. 1982, 45, 50. https://doi.org/10.1021/np50019a005

Kovács, A.; Vasas, A.; Hohmann, J. Phytochemistry 2008, 69, 1084. https://doi.org/10.1016/j.phytochem.2007.12.005

Colangeli, L.; Mennella, V.; Baratta, G. A.; Bussoletti, E.; Strazzulla, G. Astrophys. J. 1992, 396, 369. https://doi.org/10.1086/171723

Salama, F.; Joblin, C.; Allamandola, L. J. Planet. Space Sci. 1995, 43, 1165. https://doi.org/10.1016/0032-0633(95)00051-6

Ruiterkamp, R.; Halasinski, T.; Salama, F.; Foing, B. H.; Allamandola, L. J.; Schmidt, W.; Ehrenfreund, P. A&A 2002, 390, 1153. https://doi.org/10.1051/0004-6361:20020478

Pathak, A.; Sarre, P. J. Mon. Not. R. Astron. Soc.: Lett. 2008, 391, L10.

Mimura, K.; Kato, M.; Sugisaki, R.; Handa, N. Geophys. Res. Lett. 1994, 21, 2071. https://doi.org/10.1029/94GL01591

Parker, D. S. N.; Zhang, F.; Kim, Y. S.; Kaiser, R. I.; Landera, A.; Kislov, V. V.; Mebel, A. M.; Tielens, A. G. G. M. Proc. Natl. Acad. Sci. 2012, 109, 53. https://doi.org/10.1073/pnas.1113827108

Zhen, J.; Castellanos, P.; Paardekooper, D. M.; Linnartz, H.; Tielens, A. G. G. M. Astrophys. J. 2014, 797, L30. https://doi.org/10.1088/2041-8205/797/2/L30

Alliati, M.; Donaghy, D.; Tu, X.; Bradley, J. W. J. Phys. Chem. A 2019, 123, 2107. https://doi.org/10.1021/acs.jpca.9b00100

Jin, T.; Zhao, J.; Asao, N.; Yamamoto, Y. Chem. Eur. J. 2014, 20, 3554. https://doi.org/10.1002/chem.201304640

Weil, T.; Vosch, T.; Hofkens, J.; Peneva, K.; Müllen, K. Angew. Chem. Int. Ed. 2010, 49, 9068. https://doi.org/10.1002/anie.200902532

Qian, G.; Wang, Z. Y. Chem. Asian J. 2010, 5, 1006. https://doi.org/10.1002/asia.200900596

Maliakal, A.; Raghavachari, K.; Katz, H.; Chandross, E.; Siegrist, T. Chem. Mater 2004, 16, 4980. https://doi.org/10.1021/cm049060k

Kaur, I.; Jia, W.; Kopreski, R. P.; Selvarasah, S.; Dokmeci, M. R.; Pramanik, C.; McGruer, N. E.; Miller, G. P. J. Am. Chem. Soc. 2008, 130, 16274. https://doi.org/10.1021/ja804515y

Liu, J.; Walker, B.; Tamayo, A.; Zhang, Y.; Nguyen, T.-Q. Adv. Funct. Mater. 2013, 23, 47. https://doi.org/10.1002/adfm.201201599

Zhu, X.; Tsuji, H.; López Navarrete, J. T.; Casado, J.; Nakamura, E. J. Am. Chem. Soc. 2012, 134, 19254. https://doi.org/10.1021/ja309318s

Murai, M.; Maekawa, H.; Hamao, S.; Kubozono, Y.; Roy, D.; Takai, K. Org. Lett. 2015, 17, 708. https://doi.org/10.1021/ol503723j

Clar, E. Polycyclic Hydrocarbons; Springer-Verlag Berlin Heidelberg Heidelberg, 1964, Vol. 1. https://doi.org/10.1007/978-3-662-01668-8

Wiberg, K. B. J. Org. Chem. 1997, 62, 5720. https://doi.org/10.1021/jo961831j

Clar, E. Aromatic sextet; Wiley: New York, 1972.

Portella, G.; Poater, J.; Bofill, J. M.; Alemany, P.; Solà, M. J. Org. Chem. 2005, 70, 2509. https://doi.org/10.1021/jo0480388

Schulman, J. M.; Disch, R. L. J. Phys. Chem. A 1999, 103, 6669. https://doi.org/10.1021/jp9910587

Dabestani, R.; Ivanov, I. N. Photochem. Photobiol. 1999, 70, 10. https://doi.org/10.1562/0031-8655(1999)070<0010:IRACOP>2.3.CO;2

Rieger, R.; Müllen, K. J. Phys. Org. Chem. 2010, 23, 315.

Selkirk, J. K.; Croy, R. G.; Gelboin, H. V. Science 1974, 184, 169. https://doi.org/10.1126/science.184.4133.169

Rieger, R.; Kastler, M.; Enkelmann, V.; Müllen, K. Chem. Eur. J. 2008, 14, 6322. https://doi.org/10.1002/chem.200800832

Shimizu, M.; Hiyama, T. Eur. J. Org. Chem. 2013, 2013, 8069. https://doi.org/10.1002/ejoc.201300632

Chen, Q.; Wang, D.; Baumgarten, M.; Schollmeyer, D.; Müllen, K.; Narita, A. Chem. Asian J. 2019, 14, 1703. https://doi.org/10.1002/asia.201801822

Li, G.; Phan, H.; Herng, T. S.; Gopalakrishna, T. Y.; Liu, C.; Zeng, W.; Ding, J.; Wu, J. Angew. Chem. Int. Ed. 2017, 56, 5012. https://doi.org/10.1002/anie.201700441

Castro, S.; Fernández, J. J.; Fañanás, F. J.; Vicente, R.; Rodríguez, F. Chem. Eur. J. 2016, 22, 9068. https://doi.org/10.1002/chem.201601482

Snieckus, V. Chem. Rev. 1990, 90, 879 and references there-in. https://doi.org/10.1021/cr00104a001

Koser, G. F.; Telu, S.; Laali, K. K. Tetrahedron Lett. 2006, 47, 7011. https://doi.org/10.1016/j.tetlet.2006.07.114

Shinokubo, H. Proc. Jpn. Acad. B 2014, 90, 1. https://doi.org/10.2183/pjab.90.1

Yamaguchi, R.; Hiroto, S.; Shinokubo, H. Org. Lett. 2012, 14, 2472. https://doi.org/10.1021/ol300743f

Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199. https://doi.org/10.1016/j.chempr.2017.11.002

Morley, J. A.; Woolsey, N. F. J. Org. Chem. 1992, 57, 6487. https://doi.org/10.1021/jo00050a023

Ronald, G. H. Curr. Org. Chem. 2004, 8, 303.

Feng, X.; Pisula, W.; Müllen, K. In Pure Appl. Chem. 2009, 81, 2203. https://doi.org/10.1351/PAC-CON-09-07-07

Laali, K. K.; Shokouhimehr, M. Curr. Org. Synth. 2009, 6, 193. https://doi.org/10.2174/157017909788167275

Duclos, R. I.; Tung, J. S.; Rapoport, H. J. Org. Chem. 1984, 49, 5243. https://doi.org/10.1021/jo00200a046

Harrowven, D. C.; Guy, I. L.; Nanson, L. Angew. Chem. Int. Ed. 2006, 45, 2242. https://doi.org/10.1002/anie.200504287

Rossi, R. A.; Budén, M. A.; Guastavino, J. F. In Arene Chemistry 2015, p 219. https://doi.org/10.1002/9781118754887.ch9

Fetzer, J. C. Org. Prep. Proced. Int. 1989, 21, 47. https://doi.org/10.1080/00304948909356347

Echavarren, A. M.; Gómez-Lor, B.; González, J. J.; de Frutos, Ó. Synlett 2003, 2003, 0585. https://doi.org/10.1055/s-2003-38382

Harvey, R. G. Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity; 1991.

Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500. https://doi.org/10.1126/science.1068427

Iyer, V. S.; Wehmeier, M.; Brand, J. D.; Keegstra, M. A.; Müllen, K. Angew. Chem. Int. Ed. 1997, 36, 1604. https://doi.org/10.1002/anie.199716041

Dötz, F.; Brand, J. D.; Ito, S.; Gherghel, L.; Müllen, K. J. Am. Chem. Soc.2000, 122, 7707. https://doi.org/10.1021/ja000832x

Feng, X.; Wu, J.; Ai, M.; Pisula, W.; Zhi, L.; Rabe, J. P.; Müllen, K. Angew. Chem. Int. Ed. 2007, 46, 3033. https://doi.org/10.1002/anie.200605224

Segawa, Y.; Maekawa, T.; Itami, K. Angew. Chem. Int. Ed. 2015, 54, 66. https://doi.org/10.1002/anie.201403729

Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369. https://doi.org/10.1038/nchem.1607

Kancherla, S.; Jørgensen, K. B.; Fernández-Ibáñez, M. Á. Synthesis 2019, 51, 643. https://doi.org/10.1055/s-0037-1610852

Mochida, K.; Kawasumi, K.; Segawa, Y.; Itami, K. J. Am. Chem. Soc.2011, 133, 10716. https://doi.org/10.1021/ja202975w

Ozaki, K.; Kawasumi, K.; Shibata, M.; Ito, H.; Itami, K. Nat. Commun. 2015, 6, 6251. https://doi.org/10.1038/ncomms7251

Yano, Y.; Ito, H.; Segawa, Y.; Itami, K. Synlett 2016, 27, 2081. https://doi.org/10.1055/s-0035-1561455

Kamikawa, K.; Takemoto, I.; Takemoto, S.; Matsuzaka, H. J. Org. Chem. 2007, 72, 7406. https://doi.org/10.1021/jo0711586

Chang, N.-H.; Chen, X.-C.; Nonobe, H.; Okuda, Y.; Mori, H.; Nakajima, K.; Nishihara, Y. Org. Lett. 2013, 15, 3558. https://doi.org/10.1021/ol401375n

Murai, M.; Hosokawa, N.; Roy, D.; Takai, K. Org. Lett. 2014, 16, 4134. https://doi.org/10.1021/ol5018273

McAtee, C. C.; Riehl, P. S.; Schindler, C. S. J. Am. Chem. Soc.2017, 139, 2960. https://doi.org/10.1021/jacs.7b01114

van Otterlo, W. A. L.; de Koning, C. B. Chem. Rev. 2009, 109, 3743. https://doi.org/10.1021/cr900178p

Bonifacio, M. C.; Robertson, C. R.; Jung, J.-Y.; King, B. T. J. Org. Chem. 2005, 70, 8522. https://doi.org/10.1021/jo051418o

Zhou, L.; Nakajima, K.; Kanno, K.-i.; Takahashi, T. Tetrahedron Lett. 2009, 50, 2722. https://doi.org/10.1016/j.tetlet.2009.02.191

Nagao, I.; Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2009, 48, 7573. https://doi.org/10.1002/anie.200903779

Shimizu, M.; Tomioka, Y.; Nagao, I.; Kadowaki, T.; Hiyama, T. Chem. Asian J. 2012, 7, 1644. https://doi.org/10.1002/asia.201200132

Shimizu, M.; Nagao, I.; Tomioka, Y.; Kadowaki, T.; Hiyama, T. Tetrahedron 2011, 67, 8014. https://doi.org/10.1016/j.tet.2011.08.019

Shimizu, M.; Nagao, I.; Tomioka, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2008, 47, 8096. https://doi.org/10.1002/anie.200803213

Zhang, X.; Xu, Z.; Si, W.; Oniwa, K.; Bao, M.; Yamamoto, Y.; Jin, T. Nat. Commun. 2017, 8, 15073. https://doi.org/10.1038/ncomms15073

Yang, W.; Bam, R.; Catalano, V. J.; Chalifoux, W. A. Angew. Chem. Int. Ed. 2018, 57, 14773. https://doi.org/10.1002/anie.201808043

Dorel, R.; McGonigal, P. R.; Echavarren, A. M. Angew. Chem. 2016, 128, 11286. https://doi.org/10.1002/ange.201604952

Liu, Z.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 15716. https://doi.org/10.1021/ja055781o

Pérez, D.; Peña, D.; Guitián, E. Eur. J. Org. Chem. 2013, 2013, 5981. https://doi.org/10.1002/ejoc.201300470

Wu, D.; Ge, H.; Liu, S. H.; Yin, J. RSC Adv. 2013, 3, 22727. https://doi.org/10.1039/c3ra43804j

Romero, C.; Peña, D.; Pérez, D.; Guitián, E. Chem. Eur. J. 2006, 12, 5677. https://doi.org/10.1002/chem.200600466

Ito, H.; Ozaki, K.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 11144. https://doi.org/10.1002/anie.201701058

Matsuoka, W.; Ito, H.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 12224. https://doi.org/10.1002/anie.201707486

Fort, E. H.; Donovan, P. M.; Scott, L. T. J. Am. Chem. Soc.2009, 131, 16006. https://doi.org/10.1021/ja907802g

Tovar, J. D.; Swager, T. M. J. Organomet. Chem. 2002, 653, 215. https://doi.org/10.1016/S0022-328X(02)01166-X

Kwon, Y.; Cho, H.; Kim, S. Org. Lett. 2013, 15, 920. https://doi.org/10.1021/ol400073s

Yang, W.; Monteiro, J. H. S. K.; de Bettencourt-Dias, A.; Chalifoux, W. A. Can. J. Chem. 2016, 95, 341. https://doi.org/10.1139/cjc-2016-0466

Ozaki, K.; Murai, K.; Matsuoka, W.; Kawasumi, K.; Ito, H.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 1361.https://doi.org/10.1002/anie.201610374

Pati, K.; Michas, C.; Allenger, D.; Piskun, I.; Coutros, P. S.; Gomes, G. d. P.; Alabugin, I. V. J. Org. Chem. 2015, 80, 11706. https://doi.org/10.1021/acs.joc.5b01014

Tsvetkov, N. P.; Gonzalez-Rodriguez, E.; Hughes, A.; dos Passos Gomes, G.; White, F. D.; Kuriakose, F.; Alabugin, I. V. Angew. Chem. Int. Ed. 2018, 57, 3651. https://doi.org/10.1002/anie.201712783

Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Org. Chem. 2000, 65, 6944. https://doi.org/10.1021/jo000535a

Mallory, F. B.; Wood, C. S.; Gordon, J. T. J. Am. Chem. Soc.1964, 86, 3094. https://doi.org/10.1021/ja01069a025

Wood, C. S.; Mallory, F. B. J. Org. Chem. 1964, 29, 3373. https://doi.org/10.1021/jo01034a059

Scholz, M.; Mühlstädt, M.; Dietz, F. Tetrahedron Lett. 1967, 8, 665. https://doi.org/10.1016/S0040-4039(00)90569-0

Flammang-Barbieux, M.; Nasielski, J.; Martin, R. H. Tetrahedron Lett. 1967, 8, 743. https://doi.org/10.1016/S0040-4039(00)90586-0

Rajeshkumar, V.; Courté, M.; Fichou, D.; Stuparu, M. C. Eur. J. Org. Chem. 2016, 2016, 6010. https://doi.org/10.1002/ejoc.201601236

Rajeshkumar, V.; Stuparu, M. C. Chem. Commun. 2016, 52, 9957. https://doi.org/10.1039/C6CC04910A

Lefebvre, Q.; Jentsch, M.; Rueping, M. Beilstein J. Org. Chem. 2013, 9, 1883. https://doi.org/10.3762/bjoc.9.221

Mallory, F. B.; Mallory, C. W. In Organic Reactions 1984, p 1. https://doi.org/10.1002/0471264180.or030.01

Hagen, S.; Hopf, H. In Carbon Rich Compounds I; de Meijere, A., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1998, p 45.

Laarhoven, W. H. Recl. Trav. Chim. Pays-Bas 1983, 102, 185. https://doi.org/10.1002/recl.19831020401

Meier, H. Angew. Chem. Int. Ed. 1992, 31, 1399. https://doi.org/10.1002/anie.199213993

Tominaga, Y.; Castle, R. N. J. Heterocycl. Chem. 1996, 33, 523. https://doi.org/10.1002/jhet.5570330302

Laarhoven, W. H. ChemInform 1990, 21. https://doi.org/10.1002/chin.199048326

Jørgensen, K. B. Molecules 2010, 15, 4334. https://doi.org/10.3390/molecules15064334

Liu, L.; Yang, B.; Katz, T. J.; Poindexter, M. K. J. Org. Chem. 1991, 56, 3769. https://doi.org/10.1021/jo00012a005

Matsushima, T.; Kobayashi, S.; Watanabe, S. J. Org. Chem. 2016, 81, 7799. https://doi.org/10.1021/acs.joc.6b01450

Carrera, M.; de la Viuda, M.; Guijarro, A. Synlett 2016, 27, 2783.

Bendig, J.; Beyermann, M.; Kreysig, D. Tetrahedron Lett. 1977, 18, 3659. https://doi.org/10.1016/S0040-4039(01)83319-0

Talele H. R.; Gohil M. J.; Bedekar A. V. Bull. Chem. Soc. Jpn. 2009, 82, 1182. https://doi.org/10.1246/bcsj.82.1182

Mastalerz, M.; Hüggenberg, W.; Dyker, G. Eur. J. Org. Chem. 2006, 2006, 3977. https://doi.org/10.1002/ejoc.200600265

Moore, W. M.; Morgan, D. D.; Stermitz, F. R. J. Am. Chem. Soc.1963, 85, 829. https://doi.org/10.1021/ja00889a050

Mallory, F. B.; Wood, C. S.; Gordon, J. T.; Lindquist, L. C.; Savitz, M. L. J. Am. Chem. Soc. 1962, 84, 4361. https://doi.org/10.1021/ja00881a044

Gilman, H.; Bebb, R. L. J. Am. Chem. Soc.1939, 61, 109. https://doi.org/10.1021/ja01870a037

Wittig, G.; Fuhrmann, G. Ber. Dtsch. Chem. Ges. (A and B Series) 1940, 73, 1197. https://doi.org/10.1002/cber.19400731113

Nguyen, T.-H.; Chau, N. T. T.; Castanet, A.-S.; Nguyen, K. P. P.; Mortier, J. Org. Lett. 2005, 7, 2445. https://doi.org/10.1021/ol050761c

Macklin, T. K.; Snieckus, V. Org. Lett. 2005, 7, 2519. https://doi.org/10.1021/ol050393c

Nguyen, T.-H.; Chau, N. T. T.; Castanet, A.-S.; Nguyen, K. P. P.; Mortier, J. J. Org. Chem. 2007, 72, 3419. https://doi.org/10.1021/jo070082a

Harvey, R. G.; Cortez, C.; Ananthanarayan, T. P.; Schmolka, S. J. Org. Chem. 1988, 53, 3936. https://doi.org/10.1021/jo00252a011

Groom, K.; Hussain, S. M. S.; Morin, J.; Nilewski, C.; Rantanen, T.; Snieckus, V. Org. Lett. 2014, 16, 2378. https://doi.org/10.1021/ol500707w

Wrona-Piotrowicz, A.; Ciechańska, M.; Zakrzewski, J.; Métivier, R.; Brosseau, A.; Makal, A. Dyes Pigm. 2016, 125, 331. https://doi.org/10.1016/j.dyepig.2015.10.031

Tilly, D.; Magolan, J.; Mortier, J. Chem. Eur. J. 2012, 18, 3804. https://doi.org/10.1002/chem.201103920

van Eikema Hommes, N. J. R.; von Ragué Schleyer, P. Angew. Chem. Int. Ed. 1992, 31, 755. https://doi.org/10.1002/anie.199207551

Chadwick, S. T.; Rennels, R. A.; Rutherford, J. L.; Collum, D. B. J. Am. Chem. Soc. 2000, 122, 8640. https://doi.org/10.1021/ja001471o

Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270. https://doi.org/10.1039/c3cs35521g

Mee, S. P. H.; Lee, V.; Baldwin, J. E. Angew. Chem. Int. Ed. 2004, 43, 1132. https://doi.org/10.1002/anie.200352979

Martin, R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3844. https://doi.org/10.1021/ja070830d

Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 13028. https://doi.org/10.1021/ja0474493

Yuen, O. Y.; So, C. M.; Man, H. W.; Kwong, F. Y. Chem. Eur. J. 2016, 22, 6471. https://doi.org/10.1002/chem.201600420

Giannerini, M.; Fañanás-Mastral, M.; Feringa, B. L. Nat. Chem. 2013, 5, 667. https://doi.org/10.1038/nchem.1678

Li, H.; Johansson Seechurn, C. C. C.; Colacot, T. J. ACS Catal. 2012, 2, 1147. https://doi.org/10.1021/cs300082f

Roudesly, F.; Oble, J.; Poli, G. J. Mol. Catal. A: Chem. 2017, 426, 275. https://doi.org/10.1016/j.molcata.2016.06.020

Crabtree, R. H.; Lei, A. Chem. Rev. 2017, 117, 8481. https://doi.org/10.1021/acs.chemrev.7b00307

Zhang, D.; Wang, Q. Coord. Chem. Rev. 2015, 286, 1.

Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027. https://doi.org/10.1002/adsc.200900587

Devendar, P.; Qu, R.-Y.; Kang, W.-M.; He, B.; Yang, G.-F. J. Agric. Food Chem. 2018, 66, 8914. https://doi.org/10.1021/acs.jafc.8b03792

García-Melchor, M.; Braga, A. A. C.; Lledós, A.; Ujaque, G.; Maseras, F. Acc. Chem. Res. 2013, 46, 2626. https://doi.org/10.1021/ar400080r

Quesnelle, C. A.; Snieckus, V. Synthesis 2018, 50, 4413. https://doi.org/10.1055/s-0037-1610273

Gschwend, H. W.; Rodriguez, H. R. In Organic Reactions 2004, 26, p 1.

Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem. Int. Ed. 2004, 43, 2206. https://doi.org/10.1002/anie.200300590

Beak, P.; Meyers, A. Acc. Chem. Res. 1986, 19, 356. https://doi.org/10.1021/ar00131a005

Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552. https://doi.org/10.1021/ar950142b

Schlosser, M. Angew. Chem. Int. Ed. 2005, 44, 376.

Schlosser, M. In Organometallics in synthesis: third manual; John Wiley & Sons, 2013. https://doi.org/10.1002/9781118484722

Clayden, J. In Organolithiums: selectivity for synthesis; Elsevier, 2002; Vol. 23.

Jørgensen, K. B.; Rantanen, T.; Dörfler, T.; Snieckus, V. J. Org. Chem. 2015, 80, 9410. https://doi.org/10.1021/acs.joc.5b01300

Fu, J.-M.; Snieckus, V. Can. J. Chem. 2000, 78, 905. https://doi.org/10.1139/v00-055

Lorentzen, M.; Kalvet, I.; Sauriol, F.; Rantanen, T.; Jørgensen, K. B.; Snieckus, V. J. Org. Chem. 2017, 82, 7300. https://doi.org/10.1021/acs.joc.7b00890

James, C. A.; Snieckus, V. J. Org. Chem. 2009, 74, 4080. https://doi.org/10.1021/jo9001454

Fu, J. M.; Zhao, B. p.; Sharp, M. J.; Snieckus, V. Can. J. Chem. 1994, 72, 227. https://doi.org/10.1139/v94-035

Wang, X.; Fu, J.-m.; Snieckus, V. Helv. Chim. Acta 2012, 95, 2680. https://doi.org/10.1002/hlca.201200564

Tilly, D.; Fu, J.-M.; Zhao, B.-p.; Alessi, M.; Castanet, A.-S.; Snieckus, V.; Mortier, J. Org. Lett. 2010, 12, 68. https://doi.org/10.1021/ol902268h

Castanet, A.-S.; Tilly, D.; Véron, J.-B.; Samanta, S. S.; De, A.; Ganguly, T.; Mortier, J. Tetrahedron 2008, 64, 3331. https://doi.org/10.1016/j.tet.2008.01.122

James, C. A.; Coelho, A. L.; Gevaert, M.; Forgione, P.; Snieckus, V. J. Org. Chem. 2009, 74, 4094. https://doi.org/10.1021/jo900146d

Tilly, D.; Castanet, A.-S.; Mortier, J. Tetrahedron Lett. 2006, 47, 1121. https://doi.org/10.1016/j.tetlet.2005.12.030

Familoni, O. B.; Ionica, I.; Bower, J. F.; Snieckus, V. Synlett 1997, 1997, 1081. https://doi.org/10.1055/s-1997-1533

MacNeil, S. L.; Gray, M.; Gusev, D. G.; Briggs, L. E.; Snieckus, V. J. Org. Chem. 2008, 73, 9710. https://doi.org/10.1021/jo801856n

Benesch, L.; Bury, P.; Guillaneux, D.; Houldsworth, S.; Wang, X.; Snieckus, V. Tetrahedron Lett. 1998, 39, 961. https://doi.org/10.1016/S0040-4039(97)10670-0

Wang, X.; Snieckus, V. Tetrahedron Lett. 1991, 32, 4879. https://doi.org/10.1016/S0040-4039(00)93485-3

Cai, X.; Brown, S.; Hodson, P.; Snieckus, V. Can. J. Chem. 2004, 82, 195. https://doi.org/10.1139/v03-179

Lorentzen, M. Ph. D. Monograph, University of Stavanger, 2013.

Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 10236. https://doi.org/10.1002/anie.201203269

Zhang, F.; Spring, D. R. Chem. Soc. Rev. 2014, 43, 6906. https://doi.org/10.1039/C4CS00137K

Liu, Y.-J.; Xu, H.; Kong, W.-J.; Shang, M.; Dai, H.-X.; Yu, J.-Q. Nature 2014, 515, 389. https://doi.org/10.1038/nature13885

Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. https://doi.org/10.1021/cr900184e

Cook, A. K.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 3109. https://doi.org/10.1021/jacs.5b00238

Valderas, C.; Naksomboon, K.; Fernández-Ibáñez, M. Á. ChemCatChem 2016, 8, 3213. https://doi.org/10.1002/cctc.201600757

Naksomboon, K.; Valderas, C.; Gómez-Martínez, M.; Álvarez-Casao, Y.; Fernández-Ibáñez, M. Á. ACS Catal. 2017, 7, 6342. https://doi.org/10.1021/acscatal.7b02356

Naksomboon, K.; Álvarez-Casao, Y.; Uiterweerd, M.; Westerveld, N.; Maciá, B.; Fernández-Ibáñez, M. Á. Tetrahedron Lett. 2018, 59, 379. https://doi.org/10.1016/j.tetlet.2017.12.047

Jørgensen, K. B.; Joensen, M. Polycyclic Aromatic Compounds 2008, 28, 362. https://doi.org/10.1080/10406630802374580

Mallory, F. B.; Rudolph, M. J.; Oh, S. M. J. Org. Chem. 1989, 54, 4619. https://doi.org/10.1021/jo00280a032

Noller, K.; Kosteyn, F.; Meier, H. Chemische Berichte 1988, 121, 1609. https://doi.org/10.1002/cber.19881210912

Harvey, R. G.; Dai, W.; Zhang, J.-T.; Cortez, C. J. Org. Chem. 1998, 63, 8118. https://doi.org/10.1021/jo980415r

Blackburn, E. V.; Timmons, C. J. J. Chem. Soc. C: Org. 1970, 172. https://doi.org/10.1039/j39700000172

Kirby, A. J.; Percy, J. M. Tetrahedron 1988, 44, 6903. https://doi.org/10.1016/S0040-4020(01)86220-7

Saá, J. M.; Martorell, G.; Frontera, A. J. Org. Chem. 1996, 61, 5194. https://doi.org/10.1021/jo960570a

Clayden, J.; Frampton, C. S.; McCarthy, C.; Westlund, N. Tetrahedron 1999, 55, 14161 and references there-in. https://doi.org/10.1016/S0040-4020(99)00881-9

Barnes, R. A.; Nehmsmann, L. J. J. Org. Chem. 1962, 27, 1939. https://doi.org/10.1021/jo01053a002

Collum, D. B. Acc. Chem. Res. 1992, 25, 448. https://doi.org/10.1021/ar00022a003

Reich, H. J. Chem. Rev. 2013, 113, 7130. https://doi.org/10.1021/cr400187u

Reich, H. J. J. Org. Chem. 2012, 77, 5471. https://doi.org/10.1021/jo3005155

Krizan, T. D.; Martin, J. C. J. Am. Chem. Soc. 1983, 105, 6155. https://doi.org/10.1021/ja00357a034

Mills, R. J.; Taylor, N. J.; Snieckus, V. J. Org. Chem. 1989, 54, 4372. https://doi.org/10.1021/jo00279a028

Cuevas, J. C.; Patil, P.; Snieckus, V. Tetrahedron Lett. 1989, 30, 5841. https://doi.org/10.1016/S0040-4039(01)93485-9

Jerina D. M.;, Yagi, H.; Lehr, R. E.; Thakker, D. R.; Schaefer-Ridder, M.; Karle, J. M.; Levin, W.; Wood, A. W.; Chang, R. L.; Conney, A. H. In Polycyclic Hydrocarbons and Cancer. Environment, Chemistry and Metabolism; Academic Press: New York, 1978; Vol. 1.

Mills, R. J. Ph. D. Monograph, Silicon in Benzamide Directed Metalation Reactions, 1985.

Kancherla, S.; Lorentzen, M.; Snieckus, V.; Jørgensen, K. B. J. Org. Chem. 2018, 83, 3590. https://doi.org/10.1021/acs.joc.7b03210

Watanabe, T.; Miyaura, N.; Suzuki, A. Synlett 1992, 1992, 207. https://doi.org/10.1055/s-1992-21315

Hoye, T. R.; Chen, M. J. Org. Chem. 1996, 61, 7940. https://doi.org/10.1021/jo960882d

Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996, 61, 1375. https://doi.org/10.1021/jo951404q

Johnson, M. G.; Foglesong, R. J. Tetrahedron Lett. 1997, 38, 7001. https://doi.org/10.1016/S0040-4039(97)01674-2

Cammidge, A. N.; Crépy, K. V. L. Chem. Commun. 2000, 1723. https://doi.org/10.1039/b004513f

Podgoršek, A.; Stavber, S.; Zupan, M.; Iskra, J. Tetrahedron 2009, 65, 4429. https://doi.org/10.1016/j.tet.2009.03.034

Takahisa, M.; Hideko, N.; Michinori, S.; Masahiro, M.; Yoshihiko, I. Bull. Chem. Soc. Jpn. 2005, 78, 142.

Pathak, R.; Nhlapo, J. M.; Govender, S.; Michael, J. P.; van Otterlo, W. A. L.; de Koning, C. B. Tetrahedron 2006, 62, 2820. https://doi.org/10.1016/j.tet.2006.01.012

Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412. https://doi.org/10.1039/C3CS60197H

Chaumeil, H.; Signorella, S.; Le Drian, C. Tetrahedron 2000, 56, 9655. https://doi.org/10.1016/S0040-4020(00)00928-5

Gronowitz, S. B., Vladimir; Lawitz, Karolina Chemica Scripta 1984, 23 120.

Zhang, H.; Kwong, F. Y.; Tian, Y.; Chan, K. S. J. Org. Chem. 1998, 63, 6886. https://doi.org/10.1021/jo980646y

Lima, C. F. R. A. C.; Rodrigues, A. S. M. C.; Silva, V. L. M.; Silva, A. M. S.; Santos, L. M. N. B. F. ChemCatChem 2014, 6, 1291.

Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116. https://doi.org/10.1021/ja1108326

Beckett, M. A.; Gilmore, R. J.; Idrees, K. J. Organomet. Chem. 1993, 455, 47. https://doi.org/10.1016/0022-328X(93)80378-O

Sherwood, J.; Clark, J. H.; Fairlamb, I. J. S.; Slattery, J. M. Green Chem. 2019, 21, 2164. https://doi.org/10.1039/C9GC00617F

Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. https://doi.org/10.1021/ar800036s

Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4685. https://doi.org/10.1021/ja042491j

Organ, M. G.; Çalimsiz, S.; Sayah, M.; Hoi, K. H.; Lough, A. J. Angew. Chem. Int. Ed. 2009, 48, 2383. https://doi.org/10.1002/anie.200805661

Würtz, S.; Glorius, F. Acc. Chem. Res. 2008, 41, 1523. https://doi.org/10.1021/ar8000876

Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem. Int. Ed. 2012, 51, 3314. https://doi.org/10.1002/anie.201106131

Giannerini, M.; Hornillos, V.; Vila, C.; Fañanás-Mastral, M.; Feringa, B. L. Angew. Chem. Int. Ed. 2013, 52, 13329. https://doi.org/10.1002/anie.201306427

Hornillos, V.; Giannerini, M.; Vila, C.; Fañanás-Mastral, M.; Feringa, B. L. Org. Lett. 2013, 15, 5114. https://doi.org/10.1021/ol402408v

Çalimsiz, S.; Sayah, M.; Mallik, D.; Organ, M. G. Angew. Chem. Int. Ed. 2010, 49, 2014. https://doi.org/10.1002/anie.200906811

Sase, S.; Jaric, M.; Metzger, A.; Malakhov, V.; Knochel, P. J. Org. Chem. 2008, 73, 7380. https://doi.org/10.1021/jo801063c

Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821. https://doi.org/10.1021/jo00430a041

Lorentzen, M.; Sydnes, M. O.; Jørgensen, K. B. Tetrahedron 2014, 70, 9041. https://doi.org/10.1016/j.tet.2014.10.016

Komiyama, T.; Minami, Y.; Furuya, Y.; Hiyama, T. Angew. Chem. 2018, 130, 2005. https://doi.org/10.1002/ange.201712081

Zhao, Q.; Li, C.; Senanayake, C. H.; Tang, W. Chem. Eur. J. 2013, 19, 2261. https://doi.org/10.1002/chem.201203898

Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099. https://doi.org/10.1039/b806211k

Zuidema, E.; van Leeuwen, P. W. N. M.; Bo, C. Organometallics 2005, 24, 3703. https://doi.org/10.1021/om050113x

Xue, L.; Lin, Z. Chem. Soc. Rev. 2010, 39, 1692. https://doi.org/10.1039/B814973A

Freixa, Z.; van Leeuwen, P. W. N. M. Dalton Trans. 2003, 1890. https://doi.org/10.1039/B300322C

van Zeist, W.-J.; Visser, R.; Bickelhaupt, F. M. Chem. Eur. J. 2009, 15, 6112. https://doi.org/10.1002/chem.200900367

van Zeist, W.-J.; Bickelhaupt, F. M. Dalton Trans. 2011, 40, 3028. https://doi.org/10.1039/c0dt01550d

Gillespie, J. A.; Dodds, D. L.; Kamer, P. C. J. Dalton Trans. 2010, 39, 2751. https://doi.org/10.1039/b913778e

Dierkes, P.; van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. 1999, 1519. https://doi.org/10.1039/a807799a

Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158. https://doi.org/10.1021/ja00313a032

Steffen, W. L.; Palenik, G. J. Inorg. Chem. 1976, 15, 2432. https://doi.org/10.1021/ic50164a025

Nijegorodov, N.; Zvolinsky, V.; Luhanga, P. V. C. J. Photochem. Photobiol. A: Chem. 2008, 196, 219. https://doi.org/10.1016/j.jphotochem.2007.12.028

Biet, T.; Martin, K.; Hankache, J.; Hellou, N.; Hauser, A.; Bürgi, T.; Vanthuyne, N.; Aharon, T.; Caricato, M.; Crassous, J.; Avarvari, N. Chem. Eur. J. 2017, 23, 437.https://doi.org/10.1002/chem.201604471

Ma, J.; Lin, T.; Pan, X.; Wang, W. Chem. Mater. 2014, 26, 4221. https://doi.org/10.1021/cm501590w

Sun, Z.; Wu, J. Aust. J. Chem. 2011, 64, 519. https://doi.org/10.1071/CH11037

Ricci, P.; Krämer, K.; Cambeiro, X. C.; Larrosa, I. J. Am. Chem. Soc. 2013, 135, 13258. https://doi.org/10.1021/ja405936s

Ricci, P.; Krämer, K.; Larrosa, I. J. Am. Chem. Soc. 2014, 136, 18082. https://doi.org/10.1021/ja510260j

Mahaffy, C. A. L.; Pauson, P. L. In Inorganic synthesis; Shriver, D. F., Ed.; John Wiley & Sons, Inc.: Canada, 1979; Vol. 19, p 327.

Arrais, A.; Diana, E.; Gervasio, G.; Gobetto, R.; Marabello, D.; Stanghellini, Pier L. Eur. J. Inorg. Chem. 2004, 2004, 1505. https://doi.org/10.1002/ejic.200300369

Ito, H.; Ozaki, K.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 11144. https://doi.org/10.1002/anie.201701058

Burchat, A. F.; Chong, J. M.; Nielsen, N. J. Organomet. Chem. 1997, 542, 281. https://doi.org/10.1016/S0022-328X(97)00143-5

Jung, K. Y.; Koreeda, M. J. Org. Chem. 1989, 54, 5667.

Roberts, J. C.; Pincock, J. A. J. Org. Chem. 2004, 69, 4279. https://doi.org/10.1021/jo040110e

Snégaroff, K.; L'Helgoual'ch, J.-M.; Bentabed-Ababsa, G.; Nguyen, T. T.; Chevallier, F.; Yonehara, M.; Uchiyama, M.; Derdour, A.; Mongin, F. Chem. Eur. J. 2009, 15, 10280. https://doi.org/10.1002/chem.200901432

Huang, Y.; Chan, G. H.; Chiba, S. Angew. Chem. Int. Ed. 2017, 56, 6544. https://doi.org/10.1002/anie.201702512

Cover for Regioselective Syntheses and Functionalizations of Polycyclic Aromatic Hydrocarbons: Directed Metalation and C─H Activation
Published
January 31, 2020