Regioselective Syntheses and Functionalizations of Polycyclic Aromatic Hydrocarbons: Directed Metalation and C─H Activation
Synopsis
Polycyclic aromatic hydrocarbons (PAHs) are well-known as pollutants and carcinogenic compounds. Lately, considering their opto-electronic and photophysical properties, PAHs are being developed as materials to be used in electronics, non-linear optics (NLOs) and light-emitting diodes (LEDs). Surprisingly, their binding affinity towards DNA has evolved into a study of their potential usage as anti-cancer and anti-malarial agents. Within the realm of these possibilities, the syntheses and functionalizations of PAHs has become an important area of research. The classical method of oxidative photocyclization is used to prepare gramscale phenanthrene and chrysene derivatives required as starting materials for all the experiments. The study investigates directed ortho metalation (DoM) and non-directed C─H activation as methods to functionalize chrysene derivatives. DoM proved to be an efficient strategy in the presence of directing metalation group (DMG) affording di-substituted chrysene derivatives in 27% to quant yields. However, C─H activation needs further experiments to develop the catalyst system suitable for activating C(sp2)─H bonds in PAH derivatives. This thesis is also focussed on approaches to synthesize smaller to larger PAHs. In this context, cross-coupling, and directed remote metalation (DreM) are studied. The Suzuki-Miyaura cross-coupling protocol is optimized using a simple commercial catalyst to cross-couple ortho-substituted bulky substrates such as chrysenyl carboxamides and methylnaphthalenyl boronic esters. The importance of electronic and steric factors is discussed when sterically demanding cross-coupling partners are involved. Finally, the cross-coupled products are cyclized following a DreM strategy to achieve the planned larger 6− and 7− ring fluorescent PAHs. The UV-visible and fluorescence spectra of all the synthesized PAHs are presented. The experiments are also aimed to understand the mechanism involved in attaining the products regioselectively.
References
Abdel-Shafy, H. I.; Mansour, M. S. M. Egypt. J. Pet. 2016, 25, 107. https://doi.org/10.1016/j.ejpe.2015.03.011
Kim, K.-H.; Jahan, S. A.; Kabir, E.; Brown, R. J. C. Environ. Int. 2013, 60, 71. https://doi.org/10.1016/j.envint.2013.07.019
Wu, J.; Pisula, W.; Müllen, K. Chem. Rev. 2007, 107, 718. https://doi.org/10.1021/cr068010r
Murai, M.; Iba, S.; Ota, H.; Takai, K. Org. Lett. 2017, 19, 5585. https://doi.org/10.1021/acs.orglett.7b02729
Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A. Chem. Phys. 2011, 384, 19. https://doi.org/10.1016/j.chemphys.2011.04.013
Liu, C.-Y.; Bard, A. J. Nature 2002, 418, 162. https://doi.org/10.1038/nature00875
Anthony, J. E. Chem. Rev. 2006, 106, 5028. https://doi.org/10.1021/cr050966z
Delaunay, W.; Szűcs, R.; Pascal, S.; Mocanu, A.; Bouit, P. A.; Nyulászi, L.; Hissler, M. Dalton Trans. 2016, 45, 1896. https://doi.org/10.1039/C5DT04154F
Martin, C. J.; Gil, B.; Perera, S. D.; Draper, S. M. Chem. Commun. 2011, 47, 3616. https://doi.org/10.1039/c0cc05231k
Gorodetsky, A. A.; Chiu, C.-Y.; Schiros, T.; Palma, M.; Cox, M.; Jia, Z.; Sattler, W.; Kymissis, I.; Steigerwald, M.; Nuckolls, C. Angew. Chem. Int. Ed. 2010, 49, 7909. https://doi.org/10.1002/anie.201004055
Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119.
Hu, J.-y.; Era, M.; Elsegood, M. R. J.; Yamato, T. Eur. J. Org. Chem. 2010, 2010, 72. https://doi.org/10.1002/ejoc.200900806
Sahasithiwat, S.; Mophuang, T.; Menbangpung, L.; Kamtonwong, S.; Sooksimuang, T. Synth. Met. 2010, 160, 1148. https://doi.org/10.1016/j.synthmet.2010.02.039
Shi, L.; Liu, Z.; Dong, G.; Duan, L.; Qiu, Y.; Jia, J.; Guo, W.; Zhao, D.; Cui, D.; Tao, X. Chem. Eur. J. 2012, 18, 8092. https://doi.org/10.1002/chem.201200068
Otero, G.; Biddau, G.; Sánchez-Sánchez, C.; Caillard, R.; López, M. F.; Rogero, C.; Palomares, F. J.; Cabello, N.; Basanta, M. A.; Ortega, J.; Méndez, J.; Echavarren, A. M.; Pérez, R.; Gómez-Lor, B.; Martín-Gago, J. A. Nature 2008, 454, 865. https://doi.org/10.1038/nature07193
Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015, 44, 6616. https://doi.org/10.1039/C5CS00183H
Zhuo, Q.-Q.; Wang, Q.; Zhang, Y.-P.; Zhang, D.; Li, Q.-L.; Gao, C.-H.; Sun, Y.-Q.; Ding, L.; Sun, Q.-J.; Wang, S.-D.; Zhong, J.; Sun, X.-H.; Lee, S.-T. ACS Nano 2015, 9, 594. https://doi.org/10.1021/nn505913v
Reetz, M. T.; Beuttenmüller, E. W.; Goddard, R. Tetrahedron Lett. 1997, 38, 3211. https://doi.org/10.1016/S0040-4039(97)00562-5
Dreher, S. D.; Katz, T. J.; Lam, K.-C.; Rheingold, A. L. J. Org. Chem. 2000, 65, 815. https://doi.org/10.1021/jo991498u
Nakano, D.; Yamaguchi, M. Tetrahedron Lett. 2003, 44, 4969. https://doi.org/10.1016/S0040-4039(03)01183-3
Narcis, M. J.; Takenaka, N. Eur. J. Org. Chem. 2014, 2014, 21. https://doi.org/10.1002/ejoc.201301045
Lerman, L. S. J. Mol. Biol. 1961, 3, 18. https://doi.org/10.1016/S0022-2836(61)80004-1
Lerman, L. S. Proc. Natl. Acad. Sci. 1963, 49, 94.
Brana, M. F.; Cacho, M.; Gradillas, A.; Pascual-Teresa, B. de; Ramos, A. Curr. Pharm. Des. 2001, 7, 1745. https://doi.org/10.2174/1381612013397113
Martinez, R.; Chacon-Garcia, L. Curr. Med. Chem. 2005, 12, 127. https://doi.org/10.2174/0929867053363414
Malonne, H.; Atassi, G. Anticancer Drugs 1997, 8, 811. https://doi.org/10.1097/00001813-199710000-00001
Bandyopadhyay, D.; Granados, J. C.; Short, J. D.; Banik, B. K. Oncol. Lett. 2012, 3, 45. https://doi.org/10.3892/ol.2011.436
Bandyopadhyay, D.; Sanchez, J. L.; Guerrero, A. M.; Chang, F.-M.; Granados, J. C.; Short, J. D.; Banik, B. K. Eur. J. Med. Chem. 2015, 89, 851. https://doi.org/10.1016/j.ejmech.2014.09.072
Bair, K. W.; Andrews, C. W.; Tuttle, R. L.; Knick, V. C.; Cory, M.; McKee, D. D. J. Med. Chem. 1991, 34, 1983. https://doi.org/10.1021/jm00111a010
Banik, B. K.; Becker, F. F. Curr. Med. Chem. 2001, 8, 1513. https://doi.org/10.2174/0929867013372120
Bair, K. W.; Tuttle, R. L.; Knick, V. C.; Cory, M.; McKee, D. D. J. Med. Chem. 1990, 33, 2385. https://doi.org/10.1021/jm00171a012
Bhashyam S. Iyengar; Dorr, R. T.; Alberts, D. S.; Sólyom, A. M.; Krutzsch, M.; Remers, W. A. J. Med. Chem. 1997, 40, 3734. https://doi.org/10.1021/jm970308+
Banik, B. B.; Mukhopadhyay, C.; Becker, F.F. Oncol. Lett. 2010, 1, 309. https://doi.org/10.3892/ol_00000055
Becker, F. F.; Banik, B. K. Front. Chem. 2014, 2. https://doi.org/10.3389/fchem.2014.00055
Becker, F. F.; Banik, B. K. Bioorg. Med. Chem. Lett. 1998, 8, 2877. https://doi.org/10.1016/S0960-894X(98)00520-4
Banik, B. B.; Basu, M. K.; Becker, F. F. Oncol. Lett. 2010, 1, 1033. https://doi.org/10.3892/ol.2010.167
Banik, B. K.; Becker, F. F. Eur. J. Med. Chem. 2010, 45, 4687. https://doi.org/10.1016/j.ejmech.2010.07.033
Banik, B. K.; Becker, F. F. Bioorg. Med. Chem. 2001, 9, 593. https://doi.org/10.1016/S0968-0896(00)00297-2
Dorr, R. T.; Liddil, J. D.; Sami, S. M.; Remers, W.; Hersh, E. M.; Alberts, D. S. Anticancer Drugs 2001, 12, 213. https://doi.org/10.1097/00001813-200103000-00007
Kamal, A.; Ramesh, G.; Ramulu, P.; Srinivas, O.; Rehana, T.; Sheelu, G. Bioorg. Med. Chem. Lett. 2003, 13, 3451. https://doi.org/10.1016/S0960-894X(03)00743-1
Kamal, A.; Ramesh, G.; Srinivas, O.; Ramulu, P. Bioorg. Med. Chem. Lett. 2004, 14, 471. https://doi.org/10.1016/j.bmcl.2003.10.050
Rescifina, A.; Chiacchio, U.; Corsaro, A.; Piperno, A.; Romeo, R. Eur. J. Med. Chem. 2011, 46, 129. https://doi.org/10.1016/j.ejmech.2010.10.023
Rescifina, A.; Varrica, M. G.; Carnovale, C.; Romeo, G.; Chiacchio, U. Eur. J. Med. Chem. 2012, 51, 163. https://doi.org/10.1016/j.ejmech.2012.02.038
Rescifina, A.; Chiacchio, M. A.; Corsaro, A.; De Clercq, E.; Iannazzo, D.; Mastino, A.; Piperno, A.; Romeo, G.; Romeo, R.; Valveri, V. J. Med. Chem. 2006, 49, 709. https://doi.org/10.1021/jm050772b
Rescifina, A.; Zagni, C.; Romeo, G.; Sortino, S. Bioorg. Med. Chem. 2012, 20, 4978. https://doi.org/10.1016/j.bmc.2012.06.035
Wunz, T. P.; Craven, M. T.; Karol, M. D.; Hill, G. C.; Remers, W. A. J. Med. Chem. 1990, 33, 1549. https://doi.org/10.1021/jm00168a005
Iannazzo, D.; Ziccarelli, I.; Pistone, A. J. Mater. Chem. B 2017, 5, 6471. https://doi.org/10.1039/C7TB00747G
Huffman, C. W.; Traxler, J. T.; Krbechek, L.; Riter, R. R.; Wagner, R. G. J. Med. Chem. 1971, 14, 90. https://doi.org/10.1021/jm00284a002
Li, Z.; Jin, Z.; Huang, R. Synthesis 2001, 2001, 2365.
Gellert, E. J. Nat. Prod. 1982, 45, 50. https://doi.org/10.1021/np50019a005
Kovács, A.; Vasas, A.; Hohmann, J. Phytochemistry 2008, 69, 1084. https://doi.org/10.1016/j.phytochem.2007.12.005
Colangeli, L.; Mennella, V.; Baratta, G. A.; Bussoletti, E.; Strazzulla, G. Astrophys. J. 1992, 396, 369. https://doi.org/10.1086/171723
Salama, F.; Joblin, C.; Allamandola, L. J. Planet. Space Sci. 1995, 43, 1165. https://doi.org/10.1016/0032-0633(95)00051-6
Ruiterkamp, R.; Halasinski, T.; Salama, F.; Foing, B. H.; Allamandola, L. J.; Schmidt, W.; Ehrenfreund, P. A&A 2002, 390, 1153. https://doi.org/10.1051/0004-6361:20020478
Pathak, A.; Sarre, P. J. Mon. Not. R. Astron. Soc.: Lett. 2008, 391, L10.
Mimura, K.; Kato, M.; Sugisaki, R.; Handa, N. Geophys. Res. Lett. 1994, 21, 2071. https://doi.org/10.1029/94GL01591
Parker, D. S. N.; Zhang, F.; Kim, Y. S.; Kaiser, R. I.; Landera, A.; Kislov, V. V.; Mebel, A. M.; Tielens, A. G. G. M. Proc. Natl. Acad. Sci. 2012, 109, 53. https://doi.org/10.1073/pnas.1113827108
Zhen, J.; Castellanos, P.; Paardekooper, D. M.; Linnartz, H.; Tielens, A. G. G. M. Astrophys. J. 2014, 797, L30. https://doi.org/10.1088/2041-8205/797/2/L30
Alliati, M.; Donaghy, D.; Tu, X.; Bradley, J. W. J. Phys. Chem. A 2019, 123, 2107. https://doi.org/10.1021/acs.jpca.9b00100
Jin, T.; Zhao, J.; Asao, N.; Yamamoto, Y. Chem. Eur. J. 2014, 20, 3554. https://doi.org/10.1002/chem.201304640
Weil, T.; Vosch, T.; Hofkens, J.; Peneva, K.; Müllen, K. Angew. Chem. Int. Ed. 2010, 49, 9068. https://doi.org/10.1002/anie.200902532
Qian, G.; Wang, Z. Y. Chem. Asian J. 2010, 5, 1006. https://doi.org/10.1002/asia.200900596
Maliakal, A.; Raghavachari, K.; Katz, H.; Chandross, E.; Siegrist, T. Chem. Mater 2004, 16, 4980. https://doi.org/10.1021/cm049060k
Kaur, I.; Jia, W.; Kopreski, R. P.; Selvarasah, S.; Dokmeci, M. R.; Pramanik, C.; McGruer, N. E.; Miller, G. P. J. Am. Chem. Soc. 2008, 130, 16274. https://doi.org/10.1021/ja804515y
Liu, J.; Walker, B.; Tamayo, A.; Zhang, Y.; Nguyen, T.-Q. Adv. Funct. Mater. 2013, 23, 47. https://doi.org/10.1002/adfm.201201599
Zhu, X.; Tsuji, H.; López Navarrete, J. T.; Casado, J.; Nakamura, E. J. Am. Chem. Soc. 2012, 134, 19254. https://doi.org/10.1021/ja309318s
Murai, M.; Maekawa, H.; Hamao, S.; Kubozono, Y.; Roy, D.; Takai, K. Org. Lett. 2015, 17, 708. https://doi.org/10.1021/ol503723j
Clar, E. Polycyclic Hydrocarbons; Springer-Verlag Berlin Heidelberg Heidelberg, 1964, Vol. 1. https://doi.org/10.1007/978-3-662-01668-8
Wiberg, K. B. J. Org. Chem. 1997, 62, 5720. https://doi.org/10.1021/jo961831j
Clar, E. Aromatic sextet; Wiley: New York, 1972.
Portella, G.; Poater, J.; Bofill, J. M.; Alemany, P.; Solà, M. J. Org. Chem. 2005, 70, 2509. https://doi.org/10.1021/jo0480388
Schulman, J. M.; Disch, R. L. J. Phys. Chem. A 1999, 103, 6669. https://doi.org/10.1021/jp9910587
Dabestani, R.; Ivanov, I. N. Photochem. Photobiol. 1999, 70, 10. https://doi.org/10.1562/0031-8655(1999)070<0010:IRACOP>2.3.CO;2
Rieger, R.; Müllen, K. J. Phys. Org. Chem. 2010, 23, 315.
Selkirk, J. K.; Croy, R. G.; Gelboin, H. V. Science 1974, 184, 169. https://doi.org/10.1126/science.184.4133.169
Rieger, R.; Kastler, M.; Enkelmann, V.; Müllen, K. Chem. Eur. J. 2008, 14, 6322. https://doi.org/10.1002/chem.200800832
Shimizu, M.; Hiyama, T. Eur. J. Org. Chem. 2013, 2013, 8069. https://doi.org/10.1002/ejoc.201300632
Chen, Q.; Wang, D.; Baumgarten, M.; Schollmeyer, D.; Müllen, K.; Narita, A. Chem. Asian J. 2019, 14, 1703. https://doi.org/10.1002/asia.201801822
Li, G.; Phan, H.; Herng, T. S.; Gopalakrishna, T. Y.; Liu, C.; Zeng, W.; Ding, J.; Wu, J. Angew. Chem. Int. Ed. 2017, 56, 5012. https://doi.org/10.1002/anie.201700441
Castro, S.; Fernández, J. J.; Fañanás, F. J.; Vicente, R.; Rodríguez, F. Chem. Eur. J. 2016, 22, 9068. https://doi.org/10.1002/chem.201601482
Snieckus, V. Chem. Rev. 1990, 90, 879 and references there-in. https://doi.org/10.1021/cr00104a001
Koser, G. F.; Telu, S.; Laali, K. K. Tetrahedron Lett. 2006, 47, 7011. https://doi.org/10.1016/j.tetlet.2006.07.114
Shinokubo, H. Proc. Jpn. Acad. B 2014, 90, 1. https://doi.org/10.2183/pjab.90.1
Yamaguchi, R.; Hiroto, S.; Shinokubo, H. Org. Lett. 2012, 14, 2472. https://doi.org/10.1021/ol300743f
Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199. https://doi.org/10.1016/j.chempr.2017.11.002
Morley, J. A.; Woolsey, N. F. J. Org. Chem. 1992, 57, 6487. https://doi.org/10.1021/jo00050a023
Ronald, G. H. Curr. Org. Chem. 2004, 8, 303.
Feng, X.; Pisula, W.; Müllen, K. In Pure Appl. Chem. 2009, 81, 2203. https://doi.org/10.1351/PAC-CON-09-07-07
Laali, K. K.; Shokouhimehr, M. Curr. Org. Synth. 2009, 6, 193. https://doi.org/10.2174/157017909788167275
Duclos, R. I.; Tung, J. S.; Rapoport, H. J. Org. Chem. 1984, 49, 5243. https://doi.org/10.1021/jo00200a046
Harrowven, D. C.; Guy, I. L.; Nanson, L. Angew. Chem. Int. Ed. 2006, 45, 2242. https://doi.org/10.1002/anie.200504287
Rossi, R. A.; Budén, M. A.; Guastavino, J. F. In Arene Chemistry 2015, p 219. https://doi.org/10.1002/9781118754887.ch9
Fetzer, J. C. Org. Prep. Proced. Int. 1989, 21, 47. https://doi.org/10.1080/00304948909356347
Echavarren, A. M.; Gómez-Lor, B.; González, J. J.; de Frutos, Ó. Synlett 2003, 2003, 0585. https://doi.org/10.1055/s-2003-38382
Harvey, R. G. Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity; 1991.
Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500. https://doi.org/10.1126/science.1068427
Iyer, V. S.; Wehmeier, M.; Brand, J. D.; Keegstra, M. A.; Müllen, K. Angew. Chem. Int. Ed. 1997, 36, 1604. https://doi.org/10.1002/anie.199716041
Dötz, F.; Brand, J. D.; Ito, S.; Gherghel, L.; Müllen, K. J. Am. Chem. Soc.2000, 122, 7707. https://doi.org/10.1021/ja000832x
Feng, X.; Wu, J.; Ai, M.; Pisula, W.; Zhi, L.; Rabe, J. P.; Müllen, K. Angew. Chem. Int. Ed. 2007, 46, 3033. https://doi.org/10.1002/anie.200605224
Segawa, Y.; Maekawa, T.; Itami, K. Angew. Chem. Int. Ed. 2015, 54, 66. https://doi.org/10.1002/anie.201403729
Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369. https://doi.org/10.1038/nchem.1607
Kancherla, S.; Jørgensen, K. B.; Fernández-Ibáñez, M. Á. Synthesis 2019, 51, 643. https://doi.org/10.1055/s-0037-1610852
Mochida, K.; Kawasumi, K.; Segawa, Y.; Itami, K. J. Am. Chem. Soc.2011, 133, 10716. https://doi.org/10.1021/ja202975w
Ozaki, K.; Kawasumi, K.; Shibata, M.; Ito, H.; Itami, K. Nat. Commun. 2015, 6, 6251. https://doi.org/10.1038/ncomms7251
Yano, Y.; Ito, H.; Segawa, Y.; Itami, K. Synlett 2016, 27, 2081. https://doi.org/10.1055/s-0035-1561455
Kamikawa, K.; Takemoto, I.; Takemoto, S.; Matsuzaka, H. J. Org. Chem. 2007, 72, 7406. https://doi.org/10.1021/jo0711586
Chang, N.-H.; Chen, X.-C.; Nonobe, H.; Okuda, Y.; Mori, H.; Nakajima, K.; Nishihara, Y. Org. Lett. 2013, 15, 3558. https://doi.org/10.1021/ol401375n
Murai, M.; Hosokawa, N.; Roy, D.; Takai, K. Org. Lett. 2014, 16, 4134. https://doi.org/10.1021/ol5018273
McAtee, C. C.; Riehl, P. S.; Schindler, C. S. J. Am. Chem. Soc.2017, 139, 2960. https://doi.org/10.1021/jacs.7b01114
van Otterlo, W. A. L.; de Koning, C. B. Chem. Rev. 2009, 109, 3743. https://doi.org/10.1021/cr900178p
Bonifacio, M. C.; Robertson, C. R.; Jung, J.-Y.; King, B. T. J. Org. Chem. 2005, 70, 8522. https://doi.org/10.1021/jo051418o
Zhou, L.; Nakajima, K.; Kanno, K.-i.; Takahashi, T. Tetrahedron Lett. 2009, 50, 2722. https://doi.org/10.1016/j.tetlet.2009.02.191
Nagao, I.; Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2009, 48, 7573. https://doi.org/10.1002/anie.200903779
Shimizu, M.; Tomioka, Y.; Nagao, I.; Kadowaki, T.; Hiyama, T. Chem. Asian J. 2012, 7, 1644. https://doi.org/10.1002/asia.201200132
Shimizu, M.; Nagao, I.; Tomioka, Y.; Kadowaki, T.; Hiyama, T. Tetrahedron 2011, 67, 8014. https://doi.org/10.1016/j.tet.2011.08.019
Shimizu, M.; Nagao, I.; Tomioka, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2008, 47, 8096. https://doi.org/10.1002/anie.200803213
Zhang, X.; Xu, Z.; Si, W.; Oniwa, K.; Bao, M.; Yamamoto, Y.; Jin, T. Nat. Commun. 2017, 8, 15073. https://doi.org/10.1038/ncomms15073
Yang, W.; Bam, R.; Catalano, V. J.; Chalifoux, W. A. Angew. Chem. Int. Ed. 2018, 57, 14773. https://doi.org/10.1002/anie.201808043
Dorel, R.; McGonigal, P. R.; Echavarren, A. M. Angew. Chem. 2016, 128, 11286. https://doi.org/10.1002/ange.201604952
Liu, Z.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 15716. https://doi.org/10.1021/ja055781o
Pérez, D.; Peña, D.; Guitián, E. Eur. J. Org. Chem. 2013, 2013, 5981. https://doi.org/10.1002/ejoc.201300470
Wu, D.; Ge, H.; Liu, S. H.; Yin, J. RSC Adv. 2013, 3, 22727. https://doi.org/10.1039/c3ra43804j
Romero, C.; Peña, D.; Pérez, D.; Guitián, E. Chem. Eur. J. 2006, 12, 5677. https://doi.org/10.1002/chem.200600466
Ito, H.; Ozaki, K.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 11144. https://doi.org/10.1002/anie.201701058
Matsuoka, W.; Ito, H.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 12224. https://doi.org/10.1002/anie.201707486
Fort, E. H.; Donovan, P. M.; Scott, L. T. J. Am. Chem. Soc.2009, 131, 16006. https://doi.org/10.1021/ja907802g
Tovar, J. D.; Swager, T. M. J. Organomet. Chem. 2002, 653, 215. https://doi.org/10.1016/S0022-328X(02)01166-X
Kwon, Y.; Cho, H.; Kim, S. Org. Lett. 2013, 15, 920. https://doi.org/10.1021/ol400073s
Yang, W.; Monteiro, J. H. S. K.; de Bettencourt-Dias, A.; Chalifoux, W. A. Can. J. Chem. 2016, 95, 341. https://doi.org/10.1139/cjc-2016-0466
Ozaki, K.; Murai, K.; Matsuoka, W.; Kawasumi, K.; Ito, H.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 1361.https://doi.org/10.1002/anie.201610374
Pati, K.; Michas, C.; Allenger, D.; Piskun, I.; Coutros, P. S.; Gomes, G. d. P.; Alabugin, I. V. J. Org. Chem. 2015, 80, 11706. https://doi.org/10.1021/acs.joc.5b01014
Tsvetkov, N. P.; Gonzalez-Rodriguez, E.; Hughes, A.; dos Passos Gomes, G.; White, F. D.; Kuriakose, F.; Alabugin, I. V. Angew. Chem. Int. Ed. 2018, 57, 3651. https://doi.org/10.1002/anie.201712783
Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Org. Chem. 2000, 65, 6944. https://doi.org/10.1021/jo000535a
Mallory, F. B.; Wood, C. S.; Gordon, J. T. J. Am. Chem. Soc.1964, 86, 3094. https://doi.org/10.1021/ja01069a025
Wood, C. S.; Mallory, F. B. J. Org. Chem. 1964, 29, 3373. https://doi.org/10.1021/jo01034a059
Scholz, M.; Mühlstädt, M.; Dietz, F. Tetrahedron Lett. 1967, 8, 665. https://doi.org/10.1016/S0040-4039(00)90569-0
Flammang-Barbieux, M.; Nasielski, J.; Martin, R. H. Tetrahedron Lett. 1967, 8, 743. https://doi.org/10.1016/S0040-4039(00)90586-0
Rajeshkumar, V.; Courté, M.; Fichou, D.; Stuparu, M. C. Eur. J. Org. Chem. 2016, 2016, 6010. https://doi.org/10.1002/ejoc.201601236
Rajeshkumar, V.; Stuparu, M. C. Chem. Commun. 2016, 52, 9957. https://doi.org/10.1039/C6CC04910A
Lefebvre, Q.; Jentsch, M.; Rueping, M. Beilstein J. Org. Chem. 2013, 9, 1883. https://doi.org/10.3762/bjoc.9.221
Mallory, F. B.; Mallory, C. W. In Organic Reactions 1984, p 1. https://doi.org/10.1002/0471264180.or030.01
Hagen, S.; Hopf, H. In Carbon Rich Compounds I; de Meijere, A., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1998, p 45.
Laarhoven, W. H. Recl. Trav. Chim. Pays-Bas 1983, 102, 185. https://doi.org/10.1002/recl.19831020401
Meier, H. Angew. Chem. Int. Ed. 1992, 31, 1399. https://doi.org/10.1002/anie.199213993
Tominaga, Y.; Castle, R. N. J. Heterocycl. Chem. 1996, 33, 523. https://doi.org/10.1002/jhet.5570330302
Laarhoven, W. H. ChemInform 1990, 21. https://doi.org/10.1002/chin.199048326
Jørgensen, K. B. Molecules 2010, 15, 4334. https://doi.org/10.3390/molecules15064334
Liu, L.; Yang, B.; Katz, T. J.; Poindexter, M. K. J. Org. Chem. 1991, 56, 3769. https://doi.org/10.1021/jo00012a005
Matsushima, T.; Kobayashi, S.; Watanabe, S. J. Org. Chem. 2016, 81, 7799. https://doi.org/10.1021/acs.joc.6b01450
Carrera, M.; de la Viuda, M.; Guijarro, A. Synlett 2016, 27, 2783.
Bendig, J.; Beyermann, M.; Kreysig, D. Tetrahedron Lett. 1977, 18, 3659. https://doi.org/10.1016/S0040-4039(01)83319-0
Talele H. R.; Gohil M. J.; Bedekar A. V. Bull. Chem. Soc. Jpn. 2009, 82, 1182. https://doi.org/10.1246/bcsj.82.1182
Mastalerz, M.; Hüggenberg, W.; Dyker, G. Eur. J. Org. Chem. 2006, 2006, 3977. https://doi.org/10.1002/ejoc.200600265
Moore, W. M.; Morgan, D. D.; Stermitz, F. R. J. Am. Chem. Soc.1963, 85, 829. https://doi.org/10.1021/ja00889a050
Mallory, F. B.; Wood, C. S.; Gordon, J. T.; Lindquist, L. C.; Savitz, M. L. J. Am. Chem. Soc. 1962, 84, 4361. https://doi.org/10.1021/ja00881a044
Gilman, H.; Bebb, R. L. J. Am. Chem. Soc.1939, 61, 109. https://doi.org/10.1021/ja01870a037
Wittig, G.; Fuhrmann, G. Ber. Dtsch. Chem. Ges. (A and B Series) 1940, 73, 1197. https://doi.org/10.1002/cber.19400731113
Nguyen, T.-H.; Chau, N. T. T.; Castanet, A.-S.; Nguyen, K. P. P.; Mortier, J. Org. Lett. 2005, 7, 2445. https://doi.org/10.1021/ol050761c
Macklin, T. K.; Snieckus, V. Org. Lett. 2005, 7, 2519. https://doi.org/10.1021/ol050393c
Nguyen, T.-H.; Chau, N. T. T.; Castanet, A.-S.; Nguyen, K. P. P.; Mortier, J. J. Org. Chem. 2007, 72, 3419. https://doi.org/10.1021/jo070082a
Harvey, R. G.; Cortez, C.; Ananthanarayan, T. P.; Schmolka, S. J. Org. Chem. 1988, 53, 3936. https://doi.org/10.1021/jo00252a011
Groom, K.; Hussain, S. M. S.; Morin, J.; Nilewski, C.; Rantanen, T.; Snieckus, V. Org. Lett. 2014, 16, 2378. https://doi.org/10.1021/ol500707w
Wrona-Piotrowicz, A.; Ciechańska, M.; Zakrzewski, J.; Métivier, R.; Brosseau, A.; Makal, A. Dyes Pigm. 2016, 125, 331. https://doi.org/10.1016/j.dyepig.2015.10.031
Tilly, D.; Magolan, J.; Mortier, J. Chem. Eur. J. 2012, 18, 3804. https://doi.org/10.1002/chem.201103920
van Eikema Hommes, N. J. R.; von Ragué Schleyer, P. Angew. Chem. Int. Ed. 1992, 31, 755. https://doi.org/10.1002/anie.199207551
Chadwick, S. T.; Rennels, R. A.; Rutherford, J. L.; Collum, D. B. J. Am. Chem. Soc. 2000, 122, 8640. https://doi.org/10.1021/ja001471o
Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270. https://doi.org/10.1039/c3cs35521g
Mee, S. P. H.; Lee, V.; Baldwin, J. E. Angew. Chem. Int. Ed. 2004, 43, 1132. https://doi.org/10.1002/anie.200352979
Martin, R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3844. https://doi.org/10.1021/ja070830d
Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 13028. https://doi.org/10.1021/ja0474493
Yuen, O. Y.; So, C. M.; Man, H. W.; Kwong, F. Y. Chem. Eur. J. 2016, 22, 6471. https://doi.org/10.1002/chem.201600420
Giannerini, M.; Fañanás-Mastral, M.; Feringa, B. L. Nat. Chem. 2013, 5, 667. https://doi.org/10.1038/nchem.1678
Li, H.; Johansson Seechurn, C. C. C.; Colacot, T. J. ACS Catal. 2012, 2, 1147. https://doi.org/10.1021/cs300082f
Roudesly, F.; Oble, J.; Poli, G. J. Mol. Catal. A: Chem. 2017, 426, 275. https://doi.org/10.1016/j.molcata.2016.06.020
Crabtree, R. H.; Lei, A. Chem. Rev. 2017, 117, 8481. https://doi.org/10.1021/acs.chemrev.7b00307
Zhang, D.; Wang, Q. Coord. Chem. Rev. 2015, 286, 1.
Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027. https://doi.org/10.1002/adsc.200900587
Devendar, P.; Qu, R.-Y.; Kang, W.-M.; He, B.; Yang, G.-F. J. Agric. Food Chem. 2018, 66, 8914. https://doi.org/10.1021/acs.jafc.8b03792
García-Melchor, M.; Braga, A. A. C.; Lledós, A.; Ujaque, G.; Maseras, F. Acc. Chem. Res. 2013, 46, 2626. https://doi.org/10.1021/ar400080r
Quesnelle, C. A.; Snieckus, V. Synthesis 2018, 50, 4413. https://doi.org/10.1055/s-0037-1610273
Gschwend, H. W.; Rodriguez, H. R. In Organic Reactions 2004, 26, p 1.
Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem. Int. Ed. 2004, 43, 2206. https://doi.org/10.1002/anie.200300590
Beak, P.; Meyers, A. Acc. Chem. Res. 1986, 19, 356. https://doi.org/10.1021/ar00131a005
Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552. https://doi.org/10.1021/ar950142b
Schlosser, M. Angew. Chem. Int. Ed. 2005, 44, 376.
Schlosser, M. In Organometallics in synthesis: third manual; John Wiley & Sons, 2013. https://doi.org/10.1002/9781118484722
Clayden, J. In Organolithiums: selectivity for synthesis; Elsevier, 2002; Vol. 23.
Jørgensen, K. B.; Rantanen, T.; Dörfler, T.; Snieckus, V. J. Org. Chem. 2015, 80, 9410. https://doi.org/10.1021/acs.joc.5b01300
Fu, J.-M.; Snieckus, V. Can. J. Chem. 2000, 78, 905. https://doi.org/10.1139/v00-055
Lorentzen, M.; Kalvet, I.; Sauriol, F.; Rantanen, T.; Jørgensen, K. B.; Snieckus, V. J. Org. Chem. 2017, 82, 7300. https://doi.org/10.1021/acs.joc.7b00890
James, C. A.; Snieckus, V. J. Org. Chem. 2009, 74, 4080. https://doi.org/10.1021/jo9001454
Fu, J. M.; Zhao, B. p.; Sharp, M. J.; Snieckus, V. Can. J. Chem. 1994, 72, 227. https://doi.org/10.1139/v94-035
Wang, X.; Fu, J.-m.; Snieckus, V. Helv. Chim. Acta 2012, 95, 2680. https://doi.org/10.1002/hlca.201200564
Tilly, D.; Fu, J.-M.; Zhao, B.-p.; Alessi, M.; Castanet, A.-S.; Snieckus, V.; Mortier, J. Org. Lett. 2010, 12, 68. https://doi.org/10.1021/ol902268h
Castanet, A.-S.; Tilly, D.; Véron, J.-B.; Samanta, S. S.; De, A.; Ganguly, T.; Mortier, J. Tetrahedron 2008, 64, 3331. https://doi.org/10.1016/j.tet.2008.01.122
James, C. A.; Coelho, A. L.; Gevaert, M.; Forgione, P.; Snieckus, V. J. Org. Chem. 2009, 74, 4094. https://doi.org/10.1021/jo900146d
Tilly, D.; Castanet, A.-S.; Mortier, J. Tetrahedron Lett. 2006, 47, 1121. https://doi.org/10.1016/j.tetlet.2005.12.030
Familoni, O. B.; Ionica, I.; Bower, J. F.; Snieckus, V. Synlett 1997, 1997, 1081. https://doi.org/10.1055/s-1997-1533
MacNeil, S. L.; Gray, M.; Gusev, D. G.; Briggs, L. E.; Snieckus, V. J. Org. Chem. 2008, 73, 9710. https://doi.org/10.1021/jo801856n
Benesch, L.; Bury, P.; Guillaneux, D.; Houldsworth, S.; Wang, X.; Snieckus, V. Tetrahedron Lett. 1998, 39, 961. https://doi.org/10.1016/S0040-4039(97)10670-0
Wang, X.; Snieckus, V. Tetrahedron Lett. 1991, 32, 4879. https://doi.org/10.1016/S0040-4039(00)93485-3
Cai, X.; Brown, S.; Hodson, P.; Snieckus, V. Can. J. Chem. 2004, 82, 195. https://doi.org/10.1139/v03-179
Lorentzen, M. Ph. D. Monograph, University of Stavanger, 2013.
Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 10236. https://doi.org/10.1002/anie.201203269
Zhang, F.; Spring, D. R. Chem. Soc. Rev. 2014, 43, 6906. https://doi.org/10.1039/C4CS00137K
Liu, Y.-J.; Xu, H.; Kong, W.-J.; Shang, M.; Dai, H.-X.; Yu, J.-Q. Nature 2014, 515, 389. https://doi.org/10.1038/nature13885
Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. https://doi.org/10.1021/cr900184e
Cook, A. K.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 3109. https://doi.org/10.1021/jacs.5b00238
Valderas, C.; Naksomboon, K.; Fernández-Ibáñez, M. Á. ChemCatChem 2016, 8, 3213. https://doi.org/10.1002/cctc.201600757
Naksomboon, K.; Valderas, C.; Gómez-Martínez, M.; Álvarez-Casao, Y.; Fernández-Ibáñez, M. Á. ACS Catal. 2017, 7, 6342. https://doi.org/10.1021/acscatal.7b02356
Naksomboon, K.; Álvarez-Casao, Y.; Uiterweerd, M.; Westerveld, N.; Maciá, B.; Fernández-Ibáñez, M. Á. Tetrahedron Lett. 2018, 59, 379. https://doi.org/10.1016/j.tetlet.2017.12.047
Jørgensen, K. B.; Joensen, M. Polycyclic Aromatic Compounds 2008, 28, 362. https://doi.org/10.1080/10406630802374580
Mallory, F. B.; Rudolph, M. J.; Oh, S. M. J. Org. Chem. 1989, 54, 4619. https://doi.org/10.1021/jo00280a032
Noller, K.; Kosteyn, F.; Meier, H. Chemische Berichte 1988, 121, 1609. https://doi.org/10.1002/cber.19881210912
Harvey, R. G.; Dai, W.; Zhang, J.-T.; Cortez, C. J. Org. Chem. 1998, 63, 8118. https://doi.org/10.1021/jo980415r
Blackburn, E. V.; Timmons, C. J. J. Chem. Soc. C: Org. 1970, 172. https://doi.org/10.1039/j39700000172
Kirby, A. J.; Percy, J. M. Tetrahedron 1988, 44, 6903. https://doi.org/10.1016/S0040-4020(01)86220-7
Saá, J. M.; Martorell, G.; Frontera, A. J. Org. Chem. 1996, 61, 5194. https://doi.org/10.1021/jo960570a
Clayden, J.; Frampton, C. S.; McCarthy, C.; Westlund, N. Tetrahedron 1999, 55, 14161 and references there-in. https://doi.org/10.1016/S0040-4020(99)00881-9
Barnes, R. A.; Nehmsmann, L. J. J. Org. Chem. 1962, 27, 1939. https://doi.org/10.1021/jo01053a002
Collum, D. B. Acc. Chem. Res. 1992, 25, 448. https://doi.org/10.1021/ar00022a003
Reich, H. J. Chem. Rev. 2013, 113, 7130. https://doi.org/10.1021/cr400187u
Reich, H. J. J. Org. Chem. 2012, 77, 5471. https://doi.org/10.1021/jo3005155
Krizan, T. D.; Martin, J. C. J. Am. Chem. Soc. 1983, 105, 6155. https://doi.org/10.1021/ja00357a034
Mills, R. J.; Taylor, N. J.; Snieckus, V. J. Org. Chem. 1989, 54, 4372. https://doi.org/10.1021/jo00279a028
Cuevas, J. C.; Patil, P.; Snieckus, V. Tetrahedron Lett. 1989, 30, 5841. https://doi.org/10.1016/S0040-4039(01)93485-9
Jerina D. M.;, Yagi, H.; Lehr, R. E.; Thakker, D. R.; Schaefer-Ridder, M.; Karle, J. M.; Levin, W.; Wood, A. W.; Chang, R. L.; Conney, A. H. In Polycyclic Hydrocarbons and Cancer. Environment, Chemistry and Metabolism; Academic Press: New York, 1978; Vol. 1.
Mills, R. J. Ph. D. Monograph, Silicon in Benzamide Directed Metalation Reactions, 1985.
Kancherla, S.; Lorentzen, M.; Snieckus, V.; Jørgensen, K. B. J. Org. Chem. 2018, 83, 3590. https://doi.org/10.1021/acs.joc.7b03210
Watanabe, T.; Miyaura, N.; Suzuki, A. Synlett 1992, 1992, 207. https://doi.org/10.1055/s-1992-21315
Hoye, T. R.; Chen, M. J. Org. Chem. 1996, 61, 7940. https://doi.org/10.1021/jo960882d
Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996, 61, 1375. https://doi.org/10.1021/jo951404q
Johnson, M. G.; Foglesong, R. J. Tetrahedron Lett. 1997, 38, 7001. https://doi.org/10.1016/S0040-4039(97)01674-2
Cammidge, A. N.; Crépy, K. V. L. Chem. Commun. 2000, 1723. https://doi.org/10.1039/b004513f
Podgoršek, A.; Stavber, S.; Zupan, M.; Iskra, J. Tetrahedron 2009, 65, 4429. https://doi.org/10.1016/j.tet.2009.03.034
Takahisa, M.; Hideko, N.; Michinori, S.; Masahiro, M.; Yoshihiko, I. Bull. Chem. Soc. Jpn. 2005, 78, 142.
Pathak, R.; Nhlapo, J. M.; Govender, S.; Michael, J. P.; van Otterlo, W. A. L.; de Koning, C. B. Tetrahedron 2006, 62, 2820. https://doi.org/10.1016/j.tet.2006.01.012
Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412. https://doi.org/10.1039/C3CS60197H
Chaumeil, H.; Signorella, S.; Le Drian, C. Tetrahedron 2000, 56, 9655. https://doi.org/10.1016/S0040-4020(00)00928-5
Gronowitz, S. B., Vladimir; Lawitz, Karolina Chemica Scripta 1984, 23 120.
Zhang, H.; Kwong, F. Y.; Tian, Y.; Chan, K. S. J. Org. Chem. 1998, 63, 6886. https://doi.org/10.1021/jo980646y
Lima, C. F. R. A. C.; Rodrigues, A. S. M. C.; Silva, V. L. M.; Silva, A. M. S.; Santos, L. M. N. B. F. ChemCatChem 2014, 6, 1291.
Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116. https://doi.org/10.1021/ja1108326
Beckett, M. A.; Gilmore, R. J.; Idrees, K. J. Organomet. Chem. 1993, 455, 47. https://doi.org/10.1016/0022-328X(93)80378-O
Sherwood, J.; Clark, J. H.; Fairlamb, I. J. S.; Slattery, J. M. Green Chem. 2019, 21, 2164. https://doi.org/10.1039/C9GC00617F
Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. https://doi.org/10.1021/ar800036s
Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4685. https://doi.org/10.1021/ja042491j
Organ, M. G.; Çalimsiz, S.; Sayah, M.; Hoi, K. H.; Lough, A. J. Angew. Chem. Int. Ed. 2009, 48, 2383. https://doi.org/10.1002/anie.200805661
Würtz, S.; Glorius, F. Acc. Chem. Res. 2008, 41, 1523. https://doi.org/10.1021/ar8000876
Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem. Int. Ed. 2012, 51, 3314. https://doi.org/10.1002/anie.201106131
Giannerini, M.; Hornillos, V.; Vila, C.; Fañanás-Mastral, M.; Feringa, B. L. Angew. Chem. Int. Ed. 2013, 52, 13329. https://doi.org/10.1002/anie.201306427
Hornillos, V.; Giannerini, M.; Vila, C.; Fañanás-Mastral, M.; Feringa, B. L. Org. Lett. 2013, 15, 5114. https://doi.org/10.1021/ol402408v
Çalimsiz, S.; Sayah, M.; Mallik, D.; Organ, M. G. Angew. Chem. Int. Ed. 2010, 49, 2014. https://doi.org/10.1002/anie.200906811
Sase, S.; Jaric, M.; Metzger, A.; Malakhov, V.; Knochel, P. J. Org. Chem. 2008, 73, 7380. https://doi.org/10.1021/jo801063c
Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821. https://doi.org/10.1021/jo00430a041
Lorentzen, M.; Sydnes, M. O.; Jørgensen, K. B. Tetrahedron 2014, 70, 9041. https://doi.org/10.1016/j.tet.2014.10.016
Komiyama, T.; Minami, Y.; Furuya, Y.; Hiyama, T. Angew. Chem. 2018, 130, 2005. https://doi.org/10.1002/ange.201712081
Zhao, Q.; Li, C.; Senanayake, C. H.; Tang, W. Chem. Eur. J. 2013, 19, 2261. https://doi.org/10.1002/chem.201203898
Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099. https://doi.org/10.1039/b806211k
Zuidema, E.; van Leeuwen, P. W. N. M.; Bo, C. Organometallics 2005, 24, 3703. https://doi.org/10.1021/om050113x
Xue, L.; Lin, Z. Chem. Soc. Rev. 2010, 39, 1692. https://doi.org/10.1039/B814973A
Freixa, Z.; van Leeuwen, P. W. N. M. Dalton Trans. 2003, 1890. https://doi.org/10.1039/B300322C
van Zeist, W.-J.; Visser, R.; Bickelhaupt, F. M. Chem. Eur. J. 2009, 15, 6112. https://doi.org/10.1002/chem.200900367
van Zeist, W.-J.; Bickelhaupt, F. M. Dalton Trans. 2011, 40, 3028. https://doi.org/10.1039/c0dt01550d
Gillespie, J. A.; Dodds, D. L.; Kamer, P. C. J. Dalton Trans. 2010, 39, 2751. https://doi.org/10.1039/b913778e
Dierkes, P.; van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. 1999, 1519. https://doi.org/10.1039/a807799a
Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158. https://doi.org/10.1021/ja00313a032
Steffen, W. L.; Palenik, G. J. Inorg. Chem. 1976, 15, 2432. https://doi.org/10.1021/ic50164a025
Nijegorodov, N.; Zvolinsky, V.; Luhanga, P. V. C. J. Photochem. Photobiol. A: Chem. 2008, 196, 219. https://doi.org/10.1016/j.jphotochem.2007.12.028
Biet, T.; Martin, K.; Hankache, J.; Hellou, N.; Hauser, A.; Bürgi, T.; Vanthuyne, N.; Aharon, T.; Caricato, M.; Crassous, J.; Avarvari, N. Chem. Eur. J. 2017, 23, 437.https://doi.org/10.1002/chem.201604471
Ma, J.; Lin, T.; Pan, X.; Wang, W. Chem. Mater. 2014, 26, 4221. https://doi.org/10.1021/cm501590w
Sun, Z.; Wu, J. Aust. J. Chem. 2011, 64, 519. https://doi.org/10.1071/CH11037
Ricci, P.; Krämer, K.; Cambeiro, X. C.; Larrosa, I. J. Am. Chem. Soc. 2013, 135, 13258. https://doi.org/10.1021/ja405936s
Ricci, P.; Krämer, K.; Larrosa, I. J. Am. Chem. Soc. 2014, 136, 18082. https://doi.org/10.1021/ja510260j
Mahaffy, C. A. L.; Pauson, P. L. In Inorganic synthesis; Shriver, D. F., Ed.; John Wiley & Sons, Inc.: Canada, 1979; Vol. 19, p 327.
Arrais, A.; Diana, E.; Gervasio, G.; Gobetto, R.; Marabello, D.; Stanghellini, Pier L. Eur. J. Inorg. Chem. 2004, 2004, 1505. https://doi.org/10.1002/ejic.200300369
Ito, H.; Ozaki, K.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 11144. https://doi.org/10.1002/anie.201701058
Burchat, A. F.; Chong, J. M.; Nielsen, N. J. Organomet. Chem. 1997, 542, 281. https://doi.org/10.1016/S0022-328X(97)00143-5
Jung, K. Y.; Koreeda, M. J. Org. Chem. 1989, 54, 5667.
Roberts, J. C.; Pincock, J. A. J. Org. Chem. 2004, 69, 4279. https://doi.org/10.1021/jo040110e
Snégaroff, K.; L'Helgoual'ch, J.-M.; Bentabed-Ababsa, G.; Nguyen, T. T.; Chevallier, F.; Yonehara, M.; Uchiyama, M.; Derdour, A.; Mongin, F. Chem. Eur. J. 2009, 15, 10280. https://doi.org/10.1002/chem.200901432
Huang, Y.; Chan, G. H.; Chiba, S. Angew. Chem. Int. Ed. 2017, 56, 6544. https://doi.org/10.1002/anie.201702512