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Abstract

It is conjectured that many birational transformations, called

 -inequalities, have a categorical counterpart in terms of an

embedding of derived categories. In the special case of simple

 -equivalence (or more generally  -equivalence), a derived

equivalence is expected: we propose a method to prove derived

equivalence for a wide class of such cases. This method is related to

the construction of roofs of projective bundles introduced by

Kanemitsu. Such roofs can be related to candidate pairs of derived

equivalent, L-equivalent and non isomorphic Calabi–Yau varieties, we

prove such claims in some examples of this construction.

In the same framework, we show that a similar approach applies to

prove derived equivalence of pairs of Calabi–Yau fibrations, we

provide some working examples and we relate them to gauged linear

sigma model phase transitions.
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Introduction

1 Introduction

Calabi—Yau varieties have been object of intense research through the

last decades. Due to their spontaneous appearance in the context of a

geometric approach to explain fundamental physics, and their special

place in the classification of complex varieties, they gathered the at-

tention of mathematicians and physicists from diverse fields: a famous

example is the pioneering work (CDGP91) which led to the develop-

ment of mirror symmetry, and eventually to Kontsevich’s homological

mirror symmetry conjecture.

On the other hand, an interesting open problem is to determine how

far we can interpret the derived category of coherent sheaves as an

invariant: for instance, in light of the reconstruction theorem of Bondal

and Orlov (BO01), Fano and general type varieties are isomorphic if

and only if their derived category is equivalent. However, while still

quite uncommon, there exist several examples of pairs of Calabi—Yau

varieties which are derived equivalent but not isomorphic, or even not

birationally equivalent. In fact, in dimension three, birational equiva-

lence determines derived equivalence (Bri02), but the role of derived

category as a birational invariant for higher dimensional Calabi–Yau

varieties has not been clarified yet.

Even beyond the world of Calabi–Yau varieties, one of the most promis-

ing ideas in this field is the so-called � -conjecture by Bondal, Orlov

and Kawamata (BO02; Kaw02): the conjecture says that two smooth
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Introduction

varieties -1 and -2 are expected to be derived equivalent if there ex-

ists a birational morphism ` : -1 d -2 resolved by two morphisms

51 : - −→ -1 and 52 : - −→ -2 such that 5 ∗1l-1 = 5 ∗2l-2 . This state-

ment is supported by many examples (e.g. (BO02; Nam03; Bri02)).

Nowadays, many pairs of non-trivially derived equivalent pairs of

Calabi–Yau varieties have been shown to fit in the homological projec-

tive duality or categorical join programs (Kuz07; KP19), like (OR17;

BCP20; Man17; Kuz06b; BC08). However, there exists a class of Cal-

abi—Yau pairs for which the proofs of derived equivalence still rely on

ad-hoc arguments (IMOU19; Kuz18; KR17; KR20; Muk98), despite

their geometry shares many similarities. We propose a general con-

struction to describe them, which leads to a method to prove derived

equivalence.

In a recent paper by Kanemitsu (Kan18), in the context of the � -

conjecture, a partial classification has been given for a special class

of Fano varieties with two different projective bundle structures, called

roofs. We show that the data of a general hyperplane section on such

varieties defines a pair of Calabi—Yau varieties and we conjecture that

such pairs are derived equivalent. We motivate the conjecture with

many examples, some already present in the literature alongside with

several new ones.

A relative version of the problem discussed above yields a pair of

Calabi—Yau fibrations: we discuss their derived equivalence in rela-

2
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tion to the derived equivalence of the fibers. In particular, we prove

that under some assumptions, if a general pair of Calabi—Yau varieties

associated to a roof is derived equivalent, the related fibrations over a

smooth projective base are derived equivalent as well. This extends a

result by Bridgeland and Maciocia, where given a  3 fibration of di-

mension three, a derived equivalent fibration is constructed by replacing

each fiber with a two-dimensional moduli space of stable sheaves on

the original fiber (BM02). As an example, we construct a pair of Cal-

abi—Yau eightfolds fibered in Calabi—Yau threefolds such that for a

general point in the basis the fibers are not birationally equivalent. To

this purpose, we introduce a class of locally trivial fibrations of roofs,

which we call homogeneous roof bundles.

Alongside with their relation with Calabi—Yau fibrations, being a par-

ticular class of the families of roofs studied by Kanemitsu in (Kan18),

homogeneous roof bundles have an application in the context of the

� -conjecture. A simple  -equivalence map is a birational mor-

phism resolved by two smooth blowups with isomorphic exceptional

loci. Kanemitsu proved that in every simple  -equivalence the excep-

tional locus is isomorphic to a family of roofs over a smooth projective

variety. At the price of the additional hypothesis of local triviality, re-

stricting our attention to homogeneous roof bundles allows to approach

the problem of derived equivalence with a method based on mutations

of exceptional collections. In fact, we show how the data of a homoge-

neous roof bundle describes three different problems: a pair of Calabi–

Yau varieties, a pair of fibrations with Calabi–Yau general fibers and a

3
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simple  -equivalent map. In all three cases, we obtain semiorthogonal

decompositions which are formally identical and suggest that proving

derived equivalence for the simplest setting (the Calabi–Yau pair) al-

lows to extend the result to the latter. In fact, we conjecture that all

these three problems give rise to a derived equivalence, and we prove

that this is the case under the validity of some additional assumptions.

An interesting example arises from the context of the self-projective

dual orbit , of the action of �! (+6) on P(∧3+6), where +6 is a vector

space of dimension six. , is a fourteen-dimensional Fano variety of

index ten, with a nine dimensional singular locus ,B8=6 ' � (3, +6).
This variety is naturally embedded in P(∧3+6) ' P19 and the inter-

section of two general translates of , is expected to be a (singular)

Calabi–Yau variety. In the somewhat similar case of Calabi–Yau inter-

sections of general translates of � (2, 5) in P9, a degeneration of the

family is given by zero loci of sections of the normal bundle of � (2, 5).
We construct a similar picture from a desingularization ,0 of , : we

obtain pairs of nine-dimensional Calabi–Yau sextuple covers of the flag

variety � (1, 5, +6), which are proved to be derived equivalent by an

application of the methods above.

Mirror symmetry conjectures have now been proven on a reasonable

level of generality in the case of Calabi–Yau manifolds which are com-

plete intersections in toric varieties: a central role in this setting was

played by the abelian Gauged Linear Sigma Models. More precisely,

Calabi–Yau manifolds which are complete intersections in toric vari-

eties admit good models as GIT quotients of critical loci of invariant
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functions called superpotentials, defined on vector spaces equipped with

an action of an abelian gauge group. In particular, changing the stabil-

ity condition in the GIT quotient leads to new phases of the model. In

the case of abelian gauged linear sigma models, the new phases have

radically different nature. Still the relation between these phases and

the original Calabi–Yau phase has been an important asset to the theory.

Taking into consideration non abelian gauged linear sigma models,

at the price of increased complexity, one obtains new interesting phe-

nomena. One of the most intriguing features is the possibility of having

multiple Calabi–Yau phases described by the same GLSM: this leads to

the existence of Calabi–Yau manifolds which are strictly related to each

other, but sometimes still not isomorphic or birational. The physical

argument of these phases having the same �-brane category translates,

in a more mathematical parlance, to a conjectural derived equivalence:

Such is the case, for example, of the so-called Pfaffian–Grassmannian

pair discovered by Rødland (Rød98), where derived equivalence has

been proved later by Borisov and Căldăraru (BC08) and Kuznetsov

(Kuz06b). A new proof, inspired by physics, has been given by Adding-

ton, Donovan and Segal (ADS15).

It is a natural question to ask whether such GLSM duality can be

realized for Calabi–Yau pairs arising from a roof construction. We

give a partial answer to the question by establishing a GLSM with two

geometric phases isomorphic to a pair of Calabi–Yau varieties (.1, .2)
of dimension :2−1, where .1 ∈ � (:, 2: +1) and .2 ∈ � (: +1, 2: +1),

5
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are the Calabi–Yau pair associated to the roof of type ��2: of the list of

Kanemitsu (Kan18, Section 5.2.1). For : = 2, the resulting pair can be

interpreted as a degeneration of the family of intersections of � (2, 5)
translates in P9 studied by (OR17; BCP20). This gauged linear sigma

model has a particularly simple description in terms of variation of GIT,

since both the Calabi–Yau varieties arise as GIT quotients of the critical

locus in two different stability chambers. To the best of the author’s

knowledge, this is the only GLSM with such characteristics. Further-

more, we generalize this model to a GLSM yielding two geometric

phases isomorphic to Calabi–Yau varieties of dimension :2 + 2: − 1

which have a description as fibrations of Calabi–Yau varieties on P2: ,

such that for a general point in P2: the fibers are isomorphic to the pair

(.1, .2) introduced above.

Finally, we observe that the geometry of roofs has an interesting relation

with the �-brane categories of associated Landau–Ginzburg models. In

fact, by an application of Knörrer periodicity (Shi12), a derived equiv-

alence of a Calabi–Yau pair described by a roof construction lifts to an

equivalence of matrix factorization category of total spaces of vector

bundles with appropriate superpotentials.

Notations and conventions

◦ We work over the field of complex numbers.

◦ We shall use the notation P(E) := Proj(Sym E), whenever E is a

vector bundle or a vector space.

◦ The orbit of an element E with respect to a group � is denoted by

6
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�.E, while the image of E under the action of 6 ∈ � is denoted

by 6.E.

◦ Given a vector space + , the contraction of E ∈ + with F ∈ +∨ is

denoted by E · F.

◦ With the expression / (f) we mean the zero locus of a section f

of a vector bundle.

◦ Given a vector space + and : ∈ Z, we call + [:] the complex of

vector spaces which is identically zero in every degree except for

−: , where it is equal to + . For example, �•(P1,OP1) = C[0].

◦ The expression �×� � denotes the balanced product (see Section

2.3), to be distinguished by the fiber product � ×� �.

◦ In the context of triangulated categories, we will often refer to a

triangle as � −→ � −→ �, with the meaning of � −→ � −→
� −→ �[1] −→ �[1] −→ � [1] −→ · · ·

7
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Homogeneous varieties and vector bundles

2 Homogeneous varieties and vector bun-
dles

2.1 Algebraic groups

In this section we will summarize some basic definitions about algebraic

groups.

Definition 2.1.1. (Bor91, 1.1) An algebraic group is an algebraic variety

� together with

◦ an identity element 4 ∈ �

◦ a morphism
` : � × � �

(G, H) GH

(2.1.1)

◦ a morphism
8 : � �

G G−1
(2.1.2)

with respect to which the set � is a group.

Morphisms of algebraic groups are morphisms of algebraic varieties

which commute with the group operations, while algebraic subgroups

are Zariski-closed subvarieties which are also closed under the group

operation.

From now on, to simplify the notation, let us drop the operation ` and

denote an algebraic group just by its underlying algebraic variety.

9



Homogeneous varieties and vector bundles

Definition 2.1.2. (Bor91, Section 1.6) Let + be a vector space. An

algebraic group � is called linear if it is a closed subgroup of �! (+).

Definition 2.1.3. (CGP15, Definition A.1.15) A linear algebraic group�

is called reductive if every smooth connected unipotent normal subgroup

is trivial.

Remark 2.1.4. There exists a scheme-theoretic version of the defini-

tion of algebraic groups (see e.g. (Mil17)). However, since we will

mostly deal with smooth algebraic varieties, we prefer to keep a more

elementary formalism where possible.

The following definitions are standard (see for example (Ott95)):

Definition 2.1.5. An action of algebraic group � on an algebraic variety

- is an algebraic morphism

U : � × - -

(6, G) 6G

(2.1.3)

such that for every G ∈ - one has �G = G, and for every 61, 62 ∈ � and

G ∈ - one has (6162)G = 61(62G).

Definition 2.1.6. An algebraic variety is called homogeneous if it admits
a transitive action by an algebraic group.

2.2 Parabolic subgroups and homogeneous vari-
eties

In this section we will give a quick review on rational homogeneous va-

rieties and their description in terms of quotients of algebraic groups.

10
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Definition 2.2.1. (Bor91, 11.2) Let � be a connected affine group. A

parabolic subgroup % ⊂ � is a closed subgroup such that the quotient

�/% is a complete variety.

One observes that a homogeneous space of the form �/% is always

quasi-projective (Bor91, 6.8), then �/% is a projective variety if and

only if % is parabolic. Furthermore, for � linear, reduced and con-

nected, �/% is Fano for every % (Kol96, Chapter V, Theorem 1.4).

Algebraic groups of the form �/%, where � is simple and % is

parabolic, are particularly interesting due to the following result, due to

Borel and Remmert:

Theorem 2.2.2. A rational homogeneous variety - is isomorphic to a

product

- = �1/%1 × · · · × �=/%= (2.2.1)

where �8 is a simple group and %8 is a parabolic subgroup for 1 ≤ 8 ≤ =.

2.2.1 Basic Lie algebra theory

Let us first recall some basic information on Lie algebras, which can

be found, for example, in (Cor97), and fix the notation for the next

paragraphs.

Cartan subalgebras

Definition 2.2.3. (Hel62, Ch. III, Sec. 3) Let g be a complex semisimple
Lie algebra. A Cartan subalgebra h ⊂ g is a subalgebra satisfying the

following conditions:

11



Homogeneous varieties and vector bundles

◦ it is a maximal abelian subalgebra of g

◦ the adjoint representation ad(ℎ) is completely reducible for every
element ℎ ∈ h.

Such subalgebra always exists (Hel62, Theorem 4.1) and it is unique

up to automorphism of g (Hel62, Ch. III, Sec. 5)

Let us consider a basis {ℎ1, · · · , ℎA} of the Cartan subalgebra h of an =-

dimensional semisimple Lie algebra g of rank A . Since h is abelian, then

the matrices {ad(ℎ1), . . . , ad(ℎA)} are simultaneously diagonalizable.

Hence, there exists a basis {ℎ1, · · · , ℎA , 0A+1, · · · 0=} of g such that

the action of ad(ℎ8) acts on the 0 9 ’s as multiplication by constant.

Thus, since by definition ad(ℎ8) (−) = [ℎ8,−], we can introduce the

notation

[ℎ8, 0 9 ] = U 9 (ℎ8)0 9 . (2.2.2)

By linearity, Equation 2.2.2 defines for every basis element 08 a linear

functional called a root of g with respect to h (Cor97, Chapter 13,

Section 4):
U8 : h C

ℎ U8 (ℎ).
(2.2.3)

Let us now consider the Killing form

 (G, H) := tr(ad(G)ad(H)). (2.2.4)

Once restricted to h it provides a nondegenerate symmetric bilinear

form (Cor97, Chapter 13, Theorem III), which can be used to associate

to each root U a unique element ℎU ∈ h by:

 (ℎU, ℎ) = U(ℎ). (2.2.5)

12



Homogeneous varieties and vector bundles

We also introduce the notation 〈U1, U2〉 :=  (ℎU1 , ℎU2).

Theorem 2.2.4. (Cor97, Chapter 13, Section 5, Theorem V)

Let {ℎU1 , . . . , ℎUA } ⊂ h be a linearly independent set, for some roots

{U1, . . . , UA}. Then every root U can be written as U = :1U1 + · · · + :AUA
with real and rational coefficients :1, . . . , :A .

Definition 2.2.5. (Cor97, Chapter 13, Section 7) Let {ℎU1 , . . . , ℎUA } ⊂ h
be a linearly independent set, for some roots {U1, . . . , UA}. A non zero

root U is said to be positive with respect to {U1, . . . , UA} if the first

nonvanishing coefficient :8 of the expression U = :1U1 + · · · + :AUA is
positive.

Definition 2.2.6. (Cor97, Chapter 13, Section 7) A non zero root U is

said to be simple with respect to {U1, . . . , UA} if it cannot be expressed

as U = U′ + U′′, where U′ and U′′ are positive roots with respect to

{U1, . . . , UA}.

Theorem 2.2.7. (Cor97, Chapter 13, Section 7, Theorem II)

Let {U1, . . . , UA} be simple roots. Then every positive root U can be

written as U = :1U1 + · · · + :AUA for nonnegative integers :1, . . . , :A .

Hereafter we will denote Δ the set of roots, and Δ± the subset of posi-

tive (negative) roots, while the set of simple roots will be called S.

The classification of semisimple Lie algebras

Let us fix a Lie algebra g of rank A with a Cartan subalgebra h and

a set of simple roots S = {U1, · · · , UA}. Then, we can define a A × A

13



Homogeneous varieties and vector bundles

invertible matrix called Cartan matrix in the following way:

�8 9 :=
2〈U8, U 9 〉
〈U8, U8〉

(2.2.6)

Every root of g can be recovered by the Cartan matrix and a choice of

S by Weyl reflections:

(U8 : U 9 ↦−→ U 9 − �8 9U8 (2.2.7)

Note that all the information required to characterize a semisimple Lie

algebra is encoded in its Cartan matrix. In fact, one can prove that the

entries of such matrix can only be integers smaller or equal than three,

and that there exist only a finite set of admissible Cartan matrices. This

fact leads to the famous Dynkin-type classification of semisimple Lie

algebras:
�= = ≥ 1

�= = ≥ 2

�= = ≥ 2

�= = ≥ 4

�= 6 ≤ = ≤ 8

�4

�2

(2.2.8)

Weights and representations

Hereafter we will review how representations of semisimple Lie alge-

bras can be characterized by their highest weight. This will fix back-

14



Homogeneous varieties and vector bundles

ground and notation in order to introduce homogeneous vector bundles.

Let us fix a complex semisimple Lie algebra g of dimension = and

rank A, and a Cartan subalgebra h ⊂ g. Furthermore, let us choose

a set of simple roots S = {U1, · · · , UA}. Let Γ be a #-dimensional

representation of g, i.e. a homomorphism of the following kind:

Γ : g −→ End+Γ (2.2.9)

where +Γ ' C# . The matrices Γ(ℎ) for every ℎ ∈ h can be diagonalized

simultaneously (Cor97, Chapter 15, Section 2) hence let us assume

they are diagonal. Then, the weights of Γ are the following linear

functionals:
Λ 9 : h C

ℎ Γ 9 9 (ℎ)
(2.2.10)

In other words, evaluations of weights on an element ℎ are eigenvalues

of the diagonal operators Γ(ℎ) ∈ End+Γ (Cor97, Ch. 15, Sec. 2).

Theorem 2.2.8. (Cor97, Chapter 15, Theorem III) Every weight l can

be written as l = :1U1 + · · · + :AUA , where U1, . . . , UA are simple roots

and all coefficients :1, . . . , :A are real and rational.

Weyl reflections can be extended to weights: in other words, one can

define a Weyl reflection (U (l) for a weight l and a simple root U

by expressing l as linear combinations of simple roots. Moreover,

one calls positive a weight l = :1U1 + · · · + :AUA such that the first

nonvanishing :8 is positive, and introduce a partial ordering among

weights: namely, we say l > l′ if l−l′ is a positive weight. We call

15
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highest weight of a representation a unique weight Λ such that Λ > l

for every other weight l.

One defines a distinguished set of fundamental weights in the following

way (Cor97, Chapter 15, Section 3):

l 9 =

A∑
:=1
(�−1): 9U: (ℎ) (2.2.11)

The highest weight of an irreducible representation can be written as

a linear combination of the fundamental weights with nonnegative in-

tegeral coefficients (Cor97, Chapter 15, Section 3, Theorem I). In the

following, given a representation Γl of highest weight l =
∑
8 _8l8, we

will denote such weight as

l = (_1, . . . , _A).

Definition 2.2.9. A weight _ =
∑
8 _8l8 is called dominant if _8 ≥ 0 for

every 8

Definition 2.2.10. We call length of a Weyl reflection ( the minimal

integer ; (() such that ( is a composition of ; (() Weyl reflections with

respect to s imple roots.

2.2.2 Levi decomposition and parabolic subgroups

There exists a nice combinatoric description of parabolic subgroups of

a linear reductive algebraic group �, which will be reviewed here. We

follow (IMOU16) and the sources therein.
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Let us fix a linear reductive algebraic group �, and the corresponding

Lie algebra g. Then g decomposes in the following direct sum:

g = h ⊕
⊕
U∈Δ

gU (2.2.12)

where the root spaces gU are given by

gU = {6 ∈ g : [ℎ, 6] = U(ℎ)6 for ℎ ∈ h} (2.2.13)

Inside g, one distinguishes the standard Borel subalgebra given by the

expression

b = h ⊕ n (2.2.14)

where n =
⊕

U∈Δ+ gU. A useful characterization of parabolic subalge-

bras is given in terms of subalgebras containing b. The direct sum de-

composition of Equation 2.2.12 allows us to wrote such subalgebras in

a particularly convenient way. Given the chosen set S = {U1, . . . , UA}
of simple roots, we define subsets S81...8; := S \ {U81; . . . ;U8; } and

Δ81...8; = spanS81...8; ∩ Δ. We then introduce the levi subalgebras

l81...8; = h ⊕
⊕

U∈Δ81 ...8;

gU (2.2.15)

One can check that l = [l, l] + l/ where l/ is the center. Moreover [l, l]
is semisimple and its rank is the cardinality of S81...8; . In a similar way,

one can define nilpotent subalgebras of the form

u81...8; =
⊕

U∈Δ+\Δ81 ...8;

gU

Then the direct sum

p81...8; = l81...8; ⊕ u81...8; . (2.2.16)

17
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is a subalgebra and contains b, hence it is parabolic. The list of

parabolic subalgebras {p81,...,8; } is exhaustive up to conjugation.

Remark 2.2.11. Given a semisimple Lie group � and parabolic sub-

group % such that � ⊂ %, the maps

c : �/� −→ �/% (2.2.17)

are fiber bundles with fiber isomorphic to %/�, which is a homogeneous

variety as well (see for example the notes (Ott95, Page 55) and the

references therein). In particular, if we choose % such that c is an

extremal contraction, it follows that c is a P1-bundle. This tells us that

a complete �-flag variety has A distinct P1-bundle structures, where A

is the rank of �.

2.2.3 Example: Grassmannians and flags

As an example, let us work out the case of g =sl(=,C), the algebra of

traceless =× = matrices, corresponding to the group � = (! (=,C). We

will find parabolic subalgebras giving rise to the partial flag varieties

of C=.

Let us choose a basis for h given by matrices ℎ8 with components

(ℎ8)?@ = X8?X8@ − X8+1?X8+1@ for 1 ≤ 8 ≤ =− 1 (all entries are zero except

for two consecutive entries on the diagonal, which are 1 and -1) and let

us complete it to a basis of g by adding the matrices <8 9 with compo-

nents (<8 9 ?@) = X8?X 9@ for 1 ≤ 8 ≠ 9 ≤ = (i.e. all entries are zero but

18
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the entry 8 9 , which is equal to one). If we now call ℎ = diag(C1, . . . , C=)
we have

[ℎ, <8 9 ] = (C8 − C 9 )<8 9

and this defines the roots expanded on the standard basis of "=×=,

in fact, given an element ℎ8 of the standard basis of h, by adapting

Equation 2.2.2 to our double-index notation we write:

[ℎ8, < 9 : ] = (X8 9 − X8: )< 9 : = U 9 : (ℎ8)< 9 : .

Observe that U 9 : = −U: 9 .

For simplicity of notation, let us fix = = 5. Then, let us consider

the following relation:

(U12 + U23) (ℎ8) = X81 − X82 + X82 − X83 = U13(ℎ8).

The same reasoning gives:

U8 9 + U 9 : = U8:

for every 8, 9 , : such that 8 < 9 < : ≤ =. so, if we choose S =

{U12, U23, U34, U45} the positive roots which are not simple correspond

to off-diagonal entries above the first upper-diagonal line. This is made

clearer by the following picture:

©­­­­­­­­­«

U12 • • •
U23 • •

U34 •
U45

ª®®®®®®®®®¬
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where the dots represent positive roots which are not simple roots.

Similarly, the negative roots correspond to entries below the diagonal.

We can now characterize the Borel subalgebra: By Equation 2.2.14

we find that b is the algebra of upper triangular traceless matrices, be-

cause the direct sum of the root spaces corresponding to positive roots

is the subspace of strictly upper triangular matrices. Before proceed-

ing with the characterization of parabolic subgroups, let us discuss the

geometry related to the group �. Exponentiating b we obtain

� = {1 ∈ (! (=), upper triangular}

Then, � clearly acts on (! (=) by 6, 1 −→ 61−1 where the inverse

is to preserve associativity (the choice of right inverse multiplication

insetead of left multiplication is for further convenience). This action

sends the 8-th column of 6 to a linear combination of the first 8 columns.

Clearly, an equivalence class is a chain of subspace of dimensions rang-

ing from 1 to 5. Hence, with respect to this action, �/� is the variety

of complete flags � (1, 2, 3, 4, 5).

Now let us construct the parabolic subalgebra p23. The first step is

to construct the Levi subalgebra: By Equation 2.2.15 we learn that l23

is the direct sum of h with the span of the first and the fourth simple

20



Homogeneous varieties and vector bundles

roots. We get:

l23 =

©­­­­­­­­­«

• •
• •

•
• •
• •

ª®®®®®®®®®¬
where the bullets correspond to the only entries which are allowed to

be nonzero. To get p23 we need to add up the nilpotent subalgebra,

which is given by the sum of the root spaces corresponding to positive

root which are not appearing in Δ23 Pictorially, adding n23 correspond

to "filling up the upper diagonal part". In other words, we get:

p23 =

©­­­­­­­­­«

• • • • •
• • • • •

• • •
• •
• •

ª®®®®®®®®®¬
Clearly, the action of matrices of this shape on elements of (! (5)
preserves the pairs of nested subspaces given respectively by the span

of the first two and the first three columns. Therefore, the quotient of

(! (5) by this action is isomorphic to the flag variety � (2, 3, 5).

2.3 Homogeneous vector bundles

Let � be a linear reductive group and % ⊂ � a parabolic subrgoup.

Homogeneous vector bundles form a very important class of vector
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bundles over �/% determined by the representations of %. Lie theory

provides an extremely useful tool to compute their cohomology, in the

form of Borel–Weil–Bott’s theorem.

Given a linear reductive group �, a parabolic subgroup % and a repre-

sentation Γ : % −→ End(+), we will use the notation � ×% + to denote

the balanced product (see, for example, the notes (Mit01, Section 3)),

i.e. following:

� ×% + := � ×+/∼ (2.3.1)

where the equivalence relation is given by (6, E) ∼ (6?−1, Γ(?)E).

Definition 2.3.1. Let �/% be a smooth homogeneous variety and Γ_ :

% −→ Aut(+ (%)
_
) a representation of % with highest weight _. We call

homogeneous vector bundle the quasiprojective variety E_ given by the

following construction:

E_ = � ×% + (%)_

�/%

c
(2.3.2)

This is indeed a vector bundle of rank dim+
(%)
_

over �/%. Sections

B ∈ �0(�/%, E) are in one to one correspondence with equivariant

maps:

B̂ : � −→ +
(%)
_

(2.3.3)

satisfying B( [6]) = [6, B̂(6)] for every 6 ∈ � (here [−] denote an

equivalence class under the action of %). The equivariancy condition,
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for every 6 ∈ � and ? ∈ %, is the following:

B(?.6) = (?6, Γ_ (?) B̂(6)) (2.3.4)

Definition 2.3.2. We say that a homogeneous vector bundle E_ is irre-

ducible if the associated representation Γ_ of % is irreducible.

2.3.1 Example: the universal sequence on � (2, 5)

The Grassmannian � (2, 5) is given by the quotient of (! (5) by the

parabolic subgroup associated to the second fundamental weight. By

the discussion of Section 2.2.2, such parabolic subgroup has the fol-

lowing description:

%2 =

©­«
C(! (2) #

0 C−1(! (3)
ª®¬
 (2.3.5)

where C ∈ C∗ and # is the nonzero component of a nilpotent factor.

The fundamental representation of (! (5) is given by the following

map:

Γl1 : (! (+) Aut(+ ((! (5))l1 )

6 {Γl1 (6) : E ↦→ 6E}
(2.3.6)

where + ((! (5))l1 ' + . If we restrict this representation to %2, we obtain

a trivial vector bundle over � (2, +):

+ ⊗ O = (! (+) ×%2 +
((! (5))
l1 (2.3.7)

If we consider the action of %2 on the subspace , ⊂ + ((! (5))l1 given

by

, =
{
E ∈ +l1 : E = (E1, E2, 0, 0, 0)

}
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we see that the (! (2)-block of % acts on the nonzero component of

an element of , by left multiplication. In particular, , ⊂ + is closed

under %2. This allows us to define a rank 2 subbundle of + ⊗ O, which
is the tautological or universal bundle of � (2, +):

U = (! (+) ×%2 , ⊂ + ⊗ O (2.3.8)

A similar explicit description of the quotient bundle

Q = + ⊗ O/U

can be realized taking the vector space / ' C3 which is the image of

the following surjection of vector spaces:

c : + /

E (0, 0, E3, E4, E5)
(2.3.9)

This surjection is equivariant, hence it defines a surjection of vector

bundles. We obtain the tautological exact sequence for � (2, +):

0 −→ U −→ + ⊗ O −→ Q −→ 0. (2.3.10)

The same reasoning gives rise to tautological exact sequences on ev-

ery Grassmannian. Moreover, pullbacks of tautological bundles define

similar sequences on flag varieties. For instance, given a flag variety

� (:, ;, <) one has the following short exact sequence:

0 −→ U� (:,<) −→ U� (;,<) −→ P −→ 0 (2.3.11)

whereU� (:,<) andU� (;,<) are the pullbacks of the tautological bundles
of respectively � (:, <) and � (;, <), and P is a rank ; − : quotient

bundle.
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2.4 Cohomology of vector bundles on general-
ized flag varieties: the Borel–Weil–Bott the-
orem

Throughout this work, we will mostly deal with homogeneous vector

bundles and their cohomology. The problem of computing such coho-

mology is completely solved by the Borel–Weil–Bott theorem. How-

ever, applying such theorem often leads to cumbersome calculations,

whose difficulty increases with the complexity of the automorphism

group of the variety. The goal of the following section is to establish

a comfortable notation in order to apply the Borel–Weil–Bott theorem

to any homogeneous vector bundle on a homogeneous variety, in a

simple algorithmic way. This algorithm is based on Weyl reflections,

therefore we start from a shorthand notation which applies to every

semisimple Lie algebra. Let us first introduce a uniformized notation

for homogeneous varieties:

Definition 2.4.1. Let � be a semisimple Lie group of rank A. We call

�-flag variety any homogeneous variety - = �/% where % ⊂ � is a

parabolic subgroup. We say that a �-flag variety is a �-Grassmannian if

it has Picard number one. We call complete �-flag variety the quotient

�/�.

Let � be a semisimple Lie group of rank A and � ⊂ � its Borel sub-

group. Then, as we discussed in Remark 2.2.11, there exist projections

�/� −→ �/% from the complete �-flag variety. Let us summarize

here some results on vector bundles on �/� and their pushforwards to
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the other �-flags.

Lemma 2.4.2. (Wey03, Proposition 4.1.3) Every line bundle L on a

complete �-flag has the form

L ' El (2.4.1)

for some weight l.

Theorem 2.4.3 (Borel–Weil–Bott for line bundles). Let� be a semisim-

ple Lie group and � ⊂ � a Borel subgroup. Let _ be an integral weight

over �/� and E_ the associated line bundle. Call d the sum of all fun-

damental weights. Then one and only one of the following situations

occur:

◦ There exists a nontrivialWeyl reflection ( such that ((_+d)−d = _.
Then �•(�/�, E_) = 0.

◦ There exists a unique Weyl reflection ( such that ((_) is a dominant
integral weight. Then �•(�/�, E_) = +((_+d)−d [−; (()].

The following lemma allows to use Theorem 2.4.3 to compute the co-

homology of irreducible homogeneous vector bundles on any homoge-

neous variety, and leads to the second formulation of Borel–Weil–Bott’s

theorem (Theorem 2.4.5 in the following).

Lemma 2.4.4. Every irreducible homogeneous vector bundle F on a

�-flag variety �/% has the form

F ' c∗E_ (2.4.2)

where E_ is a homogeneous line bundle for some weight l, and c :

�/� −→ �/%.
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Proof. For the sake of self-containedness of this exposition, we will

give a proof of this lemma, despite it is a well-known result. First,

let us observe that for every G ∈ �/% one has c−1(G) ' %/�. Fix a

%-dominant weight _. By Theorem 2.4.3, %-dominance of _ implies

that �0(�/�, E_) is the representation space of the representation of

% associated to the highest weight _, let us call such representation

space +_. In fact, one has E_ ' % ×� C where the �-action on C is

given by the character of weight _. Then, by Leray spectral sequence,

�0(c−1(G), E_ |c−1) = +_. Then, we can construct a homogeneous vector

bundle F_ := � ×% +_ over �/% and we see that c∗E_ = F_. On the

other hand, every irreducible homogeneous vector bundle on �/% has

the form �×%�0 hence there exists a line bundle E_ such that c∗E_ = F_
where _ is a %-dominant weight. �

Theorem2.4.5 (Borel–Weil–Bott for vector bundles). Let� be a semisim-

ple Lie group and % ⊂ � a parabolic subgroup. Let _ be an integral

weight over �/� and E_ the associated vector bundle. Call d the sum

of all fundamental weights. Then one and only one of the following

situations occur:

◦ There exists a nontrivialWeyl reflection ( such that ((_+d)−d = _.
Then �•(�/%, E_) = 0.

◦ There exists a unique Weyl reflection ( such that ((_) is a dominant
integral weight. Then �•(�/%, E_) = +((_+d)−d [−; (()].

Remark 2.4.6. A very useful consequence of this result is that irre-

ducible homogeneous vector bundles on any homogeneous variety �/%
have nonvanishing cohomology in at most one degree.
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Weyl reflections on the Dynkin diagram

In this section we will describe a simple method to compute cohomol-

ogy of any irreducible homogeneous vector bundle on a homogeneous

variety, given the weight of the associated representation.

Let us consider a highest weight _ = _1l1 + · · · + _=l= on a rank

= semisimple Lie algebra. Let us write the weight directly on the

Dynkin diagram in the following way:

_1 _2 _3

_4

_5

The action of Weyl reflection is described by Equation 2.2.7. Since

Dynkin diagrams are a graphical way to express the data contained in

the Cartan matrix, which is the data defining Weyl reflections as well,

we can write a set of simple rules which tell us how to perform a given

Weyl reflection, simply by reading the Dynkin diagram. Since we are

writing the highest weight on the Dynkin diagram, we can talk about a

Weyl reflection respect to a node referring to the reflection associated to

the fundamental weight which corresponds to that node. The following

rules can be deduced simply by using Equation 2.2.7 to perform the

computations explicitly.

◦ Weyl reflection with respect to a node connected by simple lines:

_1 _2 _3 (l2
========⇒

_1 + _2 -_2 _3 + _2

◦ Weyl reflection with respect to a node connected by an outward-
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directed double line:
_1 _2 _3 (l2

========⇒
_1 + _2 -_2 _3 + 2_2

◦ Weyl reflection with respect to a node connected by an inward-

directed double line:
_1 _2 _3 (l2

========⇒
_1 + _2 -_2 _3 + _2

◦ Weyl reflection with respect to a node connected by an outward-

directed triple line:
_1 _2 (l1

========⇒
-_1 _2 + 3_1

◦ Weyl reflection with respect to a node connected by an inward-

directed triple line:
_1 _2 (l2

========⇒
_1 + _2 -_2

Example 2.4.7. Let us consider the flag variety � (2, 3, =) and the pro-

jections ? and @ to its Grassmannians � (2, =) and � (3, =). We get the

following diagram:

� (2, 3, =)

� (2, =) � (3, =)

? @ (2.4.3)

Let us call U the tautological bundle of � (2, =). It is a homogeneous

vector bundle of rank 2. With the notation O(0, 1) = ?∗O(0) ⊗@∗O(1),
we illustrate the method above computing �•(� (2, 3, =), ?∗U∨(−2, 1)).
First, the flag variety � (2, 3, =) is a �! (=)-homogeneous variety de-

scribed as �! (=)/%2,3. The associated Dynkin diagram is:
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The weight associated to ?∗U∨(−2, 1) is l = l1 − 2l2 + l3. We can

write it on the Dyinkin diagram in the following way:

1 −2 1 0 0

In order to apply the Borel–Weil–Bott algorithm, we first need to add

to l the sum of fundamental weights, obtaining the following:

2 −1 2 1 1

We can now start with Weyl reflections. Since the second coefficient

of our weight is negative, we apply (l2 and we get:

1 1 1 1 1

This last weight is dominant, hence we can subtract back the sum of

fundamental weights obtaining the trivial weight (0, . . . , 0) correspond-
ing to the trivial representation of dimension 1. Since we used only

one Weyl reflection, the cohomology is concentrated in degree one,

therefore we conclude that:

�: (� (2, 3, =), ?∗U∨(−2, 1)) =
 C : = 1

0 : ≠ 1
(2.4.4)

Remark 2.4.8. A geometric interpretation of the result we got from

Example 2.4.7 is the following: since �•(� (2, 3, =), ?∗U∨(−2, 1)) =
Ext•((O(1,−1), ?∗U∨(−1, 0)), the outcome of our computation tells

that there exists a unique extension between ?∗U∨(−1, 0) and O(1,−1).
By the isomorphism U ' U∨(−1) we associate such extension to the
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pullback @∗Ũ of the tautological bundle of � (3, =), i.e. to the sequence:

0 −→ ?∗U −→ @∗Ũ −→ O(1,−1) −→ 0 (2.4.5)

2.5 Calabi–Yau zero loci of homogeneous vector
bundles

In the vast literature on Calabi–Yau varieties, there exist several over-

lapping definitions with different degrees of strength. Therefore, let us

begin by fixing the Calabi–Yau conditions that will be used through all

the remainder of this work.

Definition 2.5.1. A Calabi–Yau variety is an algebraic variety - such

that l- ' O- and �< (-,O-) = 0 for 0 < < < dim(-). We call

Calabi–Yau fibration a fibration - −→ � such that the general fiber is a

Calabi–Yau variety.

Remark 2.5.2. In the following chapters, we will encounter Calabi–

Yau fibrations such that their total space is itself a Calabi–Yau variety.

To avoid the potential confusion that such notion could arise, we will

clearly refer to them as Calabi–Yau varieties with a Calabi–Yau fibration

structure.

Lemma 2.5.3. Let E be a rank A homogeneous vector bundle on an

=-dimensional homogeneous variety / = �/% and call ℎ its structure

morphism. Let - = P(E) and call O(1) the associated Grothendieck line
bundle, assume that O(1) is ample. Then, if det(E) ⊗ l/ ' O, the zero
locus . of a general section of E is either empty or a Calabi–Yau variety

of dimension = − A.
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Proof. Call � = �0(-,O(1)). and fix a general section f ∈ � such

that . = / (ℎ∗f)). Since O(1) is an ample line bundle, E is an ample

vector bundle. O(1) is an homogeneous ample line bundle, hence it is

globally generated. We have the following sequence on -:

0 −→  −→ � ⊗ O −→ O(1) −→ 0 (2.5.1)

By applying the derived pushforward functor, which is left exact, to the

sequence 2.5.1 we conclude that E is globally generated if '1ℎ∗ = 0.

But this is true because �0(-,  ) ' �1(-,  ) and since  is homoge-

neous, �0(-,  ) = �1(-,  ) = 0. Note that  is flat over / and the

map I ↦−→ dim�1(ℎ−1(I),  |ℎ−1 (I)) is constant: by (Mum12, Page 50,

Corollary 2), we get '1ℎ∗ I ' �1(ℎ−1(I),  |ℎ−1 (I)). On every fiber

ℎ−1(I) the sequence 2.5.1 restricts to the Euler sequence of ℎ−1(I) and
this proves that �1(ℎ−1(I),  |ℎ−1 (I)) = 0 for every I, hence '1ℎ∗ van-

ishes on every stalk. Thus . is of expected codimension by generality

of f, in fact, ℎ∗f is general if f is general. If = − A ≤ 0 there is

nothing more to prove. Otherwise, let us proceed in the following way:

by assumption, and by adjunction formula, . has vanishing first Chern

class. By (Laz04b, Example 7.1.5), since E is ample, the restriction

map �@ (/,Ω?

/
) −→ �@ (.,Ω?

.
) is an isomorphism for ? + @ < dim(. ),

in particular �@ (/,O/ ) ' �@ (.,O. ) for @ < dim(. ). But since / is

homogeneous �•(/,O/ ) ' C[0] and this concludes the proof. Alter-

natively, one can deduce smoothness of .8 by smoothness of / (f) and
(DK20, Lemma 3.2). �
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3 Derived categories

Derived categories of coherent sheaves, in light of homological mirror

symmetry conjectures, quickly became a major research topic in alge-

braic geometry and mathematical physics. The reconstruction theorem

of Bondal and Orlov (BO01) allows to determine whether two Fano

or general type varieties are isomorphic by studying their derived cate-

gories, while the same does not occur for varieties with trivial canon-

ical class: a remarkable example of non birationally equivalent, de-

rived equivalent Calabi–Yau threefolds has been found by Borisov and

Caldararu (BC08) in terms of the Pfaffian–Grassmannian pair. Many

other examples of pairs of non isomorphic (or even non birational), de-

rived equivalent Calabi–Yau varieties have been found in the following

years. In this chapter, we will review some basic tools of manipulating

semiorthogonal decompositions and exceptional collections, which will

serve as the main tools for Chapters 9, 10 and 11.

3.1 Semiorthogonal decompositions

Hereafter, following (Orl03), we collect some introductory material on

derived categories.

Definition 3.1.1. (Orl03, Definition 2.2.2) Let ℭ be a triangulated cate-

gory and � : A ↩→ ℭ an embedding of a full triangulated subcategory.

We say that A is right admissible if � has a right adjoint �! : ℭ −→ A.

Similarly, we call A left admissible if � has a left adjoint �∗ : ℭ −→ A.
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Definition 3.1.2. (Orl03, Definition 2.2.1) Let ℭ be an additive category

and A ⊂ ℭ a full additive subcategory. We call right orthogonal to A in

ℭ the following full subcategory of ℭ:

A⊥ := {F ∈ ℭ : Ext•(E, F ) = 0 for every E ∈ A} (3.1.1)

In the same way, we define left orthogonal to A in ℭ the following full

subcategory of ℭ:

⊥A := {F ∈ ℭ : Ext•(F , E) = 0 for every E ∈ A} (3.1.2)

In order to ensure that the (left or right) semiorthogonal complement

of an admissible subcategory is admissible, we need to add the require-

ment of saturatedness to the category ℭ, i.e. we require that every

exact functor ℭ −→ �1 (C) is representable (BK).

Saturatedness will always be satisfied when needed, since the derived

category of coherent sheaves of a smooth projective variety is always

saturated (BV03).

Definition 3.1.3. (Orl03, Definition 2.2.3) Let ℭ be a saturated trian-

gulated category. Then, we call semiorthogonal decomposition of ℭ

a sequence of full triangulated admissible subcategories {A1, . . . ,A# }
such that:

◦ the smallest full subcategory of ℭ containingA1, . . . ,A# coincides

with ℭ

◦ one has Ext•(E, F ) = 0 if E ∈ A8, F ∈ A 9 and 8 > 9 .
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Following the usual notation, we represent a semiorthogonal decompo-

sition in the following way:

ℭ = 〈A1, . . . ,A#〉. (3.1.3)

Definition 3.1.4. (Kuz07, Definition 4.1) Let - be a smooth projective

algebraic variety with a line bundle O(1). We call Lefschetz semiorthog-

onal decomposition the following expression:

�1 (-) = 〈A0,A1(1) . . . ,A<−1(< − 1)〉 (3.1.4)

where one has A<−1 ⊆ A<−2 ⊆ · · · ⊆ A0. The integer < is called length

or index of the Lefschetz decomposition. A Lefschetz decomposition is

called rectangular if A<−1 = A<−2 = · · · = A0.

Definition 3.1.5. Let ℭ be a triangulated category. We say that an object

E ∈ A is exceptional if it satisfies the following cohomological conditions:

◦ Ext8 (E, E) = 0 for 8 ≠ 0

◦ Hom(E, E) = 0

Definition 3.1.6. Let ℭ be a saturated triangulated category. We call

exceptional collection a set of exceptional objects {E1, . . . , E# } such
that Ext•(E8, E 9 ) = 0 for 8 > 9 . Moreover, if {E1, . . . , E# } generate ℭ,
we say that they form a full exceptional collection, which will be denoted

in the following way:

ℭ = 〈E1, . . . , E#〉. (3.1.5)

In other words, a full exceptional collection is a semiorthogonal decom-

position such that every block is a subcategory generated by a single

exceptional object.
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Definition 3.1.7. (Kuz07, Section 2.7) Let us consider two algebraic

varieties - , . with morphisms 5 : - −→ (, 6 : . −→ ( to a smooth

variety ( A functor � : �1 (-) −→ �1 (. ) is called (-linear if for every
E ∈ �1 (-), F ∈ �1 (() one has:

� (E ⊗ 5 ∗F ) ' � (E) ⊗ 6∗F (3.1.6)

Moreover, a strictly full subcategory ℭ ⊂ �1 (-) is called (-linear if for
all E ∈ ℭ and F ∈ �1 (() one has 5 ∗F ⊗ E ∈ ℭ.

3.2 Mutations

Derived categories of coherent sheaves are closed under the operations

of taking cones, direct sums and shifts. This allows to construct trans-

formations of full exceptional collections called mutations, which are

extremely useful in applications. In the following exposition, where not

differently stated, we refer to (Kuz07). Given a saturated triangulated

category ℭ , let us consider the following:

ℭ = 〈A,⊥A〉, ℭ = 〈A⊥,A〉 (3.2.1)

Both semiorthogonal decompositions are well defined by definition of

semiorthogonal complement. Therefore, by (Bon89, Lemma 2.3), ⊥A

and A⊥ are admissible subcategories.

Definition 3.2.1. Let ℭ be a triangulated subcategory and A ⊂ ℭ an

admissible subcategory. Let us consider the fully faithful functors 8⊥A :⊥

A ↩−−→ ℭ and 8A⊥ : A⊥ ↩−−→ ℭ. We call left and right mutation with

respect to A the following functors:

LA := 8A⊥8∗A⊥ , RA := 8⊥A8!⊥A (3.2.2)
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One has the following standard facts (see for example (Bon89; BO02)):

Proposition 3.2.2. Let ℭ be a saturated triangulated category and, for

= ≤ 2, let B and A1, . . . ,A= be admissible subcategories. Then, the

following holds:

◦ For every object E ∈ ℭ there exist the following distinguished

triangles:

8B8
!
B
E E LBE .

RBE E 8B8
∗
B
E .

[1]

[1]

(3.2.3)

◦ The restrictions LB |B and RB |B are the zero functors.

◦ The restrictions LB |B⊥ and RB |⊥B are the identity functors.

◦ The functors LB |⊥B and RB |B⊥ are mutually inverse.

◦ If ℭ has a Serre functor Sℭ, then LB |⊥B = Sℭ |⊥B and RB |B⊥ =
S−1
ℭ
|B⊥ .

◦ If ℭ = 〈A1, . . . ,A=〉 one has:

〈A1, . . . ,A=〉 = 〈A1, . . . ,LA:−1A: ,A:−1,A:+1, . . .A=〉

= 〈A1, . . . ,A:−1,A:+1,RA:+1A: , . . .A=〉.
(3.2.4)

The easiest example is given by mutations of pairs of exceptional ob-

jects inside a full exceptional collection. For the sake of simplicity,

let us consider the case where our category ℭ is generated by two

semiorthogonal exceptional objects:

37



Derived categories

Example 3.2.3 (Mutations of pairs). Let E1, E2 be exceptional objects

such that Ext•(E2, E1) = 0 and consider the category 〈E1, E2〉 generated
by them. For 9 ∈ {1; 2} we have the fully faithful functors:

〈E 9 〉 〈E1, E2〉
8 9 (3.2.5)

which have, respectively, the following left and right adjoints (see, for

example, the notes (Shi) and the references therein):

〈E1, E2〉 〈E 9 〉

F E 9 ⊗ Ext•(E 9 , F )

8!
9

(3.2.6)

〈E1, E2〉 〈E 9 〉

F E 9 ⊗ Ext•(F , E 9 )∨

8∗
9

(3.2.7)

Therefore, by Proposition 3.2.2, one has the following triangles in

〈E1, E2〉:

E1 ⊗ Ext•(E1, E2) E2 LE1E2 .

RE2E1 E1 E2 ⊗ Ext•(E1, E2)∨ .

[1]

[1]

(3.2.8)

and this leads to the following expressions for mutations of pairs:

LE1E2 = Cone(E1 ⊗ Ext•(E1, E2) −→ E2)

RE2E1 = Cone(E1 −→ E2 ⊗ Ext•(E1, E2)∨) [−1]
(3.2.9)

3.3 Semiorthogonal decompositions andfibrations

In this section we will review several known results about semirothog-

onal decompositions of derived categories of different kinds of fibra-
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tions.

3.3.1 Semiorthogonal decomposition of aprojective bun-
dle

Let � be a smooth projective variety and E −→ � a vector bundle of

rank A . Let us fix - = P(E) with the structure morphism c : - −→ �,

call ! the associated Grothendieck line bundle, with a surjection

E −→ ! −→ 0 (3.3.1)

given by the relative Euler sequence. Then, the following result gives

a semiorthogonal decomposition for - .

Theorem 3.3.1. (Orl92, Corollary 2.7) Let - , � and ! be as above. Then

the functor c∗ : �1 (�) −→ �1 (-) is fully faithful, and there exists the

following Lefschetz semiorthogonal decomposition:

�1 (-) = 〈c∗�1 (�), c∗�1 (�) ⊗ !, . . . , c∗�1 (�) ⊗ !⊗(A−1)〉. (3.3.2)

There exists a useful generalization of Theorem 3.3.1 to flat proper

morphisms (Sam06, Theorem 3.1):

Theorem 3.3.2. Let 5 : - −→ � be a flat proper morphism and

{K1, . . . ,K# } ⊂ �1 (-) objects such that for every 1 ∈ � their re-

strictions

{K1 | 5 −1 (1) , . . . ,K# | 5 −1 (1)} ⊂ �1 ( 5 −1(1))

are a full exceptional collection for �1 ( 5 −1(1)). Then there exist fully

faithful embeddings
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q8 : �1 (�) �1-

E 5 ∗E ⊗ K8
(3.3.3)

and the following semiorthogonal decomposition of �1 (-):

�1 (-) = 〈 5 ∗�1 (�) ⊗ K1, . . . 5
∗�1 (�) ⊗ K#〉. (3.3.4)

In this context, the following notion is often used:

Definition 3.3.3. Let c : - −→ � be a morphism of smooth projective

varieties. We say E ∈ �1 (-) is relatively exceptional over � if the

following holds:

c∗'H><(E, E) ' O�. (3.3.5)

3.3.2 Orlov’s blowup formula

Let us consider a smooth projective variety - with a smooth subvariety

. ⊂ - of codimension A, and a blowup V : -̂ −→ - with center . and

exceptional locus � . The normal bundle N. |- is a rank A vector bundle

and � = P(N. |-). One has the following diagram:

� -̂

. -

9

? V

8

(3.3.6)

Let us now call ! the pushforward to -̂ of the Grothendieck line

bundle on � defined by the projectivization � = P(N. |-). We have the

following result:
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Theorem 3.3.4. (Orl92, Assertion 4.2, Theorem 4.3) In the notation of

Diagram 3.3.6, the following hold:

◦ the functor 1 is fully faithful

◦ the functor

�1 (. ) �1 ( -̂)

E 9∗(?∗E ⊗ !⊗(−:))
(3.3.7)

is fully faithful for 1 ≤ : ≤ A − 1

◦ one has the following Lefschetz semiorthogonal decomposition:

�1 ( -̂) = 〈 9∗(?∗�1 (. )⊗!⊗(−A+1) ), . . . , 9∗(?∗�1 (. )⊗!⊗(−1) ), V∗�1 (-)〉
(3.3.8)

3.3.3 Cayley trick

As above, let us consider a vector bundle c : E −→ � of rank A and

its projectivization - = P(E), call ! the associated Grothendieck line

bundle. Fix a regular section f ∈ �0(-, !) and call " = / (f) ⊂ -
and . = / (c∗f) ⊂ �. We get the following diagram:

.̃ " -

. �

9

? @

:

c

8

(3.3.9)

where @ = c |" and ? = @ |@−1 (. ) . Note that @ has the following

fibers:
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@−1(1) '
 P

A−1 1 ∈ .
PA−2 1 ∈ � \ .

(3.3.10)

and its restriction to the preimage of . is the projectivization of the

normal bundle N. |� ' E|. , hence .̃ ' P(E|. ).

Theorem 3.3.5. (Orl03, Proposition 2.10) Let the notation be the one of
Diagram 3.3.9. Then there exists the following Lefschetz semiorthogonal

decomposition for �1 ("):

�1 (") = 〈 9∗?∗�1 (. ), @∗�1 (�) ⊗ !, . . . , @∗�1 (�) ⊗ !⊗(A−1)〉.
(3.3.11)

3.4 Homological projective duality and related
constructions

Introduced by Kuznetsov in (Kuz07), Homological Projetive Duality

(HPD) is one of the most useful tools for the manipulation of de-

rived categories of coherent sheaves and semiorthogonal decpomposi-

tion. Given a smooth variety - and a morphism 5 : - −→ P(+) to a

projective space, the main idea is to construct the derived category of

the universal hyperplane section HP(+), 5 associated to 5 , and determine

a subategory C ⊂ �1 (HP(+), 5 ) compatible with a given semiorthogo-

nal decomposition of �1 (- × P(+)). If C is geometrical, i.e. if there

exists a variety . such that �1 (. ) ' C, we say that . is the homo-

logically projective dual to - . Moreover, linear sections of - and .

by mutually orthogonal hyperplanes share interesting properties. The
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scope of homological projecitve duality has been pushed much further

by introducing the notion of categorical joins, allowing to prove de-

rived equivalences of intersection of varieties of the type described in

(OR17; BCP20; Man17). In this section we will give a brief survey of

HPD.

3.4.1 Universal hyperplane sections and HPD

Let us first define the notion of universal hyperplane section, which

will be useful also for different purposes in Chapter 10.

Definition 3.4.1. Let - be a smooth variety and +∨ ⊂ �0(-,O- (1)) a
vector space of dimension = + 1. Fix a morphism 5 : - −→ P(+). We

call universal hyperplane section of - with respect to 5 the fiber product

H-, 5 := - ×P(+) � (1, =,+).

Remark 3.4.2. The variety � (1, =,+) is often called incidence quadric

of P(+) × P(+∨). In fact, one has � (1, =,+) = {(G, H) ∈ P(+) ×
P(+∨) : H(G) = 0} which characterizes such flag variety as a quadric

hypersurface in P(+) × P(+∨). Note that for any vector space + , the

flag variety � (1, =,+) is the universal hyperplane section of P(+).

Let us momentarily specialize Definition 3.4.1 to the case where +∨ =

�0(-,O- (1)), so that 5 is a proper embedding. In that case, one

gets a more geometric characterization of the universal hyperplane sec-

tion:

H- = {(G, f) ∈ - × P(�0(-,O- (1))) |f(G) = 0}. (3.4.1)

Now, suppose that - has a Lefschetz semiorthogonal decomposition

43



Derived categories

with respect to an ample line bundle O- (1) which satisfies O- (1) =
5 ∗OP(+) (1):

�1 (-) = 〈A0,A1(1), . . . ,A<−1(< − 1)〉 (3.4.2)

By a simple application of Theorem 3.3.1, one has the following

semiorthogonal decomposition:

�1 (-×P(+∨)) = 〈A0(0)��1 (P(+∨)), . . . ,A<−1(<−1)��1 (P(+∨))〉.
(3.4.3)

This semiorthogonal decomposition is �1 (P(+∨))-linear by construc-

tion.

Definition 3.4.3. Let - be a smooth variety and +∨ ⊂ �0(-,O- (1)) a
vector space of dimension =. Fix amorphism 5 : - −→ P(+) and suppose
there exists a Lefschetz decomposition as in Equation 3.4.2. Supppose

= > <. Then we call homological projective dual category to �1 (-) the
category C appearing in the following semiorthogonal decomposition:

�1 (H-, 5 ) = 〈C,A1(1) ��1 (P(+∨)), . . . ,A<−1(< − 1) ��1 (P(+∨))〉.
(3.4.4)

The existence of C is a simple matter of definition, as it appears in

Equation 3.4.4 as semiorthogonal complement of the blocks of the

form A8 (8)��1 (P(+∨)). However, the existence of the semiorthogonal

decomposition 3.4.4 is a nontrivial statement (Kuz07, Lemma 5.3).

While C can be an interesting object by its own right, we are mainly
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interested in the situation when C is geometrical, i.e. it is the derived

category of coherent sheaves of a variety:

Definition 3.4.4. Let 5 : - −→ P(+) be a morphism defined on a

smooth variety - to a projective space P(+) as above and let C be the

HPD category of - with respect to 5 . Let. be a variety with a morphism

5 : . −→ P(+∨). We say that . is homologically projective dual to -

if there exists an equivalence of categories q : �1 (. ) −→ C which is

P(+∨)-linear.

As we mentioned above, homological projective duality behaves well

under the action of taking linear sections. Let us consider an admissible

linear subspace ! ⊂ +∨, i.e. a subspace such that -! := - ×P(+) P(!⊥)
and .! := . ×P(+∨) P(!⊥) have dimension respectively dim(-) −dim(!)
and dim(. )+dim(!)−=−1. Then, one has the following theorem:

Theorem 3.4.5. (Kuz07, Theorem 6.3) Let 5 : - −→ P(+) and 6 : . −→
P(+∨) be as above, with . homologically projective dual to - . Let -

have a semirothogonal decomposition as in Equation 3.4.2 where we call

A: = 〈a: , . . . , a<−1〉 for 0 ≤ : ≤ < − 1, once defined a: to be the right

orthogonal of A:+1 in A: . Then the following statements are true:

1. . is smooth and it admits the following semiorthogonal decompo-

sition for some positive integer ;:

�1 (. ) = 〈B;−1(1 − ;), . . . ,B1(−1),B0〉 (3.4.5)

where we defined the block B: = 〈a0, . . . , a=−:−2〉.

2. For every admissible linear subspace ! ⊂ +∨ of dimension A one
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has the following semiorthogonal decompositions:

�1 (-!) = 〈C! ,AA (1), . . . ,A<−1(< − A)〉

�1 (.!) = 〈B;−1(= + 1 − A − ;), . . . ,B=−A (−1), C!〉
(3.4.6)

3.4.2 HPD for projective bundles

An interesting setting where to apply Theorem 3.4.5 can be given by

choosing - = P(E) where E is a vector bundle over a smooth projective

variety �. Let +∨ ⊂ �0(�, E) be a space of sections generating E, so
that we have a surjective morphism of vector bundles on �:

+∨ ⊗ O −→ E −→ 0. (3.4.7)

Hence, we can construct a morphism of projective varieties:

5 : - −→ P(+). (3.4.8)

Then, one can find a semiorthogonal decomposition for - by Theorem

3.3.1, and this gives rise to a (naturally P(+)-linear) semiorthogonal

decompposition for - × P(+). It turns out (Kuz07, Section 8) that a

nice semiorthogonal decomposition can also be found for H-, 5 , which

proves that the homological projective dual category of - is always

geometric and it is the derived category of another projective bun-

dle.

Lemma 3.4.6. (Kuz07, Lemma 8.1) Let E −→ � be a vector bundle of

rank A over a smooth projective variety of dimension = and let +∨ ⊂
�0(�, E) be an #-dimensional vector space of sections which generates

E. Call - = P(E) and 5 : - −→ P(+) as above. Then the homological
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projective dual variety of - has codimension A inside P(+) × � and it is

given by . = P(E⊥), where we call:

E⊥ = ker(+ ⊗ O −→ E)∨. (3.4.9)

An accurate choice of rank and dimension of the space of sections

can provide examples of homologically projective self-dual projective

bundles.

Proposition 3.4.7. The projective bundle P(∧3) (−3)) over P5 is homo-

logically projective self-dual.

Proof. Let us fix P5 = P(+6). The vector bundle ∧3) (−3) has rank

10, it is globally generated and it has a space of global sections

�0(P5,∧3) (−3)) = ∧3+∨6 . This comes from the fact that the dual

Euler sequence reads:

0 −→ O(−1) −→ +∨6 ⊗ O −→ ) (−1) −→ 0 (3.4.10)

and its third symmetric power gives:

0 −→ O(−3) −→ +∨6 ⊗ O(−2) −→ ∧2+∨6 ⊗ O(−1) −→

−→ ∧3+∨6 ⊗ O −→ ∧
3) (−3) −→ 0

(3.4.11)

from which we get the surjection

∧3 +∨6 ⊗ O
6
−−→ ∧3) (−3) −→ 0 (3.4.12)

with kernel ∧2) (−2).
Hence, 6 gives rise to a morphism 5 : P(∧3) (−3)) −→ P(∧3+∨6 ). In

light of Equation 3.4.12, an application of Lemma 3.4.6 yields that the

homological projective dual of P(∧3) (−3)) is ∧2)∨(2), but one has

∧2)∨(2) ' ∧3) (2) ⊗ det()∨) ' ∧3) (−3). �

47



Derived categories

3.5 Derived equivalence and birational equiva-
lence: � conjectures

Let us consider a birational map ` : X1 d X2 resolved by two mor-

phisms 58 : X0 −→ X8, where X0 is smooth projective. We get the

following diagram:

X0

X1 X2

51 52

`

(3.5.1)

We are interested in the following two cases:

◦ If 5 ∗1lX1 ' 5 ∗2lX2 , we say that ` is a  -equivalence. We say that

a  -equivalence is simple if 51 and 52 are blowups.

◦ If 5 ∗1  X1 + � ∼ 5 ∗2  X2 or 5 ∗1  X1 ∼ 5 ∗2  X2 + � for some effective

divisor � , we say that ` is a  -inequality.

Observe that any birational map ` fitting in a diagram like 3.5.1 such

that X1 and X2 have trivial canonical bundle is a  -equivalence.

A natural question, justified by a multitude of positive examples and by

the lack of counterexamples, is to ask whether  -equivalence implies

�-equivalence, and whether a  -inequality implies an embedding of

categories. In fact, this is known as the � conjecture, which we state

here below:

Conjecture 3.5.1. (BO02; Kaw02) The following statements are true:
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◦ Let ` : X1 d X2 be a  -inequality such that 5 ∗1lX1 ⊗ 5 ∗2l
∨
X2

is ample. Then, there exists a fully faithful functor �1 (X2) −→
�1 (X1).

◦ Let ` : X1 d X2 be a  -equivalence. Then �1 (X1) ' �1 (X2).

Conjecture 3.5.1 is known to be true in several cases, among them we

list the following:

◦ Standard flips and flops (BO02): here 51 and 52 are smooth

blowups, respectively in P: and P; , for some :, ; ∈ N. The

exceptional locus for both the blowups is � ' P: × P; . If : = ;

this is called a flop, and X1 and X2 are derived equivalent. On

the other hand, if ; < : it is called a flip, and one has �1 (X2) ⊂
�1 (X1).

◦ Mukai flops: Also here 51 and 52 are blowups with center isomor-

phic to projective spaces of the same dimension, but their excep-

tional loci are isomorphic to the partial flag variety � (1, =, =+1).
Derived equivalence has been proved by Namikawa (Nam03)

◦  -equivalent threefolds are derived equivalent (Bri02, Theorem

1.1)

We will provide new examples supporting Conjecture 3.5.1 in Chapter

11, alongside with new proofs for some of the known examples.
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4 Homogeneous roof bundles

The purpose of the present chapter is to introduce the main geometric

setting for the rest of this work. Motivated by the study of � -

conjectures (see Section 3.5), Kanemitsu introduced the notion of roof,

or roof of projective bundles, which lies at the core of the classification

of simply  -equivalent maps. Here we will review such notion with

particular emphasis to homogeneous roofs and locally trivial families

of these objects over smooth projective varieties.

4.1 Homogeneous roofs

Let us begin by recalling the definition of the following special class

of Mukai pairs (Muk88):

Definition 4.1.1. (Kan18, Definition 0.1) A simple Mukai pair (/1, E) is
the data of a Fano variety /1 of Picard number one and an ample vector

bundle E over /1 such that:

◦ det(E) ' l∨
.

◦ P(E) admits another PA−1-bundle structure, where A = rk(E).

Definition 4.1.2. (Kan18, Definition 0.1) A roof of rank A , or roof of

PA−1-bundles, is a Fano variety - which is isomorphic to the projectiviza-

tion of a rank A vector bundle E over a Fano variety /1, where (/1, E) is
a simple Mukai pair.

Remark 4.1.3. An equivalent definition for a roof of projective bundles
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is a Fano variety of Picard rank 2 and index A equipped with two

different PA−1-fibration structures (Kan18, page 2).

The following proposition provides a useful characterization of roofs:

Proposition 4.1.4. (Kan18, Proposition 1.5) Let - be a smooth projective

Fano variety of Picard number two. Assume that for 8 ∈ {1; 2} the
extremal contraction - −→ /8 is a smooth PA−1-fibration. Then the

following are equivalent:

◦ - is a roof

◦ The index of - is A

◦ There exists a line bundle ! on - which restricts to O(1) on every
fiber of each extremal contraction.

Given a roof - , the following picture emerges:

P(E) - P(F )

/1 /2

ℎ1 ℎ2 (4.1.1)

Among roofs, nearly all known examples can be described in terms of

�-homogeneous varieties of Picard number two where � is a semisim-

ple Lie group, with the projective bundle structures defined by the

natural surjections to �-Grassmannians:

Definition 4.1.5. A homogeneous roof is a roof which is isomorphic to a

homogeneous variety�/% of Picard number two, where� is a semisimple

Lie group and % is a parabolic subgroup.
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The data of a homogeneous roof defines the following diagram:

�/%

�/%1 �/%2

ℎ1 ℎ2 (4.1.2)

This class of homogeneous roofs has remarkable properties: for ex-

ample, as we will clarify below, a general hyperplane section of a

homogeneous roof defines a pair of Calabi–Yau varieties, which are

conjectured to be derived equivalent (KR20, Conjecture 2.6). In the

present work we will mostly focus on homogeneous roofs.

A complete list of homogeneous roofs has been given in (Kan18, Sec-

tion 5.2.1). Let us summarize its content in Table 4.1. In the column

“type” we refer to the nomenclature introduced by Kanemitsu, which

will also be adopted throughout the reminder of this work. Hereafter,

given a semisimple Lie group �, �/%=1,...,=: denotes the quotient of �

by its parabolic subgroup such that the Levi factor of the correspond-

ing Lie algebra is the union of root spaces related to the simple roots

=1, . . . =: . The expressions �/%1 and �/%2 will denote the images

of the two PA−1-bundle structures ℎ1 and ℎ2 of the roof �/%. Where

it is possible, we use the more standard notations for (orthogonal and

symplectic) Grassmannians and flag varieties.
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� type �/% �/%1 �/%2

(! (: + 1) × (! (: + 1) �: × �: P: × P: P: P:

(! (: + 1) �"
:

� (1, :, : + 1) P: P:

(! (2: + 1) ��2: � (:, : + 1, 2: + 1) � (:, 2: + 1) � (: + 1, 2: + 1)

(? (3: − 2) (: even) �3:/2−1 � � (: − 1, :, 3: − 2) �� (: − 1, 3: − 2) �� (:, 3: − 2)

(?8=(2:) �: $� (: − 1, 2:) $� (:, 2:)+ $� (:, 2:)−

�4 �4 �4/%2,3 �4/%2 �4/%3

�2 �2 �2/%1,2 �2/%1 �2/%2

Table 4.1: Homogeneous roofs

Lemma 4.1.6. Let - be a homogeneous roof of PA−1-bundles with struc-

ture morphisms ℎ8 : - −→ /8 and consider a general section f ∈
�0(-, !), where ! is the line bundle of Proposition 4.1.4. Call E8 :=

ℎ8∗!. Then .8 = / (ℎ8∗f) ⊂ /8 is either empty or a Calabi–Yau variety of
codimension A (in the sense of Remark 2.5.2).

Proof. The proof follows from Lemma 2.5.3. and generic smoothness

of f. �

Remark 4.1.7. Observe that in Lemma 4.1.6 the case .8 = ∅ is rep-

resented only by roofs of type �: × �: . In fact, for these roofs, the

projective bundle structures are given by projectivizations of vector

bundles of rank : + 1 on P: , hence the zero loci of pushforwards of a

general section f ∈ �0(P: × P: , !) are empty. In all other cases, the

zero loci have nonnegative expected dimension.
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Definition 4.1.8. (cfr. (KR20, Definition 2.5)) Let - be a homogeneous

roof of type different from �: × �: , fix the notation of Lemma 2.5.3. We

say (.1, .2) is a Calabi–Yau pair associated to the roof - if.1 ' / (ℎ1∗f)
and .2 ' / (ℎ2∗f) where f ∈ �0(-, !) is a general section.

Example 4.1.9. Let += be an =-dimensional vector space. We denote

by � (1, = − 1, +=) the flag variety parametrizing pairs of a subspace of

dimension 1 contained in a subspace of dimension = − 1 of +=. Then,

� (1, = − 1, +=) has natural projections to the Grassmannians � (1, +=)
and � (= − 1, +=), which are both isomorphic to P=−1. This picture is

summarized by the following diagram:

� (1, = − 1, +=)

� (1, +=) � (= − 1, +=)

ℎ1 ℎ2 (4.1.3)

Then one has:

◦ P(ℎ1∗!) ' P(ℎ2∗!) ' � (1, = − 1, +=)

◦ det(ℎ1∗!) = O(=) = l∨� (1,+=)

hence, � (1, = − 1, +=) is a roof P=−1-bundles. It appears in the list of

(Kan18) as roof of type �"
=−1.

4.2 Non homogeneous roof

In the following section we will describe the only non homogeneous

roof present in the list of (Kan18) , and we will describe the  3 pairs

arising by such construction.
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4.2.1 Homogeneous vector bundles on the five dimen-
sional quadric

Let & ⊂ P6 be a quadric hypersurface of dimension five, let S be its

rank 4 spinor bundle. Ottaviani constructed a 7-dimensional moduli

space of rank 3 bundles G such that

0 −→ O −→ S∨ −→ G −→ 0 (4.2.1)

More precisely, there exists a moduli space isomorphic to P7 \ &6 of

rank 3 vector bundles G with Chern class 2(G) = (2, 2, 2), and those

bundles are the ones satisfying Equation 4.2.1 (Ott88, Theorem 3.2).

By the Borel–Weil–Bott theorem and the sequence 4.2.1, one proves

that dim�0(&,G(1)) = 41 and by the above we have 2(G(1)) =
(5, 9, 12). Hence, a section B in such 41-dimensional vector space

defines a  3 surface of degree 12 in P6.

Let O denote the complexified Cayley octonions (for details see (Kan19,

Definition 2.4) and the source therein). It is known by (Kan19, Theorem

2.6) that the projectivization of the Ottaviani bundle can be described

in the following way:

P(G∨) = {(G, H) ∈ P(ImO∨) × P(ImO∨) |G · G = H · H = G · H = 0} := -

(4.2.2)

This variety has two natural projections to the quadrics & = {G ∈
P(ImO∨) |G · G = 0} and &̃ = {H ∈ P(ImO∨) |H · H = 0} leading to the
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following diagram:

-

. & &̃ .̃

c c̃ (4.2.3)

where both . and .̃ are  3 surfaces described as zero loci of (twisted)

Ottaviani bundles G(1) and G̃(1), and P(G∨(−1)) ' P(G̃∨(−1)) '
- .

Remark 4.2.1. Diagram 4.2.3 appears as the roof of type �†2 in the list

of (Kan18, Section 5.2.1), and it is the only non homogeneous example

of such construction. In fact,the Fano 7-fold - , in contrast with the

other examples, is not a generalized flag. However, if we consider

the surjection from the �2 flag to the five dimensional quadric, we

obtain the projectivization of a rank two vector bundle, which admits a

second projective bundle structure alongside with a surjection to the �2-

Grassmannian. This construction yields the roof of type �2 studied in

(IMOU19; Kuz18), which gives derived equivalent but non isomorphic

Calabi–Yau threefolds.

4.2.2 The roof of type �4 and its degeneration

Recall the homogeneous roof of type �4.

-�4

. &6 &̃6 .̃

c c̃ (4.2.4)
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Here &6 and &̃6 are six-dimensional quadrics representing spinor va-

rieties $� (4, 8)± and -�4 = $� (3, 8) = P&6 (S∨(1)) = P&̃6
(S̃∨(1))

where S and S̃ are the spinor bundles respectively on &6 and &̃6.

Note that $� (3, 8) admits two different projective bundle structures

given by the maps c and c̃, which can be interpreted as the projections

determined by the embeddings of the parabolic subgroup of $� (3, 8)
inside the parabolic subgroups defining $� (4, 8)±.
There exists the following short exact sequence on &6 (Ott88, Section

3), whose restriction to &5 is Equation 4.2.1:

0 −→ O(1) −→ S∨(1) −→ G(1) −→ 0. (4.2.5)

Note that when the Mukai pair moves in a moduli we get a family of

roofs. In this way one can also obtain degenerations of roofs which

involve bundles which are not necessarily stable. This is the case for

instance in the following context.

Degeneration of roofs

Considering the family of extensions between O(1) and G(1) we see

the trivial extension O(1) ⊕ G(1) as a degeneration of S∨(1). It

follows that -�4 admits a degeneration to -̂�4 = P&6 (O(1) ⊕ G(1)).
The latter variety is not a roof, but it admits a natural surjection to &6.

A general hyperplane section of -̂�4 now gives rise to a  3 surface

obtained as a zero locus of a section of O(1) ⊕ G(1) on such quadric.

In consequence the  3 is given as the zero locus of the restriction

of the corresponding section of G(1) to a five-dimensional quadric

&5 obtained as a hyperplane section of &6. If we now consider the
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restriction of G(1) to the zero locus of a section of O(1) we obtain

the roof �†2. The latter roof is a subvariety of some degeneration of

the roof of type �4. Moreover, the  3 surfaces associated to this roof

are degenerations of  3 surfaces associated to -�4 . We however see

in Subsection 4.2.3 that a general  3 surface of degree 12 appears also

in the degenerate description.

Remark 4.2.2. Note that we can further degenerate the �†2 roof using

the exact sequence:

0 −→ C(2) −→ G(1) −→ O(2) −→ 0. (4.2.6)

where C is the Cayley bundle on &5. The zero locus of C(2) ⊕ O(2)
is the intersection of a del Pezzo threefold of degree 6 with a quadric.

We can then consider the restriction of C(2) to the zero locus of a

section of O(2) which is just a complete intersection of two quadrics.

This is however not a roof as it does not appear in the classification of

(Kan18, Theorem 5.12). The  3 surfaces obtained in this way are also

not general  3 surfaces of degree 12 as their Picard number is ≥ 2.

4.2.3 Completeness of the family of K3 varieties of type
�
†
2

In the remainder of this section we prove that the family of  3 surfaces

described as sections of an Ottaviani bundle G(1) represents a dense

open subset of the family of polarized  3 surfaces of degree 12. In

particular the general element of this family has Picard number one.

We then prove that pairs of  3 surfaces associated to the roof �†2 are

in general not isomorphic.
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It is well-known (Muk87, Corollary 0.3) that a polarized  3 surfaces

of degree 26 − 2 has an embedding (defined by its polarization) in the

projective space P6. If we can prove that our degree 12  3 surfaces in

P6 form a 26-dimensional family up to automorphisms of P6, then our

family can be recovered by the complete 19-dimensional family in P7

by means of a projection from one point. Since the general element of

a complete family of  3 surfaces has Picard number one, we conclude

that the same holds for our family.

Lemma 4.2.3. Let & ⊂ P6 be a five dimensional quadric hypersurface

and G an Ottaviani bundle on &. If . = / (B) for B ∈ �0(&,G(1)), then
. determines the bundle G and the section B up to scalar multiplication.

Proof. Let us consider a  3 surface . ⊂ & and let G and G̃ be

two Ottaviani bundles on &, such that there exist two sections B ∈
�0(&,G(1)) and B̃ ∈ �0(&, G̃(1)) with . = / (B) = / ( B̃). Then we

have the following diagram:

· · · G∨(−1) I. |& 0

· · · G̃∨(−1) I. |& 0

UB

V

UB̃

(4.2.7)

where I. |& is the ideal sheaf of . ⊂ & and the rows are given by the

Koszul resolutions of I. with respect to the two sections. The existence

of V is a consequence of the following claim.

Claim. The following map is surjective:

Hom(G∨(−1), G̃∨(−1)) −→ Hom(G∨(−1),I. |&)
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Proving the claim is equivalent to show that

5 : �0(&,G ⊗ G∨) −→ �0(&,G(1) ⊗ I. |&) (4.2.8)

is surjective. To this purpose, we compute the tensor product of G(1)
with the Koszul resolution of I. with respect to B̃. Using det G̃∨ =
O(−2) and ∧2G̃∨ ' G̃(−2) we find:

0 −→ G(−4) −→ G ⊗ G̃(−3) −→ G ⊗ G̃∨ −→ G(1) ⊗ I. |& −→ 0

(4.2.9)

Cohomology can be computed with the Borel–Weil–Bott theorem: in

fact, using the sequence 4.2.1, we can resolve all the bundles of 4.2.9

in terms of twists of tensor products of S and its dual. In particular,

the leftmost term of 4.2.9 is acyclic beacuse both O(−4) and S∨(−4)
are, while the cohomology of the second one follows from the diagram:

O(−3) S∨(−3)

S∨(−3) S∨ ⊗ S∨(−3)

G(−3) S∨ ⊗ G(−3) G ⊗ G̃(−3)

(4.2.10)

In the first two rows, the only term which is not acyclic is S∨⊗S∨(−3) =
∧2S∨(−3) ⊕ Sym2 S∨(−3): the first summand has no cohomology,

while the second one has cohomology C[−2]. Let us call K the

cokernel of G(−4) −→ G ⊗ G̃(−3). Then one has �•(&,K) = C[−2],
and by the sequence

0 −→ K −→ G ⊗ G̃∨ −→ G(1) ⊗ I. |& −→ 0 (4.2.11)
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we conclude that 5 is surjective, thus proving the claim.

Since Ottaviani bundles are stable (Ott88, Theorem 3.2), the map V

can be either zero or an isomorphism, so we deduce that B and B̃

must be sections of isomorphic Ottaviani bundles. Hence, the proof is

completed by observing that Hom(G,G) = C. �

Lemma 4.2.4. Let . ⊂ & be a  3 surface satisfying the hypotheses of

Lemma 4.2.3. Then . is contained in a unique quadric in P6.

Proof. The proof follows from observing that ℎ0(&,I. |& (2)) = 0. By

the Koszul resolution of I. |& and the relation G∨ ' ∧2G(−2) we find

the following exact sequence:

0 −→ O(−3) −→ G(−2) −→ G∨(1) −→ I. |& (2) −→ 0

and the desired result is obtained by an application of the Borel–Weil–

Bott theorem. In fact, as in the proof of Lemma 4.2.3, one can resolve

the first three bundles in terms of twists of O, S and its dual. �

Proposition 4.2.5. The general  3 surface described as a zero locus of

a section of G(1), where G is an Ottaviani bundle, has Picard number

one.

Proof. The space of sections of an Ottaviani bundle has dimension

41, and the moduli space of Ottaviani bundles on & is 7-dimensional.

Since the action of Aut& = Spin(7) is transitive on the moduli space

of Ottaviani bundles, and a  3 surface . ⊂ & determines the section,
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the (projective) dimension of the family is given by:

40 − 21 + 7 = 26

where 21 − 7 is the dimension of the space of automorphisms of &

fixing an Ottaviani bundle. Hence, the family we are describing is

a 26 dimensional family (of classes up to automorphisms of P6) of

embedded  3 surfaces of degree 12 in P6. Since each  3 of degree 12

has a projective embedding in P7 a complete family of  3 of degree 12

in P6 can be described by a 19+7 = 26-parameter space, via projection

from a point in P7. This proves that our family is complete, therefore

the general element has Picard number one. �

4.3 Roofs, derived equivalence and non-compact
� -conjecture

It is a natural question to ask whether every roof provides pairs of

derived equivalent Calabi–Yau manifolds. Such conjecture, which we

state here below, is supported by several worked examples, despite the

lack of a general proof.

Conjecture 4.3.1. Let - be a roof. Then there exists a derived equiva-

lence �1 (. ) ' �1 (.̃ ), where. and .̃ are Calabi–Yau =−A-folds defined
by pushforwards of a smooth hyperplane section " ⊂ - .

Remark 4.3.2. The � conjecture (Conjecture 3.5.1) states that if two

smooth projective varieties are related by a flop, they are derived equiv-

alent (Kaw02), (BO02). Conjecture 4.3.1 is particularly interesting if
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we observe that the total spaces E∨ and Ẽ∨ are related by a flop. A

positive answer to such conjecture has been given for the roofs of type

�2 by (Ued19), and for the roofs of type �2 and ��4 by (Mor19), but

again a general proof of the validity of the DK conjecture for bundles

related by a roof is missing.

The problem of finding a derived equivalence for the total spaces is

strictly related to proving that the Calabi–Yau zero loci are derived

equivalent: in fact, one has the following diagram

!∨

E∨ - Ẽ∨

. ⊂ � �̃ ⊃ .̃

5 6

(4.3.1)

where 5 and 6 are blowups of respectively E∨ in � and Ẽ∨ in �̃, the

bases are embedded in the total spaces as zero sections. Then it is pos-

sible to write the derived category of the total space of !∨ in two ways,

each of them being a semiorthogonal decomposition containing a twist

of �1 (E∨) and a twist of �1 (�), or a totally similar decomposition

on the other side of the diagram. As we will see, this picture is very

similar to Diagram 9.1.1: in fact, in the existing worked examples, the

strategy of the proof adopted for the total spaces is the same that has

been used for the zero loci (see for example the relation of (Mor19)

with (KR17) and of (Ued19) with (Kuz18)).
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4.4 Homogeneous roof bundles

While the problem of describing and classifying fibrations of roofs over

a smooth projective variety has been addressed in (Kan18; ORS20), we

focus on a special class of such objects, which we call homogeneous

roof bundles: they provide a natural relativization of homogeneous

roofs, while keeping many of the properties of the latter objects in a

relative setting.

Definition 4.4.1. Let � be a semisimple Lie group and % a parabolic

subgroup such that �/% is a homogeneous roof. Let V be a principal

�-bundle over a smooth projective variety �. We define a homogeneous

roof bundle over � the varietyV ×� �/%.

We get this diagram:

V ×� �/%

V ×� �/%1 V ×� �/%2

?1 ?2 (4.4.1)

Remark 4.4.2. Note that V ×� �/% is a locally trivial fibration over �

with fiber �1 ' �/%.

Lemma 4.4.3. Let � be a semisimple Lie group and % ⊂ � a parabolic

subgroup such that �/% is a homogeneous roof with projective bundle

structures ℎ8 : �/% ' P(�8) −→ �/%8 for 8 ∈ {1; 2}. Let V −→ � be

a principal �-bundle over a smooth projective variety �. Then there are

vector bundles E8 such that the homogeneous roof bundleZ = V×��/%
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admits projective bundle structures ?8 : Z ' P(E8) −→ Z8 for 8 ∈ {1; 2}
such that the following diagram is commutative:

Z

Z1 Z2

�

?1 ?2

A1 A2

(4.4.2)

where A1 and A2 are smooth extremal contractions andZ8 := V×��/%8.
Moreover, there exists a line bundle L onZ such that L restricts to O(1)
on the fibers of both ?1 and ?2, and such that ?8∗L ' E8.

Proof. Let us call c : Z −→ � the map induced by the structure map

V −→ �. Then, for every 1 ∈ � we have c−1(1) ' �/%. We obtain

the following diagram:

Z

Z1 Z2

�

?1 ?2

c

A1 A2

(4.4.3)

where ?1 and ?2, restricted to the preimage of a point 1 ∈ �, are

the PA−1-bundle structures of the roof �/%, therefore they are PA−1-

fibrations over Z1 and Z2.

For each homogeneous roof of the list (Kan18, Section 5.2.1), there exist
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homogeneous vector bundles �1 and �2 such that P(�1) ' P(�2) '
�/%. Hence, for 8 = 1, 2, they have the form:

�8 = � ×%8 +8 (4.4.4)

for a given representation space +8. From the data of �8 we can define

vector bundles on Z8 with the following construction:

E8 := V ×� � ×%8 +8 (4.4.5)

Note that for every 1 ∈ �, we have A−1
8
(1) ' �/%8 and E8 |A−1

8
(1) ' �8.

Since �/% is a roof, this implies that (A−1
8
(1), E8 |A−1

8
(1)) is a simple

Mukai pair.

The line bundle L can be constructed in the following way: let us

consider the line bundle ! on �/% introduced in Proposition 4.1.4.

Since ! is homogeneous, there exists a one-dimensional representation

space , such that ! = � ×% , . Let us fix:

L := V ×� � ×% ,. (4.4.6)

Such bundle restricts to ! on every fiber of c, hence it restricts to O(1)
on the fibers of both ?1 and ?2.

In order to prove the isomorphisms Z ' P(E1) ' P(E2) we proceed in

the following way. Recall that, given a principal �-bundle W over a

variety - there is the following exact functor (see (Nor82, Section 2.2),

or the survey (Bal06, Page 8)):

� −Mod Vect(-)W×� (−) (4.4.7)
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which sends the �-module ' to the vector bundle W ×� ' over - .

Observe now that V ×� � is a principal %-bundle over Z, because

V −→ V/% is a principal %-bundle and V/% ' V ×� �/% ' Z (see

for example (Mit01, Proposition 3.5)). This allows to construct an exact

functor:

% −Mod Vect(Z).V×��×% (−) (4.4.8)

Let us now recall that there exists an equivalence of categories

Rep(%) Vect% (�/%)� (4.4.9)

which sends the %-module � to the homogeneous vector bundle �×%�,
hence �−1 is an exact functor. Summing all up we can construct an

exact functor sending homogeneous vector bundles over �/% to vector

bundles over Z:

Vect% (�/%) Vect(Z)

% −Mod

V×��×% (−)◦�−1

�−1 V×��×% (−)
(4.4.10)

By applying this functor to the following surjection (given by the rela-

tive Euler sequence of the projective bundle structure ℎ8)

ℎ∗8 �8 −→ ! −→ 0 (4.4.11)

we get the following surjective map (compatibility with pullback follows

from (Mit01, Proposition 3.6):

?∗8 E −→ L −→ 0 (4.4.12)

which determines an isomorphism Z −→ P(E) by (Har77, Ch. II.7,

Proposition 7.12), and thus ?8∗L ' E by (Har77, Ch. II.7, Proposition
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7.11).

Let us now prove that A1 and A2 are contractions of extremal rays.

Observe that A8 is locally projective (hence proper) and every fiber is

isomorphic to a Fano variety of Picard number one �/%8, which means

that − Z8 is A8-ample because − Z8 |A−1
8
(1) is ample for every 1 ∈ �

(Laz04a, Theorem 1.7.8). This proves that A8 is a Fano–Mori con-

traction (Occ99, Definition I.2.2). To prove that A8 is a contraction of

extremal ray (or elementary Fano–Mori contraction) we just need to

show that Pic(Z8)/Pic(�) ' Z (Occ99, Definition I.2.2). By (FI73,

Proposition 2.3), since Z8 is a locally trivial �/%8-fibration we have an

exact sequence:

�0(�/%8,O∗)/C∗ −→ Pic(�) −→ Pic(Z8) −→ Pic(�/%8) −→ 0

(4.4.13)

and the first term vanishes because of the long cohomology sequence

associated to the exponential sequence for �/%8:

0 −→ �0(�/%8,Z) −→ �0(�/%8,O) −→

−→ �0(�/%8,O∗) −→ �1(�/%8,Z) −→ · · ·
(4.4.14)

where we observe that �1(�/%8,Z) vanishes since the integral coho-

mology of rational homogeneous varieties is generated by their Bruhat

decompositon, and it is nonzero only in even degree. Our claim is

proven once we recall that by Definition 4.1.2 one has Pic(�/%8) ' Z.

�

Remark 4.4.4. Note that, for every 1 ∈ �, we have A−1
8
(1) ' �/%8 and
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E8 |A−1
8
(1) ' �8. Since �/% is a roof, this implies that (A−1

8
(1), E8 |A−1

8
(1))

is a simple Mukai pair.

4.4.1 Calabi–Yau fibrations

One of our main interests is to investigate the zero loci of pairs of sec-

tions of E1 and E2 which are pushforwards of a section Σ ∈ �0(Z,L),
hence relativizing the setting of Definition 4.1.8. Let us make this

clearer by the following lemma, the notation is established in Diagram

4.4.3.

Lemma 4.4.5. LetZ be a homogeneous roof bundle of type �/% ; P= ×
P= over a smooth projective variety � and fix ℎ8 : �/% ' P( �8) −→ �/%8
for 8 ∈ {1; 2}. Suppose there exists a basepoint-free vector bundle L on

Z such that for every 1 ∈ � one has L|c−1 (1) ' ! and the restriction

map �0(Z,L) −→ �0(c−1(1), !) is surjective. Given a general section
Σ ∈ �0(Z,L), let us call -8 := / (?8∗Σ). Then there exist fibrations:

-1 -2

�

51 52

(4.4.15)

such that for a general 1 ∈ � the varieties.1 := 5 −1
1 (1) and.2 := 5 −1

2 (1)
are aCalabi–Yau pair associated to the roof�/% in the sense ofDefinition

4.1.8.

Proof. Since ?8∗L = E8, -8 ⊂ Z8 is the zero locus of a section ?8∗Σ

of E8. Let us call 58 := A8 |-8 . By the condition E8 |A−1
8
(1) ' �8 and
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A−1
8
(1) ' �/%8 it follows that (A−1

8
(1), E8 |A−1

8
(1)) is a Mukai pair. If 1

and Σ are general the varieties .8 = / (?8∗Σ|A−1
8
(1)) ⊂ A−1

8
(1) are Calabi–

Yau by Lemma 2.5.3 and the fact that the general Σ has smooth zero

locus. Moreover, �8 ' ℎ8∗! and the varieties .1 and .2 are the zero

loci of the pushforwards of the same section Σc−1 (1) , therefore they are

a Calabi–Yau pair associated to the roof of type �/% as in Definition

4.1.8.

�

4.5 Example: a pair ofCalabi–Yau eightfolds

4.5.1 Roof of type ��4
We briefly recall a description of the roof of type ��4 and its related

dual Calabi–Yau threefolds. Let +5 be a vector space of dimension five.

We call � (2, +5) and � (3, +5) the Grassmannians of respectively linear

2-spaces and linear 3-spaces in +5. On such Grassmannians, there are

the following universal (tautological) short exact sequences:

0 −→ U� (2,+5) −→ +5 ⊗ O −→ Q� (2,+5) −→ 0 (4.5.1)

0 −→ U� (3,+5) −→ +5 ⊗ O −→ Q� (3,+5) −→ 0 (4.5.2)

where detU∨
� (2,+5) ' detQ� (2,+5) ' O� (2,+5) (1) and detU∨

� (3,+5) '
detQ� (3,+5) ' O� (3,+5) (1). The flag variety � (2, 3, +5) admits two

projective bundle structures, which define projections to the Grass-

mannians. These data define the roof of type ��4 , illustrated by the
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following diagram:

PQ∨
� (2,+5) (2) � (2, 3, +5) PU� (3,+5) (2)

� (2, +5) � (3, +5)

ℎ1 ℎ2
(4.5.3)

There exists a line bundle ! on � (2, 3, +5) such that ℎ1∗! ' Q∨� (2,+5) (2)
and ℎ2∗! ' U� (3,+5) (2). Zero loci of sections of such pushforwards are

Calabi–Yau threefolds. Moreover, for a general ( ∈ �0(� (2, 3, +5), !),
the pushforwards ℎ1∗( and ℎ2∗( are a pair of non isomorphic (and hence

non birational) derived equivalent Calabi–Yau threefolds (see Theorem

7.2.6 for non birationality, and Section 10.5 for derived equivalence).

The roof of type ��4 can be described by the following Dynkin dia-

grams:

. .

(4.5.4)

where we described a quotient �/% by the crossed Dynkin diagram

corresponding to % (see Chapter 2). Observe that, in the basis of funda-

mental weights {l1, . . . , l4}, ! is the homogeneous line bundle whose

weight is l2 + l3, we write ! = El2+l3 . Given a dominant weight l,

we denote +l the associated representation space. By the Borel–Weil–

Bott theorem we have �0(� (2, 3, +5), !) ' �0(� (2, +5),Q∨� (2,+5) (2)) '
�0(� (3, +5),U� (3,+5) (2)) ' +l2+l3 which is a 75-dimensional vector

space.
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4.5.2 The homogeneous roof bundle of type (! (5)/%2,3

over P5

Let us fix a vector space +6 ' C6 and the (twisted) tangent bundle

) (−1) of P(+6) ' P5. As in Remark 4.4.2, we can define a roof bundle

of type (! (5)/%2,3 over P5 by considering the (! (5)-bundle V =

Iso(C5, ) (−1)) and taking V ×(! (5) ((! (5)/%2,3) ' F ; (2, 3, ) (−1)).
In this setting, Diagram 4.4.3 becomes:

F ; (2, 3, ) (−1))

GA (2, ) (−1)) GA (3, ) (−1))

P5

?1 ?2

A1 A2

(4.5.5)

Note that � (1, +6) ' P5 is a homogeneous variety and the whole con-

struction can be sketched in terms of crossed Dynkin diagrams:

. .

?1 ?2

.
A1 A2

(4.5.6)

This picture is obtained extending the Dynkin diagrams of Diagram

4.5.4 with a new crossed root from the left, the notation is the same of
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Diagram 4.5.4.

The associated varieties are respectively � (1, 3, 4, +6), � (1, 3, +6),
� (1, 4, +6) and � (1, +6), hence Diagram 4.5.5 can be rewritten as:

� (1, 3, 4, +6)

� (1, 3, +6) � (1, 4, +6)

� (3, +6) � (1, +6) � (4, +6)

?1 ?2

c

A1d A2 g

(4.5.7)

Here A1 and A2 are Grassmannian bundles, where the fibers are iden-

tified respectively with � (2, +5) and � (3, +5). Moreover, one has

the P2-bundle d : � (1, 3, +6) −→ � (3, +6) and the P3-bundle g :

� (1, 4, +6) −→ � (4, +6).

In the following, given a weight l, we will call El the associated vec-

tor bundle. Given a dominant weight l, we will call +l the associated

representation space. On � (1, 3, 4, +6) we use the following notations

for line bundles: O(0, 1, 2) := c∗O(0) ⊗ ?∗1d
∗O(1) ⊗ ?∗2g

∗O(2). Fix

the standard basis {l1, . . . , l5} of fundamental weights for �5.

Observe that O(1, 1, 1) = El1+l3+l4 on � (1, 3, 4, +6) has pushfor-

wards to the Picard rank 2 flag varieties given by ?1∗O(1, 1, 1) =
d∗Q∨

� (3,+6) (1, 2) and ?2∗O(1, 1, 1) = P(1, 2) where P is the rank
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3 vector bundle defined by the following short exact sequence on

� (1, 4, +6):

0 −→ O(−1, 0) −→ g∗U� (4,+6) −→ P −→ 0. (4.5.8)

4.5.3 A pair of Calabi–Yau eightfolds

Lemma 4.5.1. Let ( ∈ � = �0(� (1, 3, 4, +6),O(1, 1, 1)) be a general

section. Then -1 = / (?1∗() and -2 = / (?2∗() are Calabi–Yau eight-

folds of Picard number 2, and �1(-8, )-8 ) ' �/(C ⊕ +l1+l5) ' C1014.

Moreover, there exist fibrations 58 : -8 −→ P(+6) such that for the general
1 ∈ � the pair ( 5 −1

1 (1), 5
−1
2 (1)) is a Calabi–Yau pair associated to the

roof of type ��4 .

Proof. As above, fix the shorthand notation E8 := ?8∗O(1, 1, 1). One

has det(Q∨
� (3,+6) (1, 2)) = O(3, 5) on � (1, 3, +6) and det(P(1, 2)) '

O(4, 5) on � (1, 4, +6), while l� (1,3,+6) ' O(−3,−5) and l� (1,4,+6) '
O(−4,−5). Hence, sections of E8 define eight dimensional varieties

with vanishing first Chern class for 8 ∈ {1; 2}. Since the Grothendieck

line bundle of P(E8) is an ample line bundle, E8 is an ample vector

bundle and we can use again (Laz04b, Example 7.1.5): the restriction

maps

�@ (� (1, 3, +6),Ω?

� (1,3,+6)) −→ �@ (-1,Ω
?

-1
)

�@ (� (1, 4, +6),Ω?

� (1,4,+6)) −→ �@ (-2,Ω
?

-2
)

(4.5.9)

are isomorphisms for ? + @ < dim(-1), and since � (1, 3, +6) and

� (1, 4, +6) are homogeneous varieties, their structure sheaves have co-

homology of dimension one concentrated in degree zero. The Calabi–
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Yau condition follows from setting ? = 0 in the isomorphism of Equa-

tion 4.5.9.

In order to compute cohomology for the tangent bundle, let us first

focus on -1. We consider the following two projections:

� (1, 3, +6)

� (1, +6) � (3, +6)

A1 d

(4.5.10)

and the following exact sequence

0 −→ O −→ d∗U(1,−1) −→ )� (1,3,+6) −→ d∗)� (3,+6) −→ 0 (4.5.11)

which follows by the relative tangent bundle sequence of � (1, 3, +6) −→
� (3, +6) and the relative Euler sequence of the projective bundle struc-

ture � (1, 3, +6) ' P(A∗U(1,−1)).

By the Borel–Weil–Bott theorem we get

�< (-,)-) '


+l1+l3+l4/(C ⊕ +l1+l5) < = 1

C2 < = 7

(4.5.12)

and this proves our claim. In fact, since . is Calabi–Yau, by Serre

duality we have:

�7(.,). ) ' �1(.,Ω1
. ) = � (1,1) (. ) (4.5.13)
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and we conclude that the Picard number of . is two by the long exact

sequence of cohomology of the exponential sequence.

The case of -2 is identical: in fact, the sequence of Equation 4.5.11

involves only bundles on � (1, 3, +6), and the weights of the bundles

involved in the corresponding sequence on � (1, 4, +6) are obtained by

reversing the order of the fundamental weights on the crossed Dynkin

diagram of the flag variety. Therefore, the result is the same by the

symmetry of the Dynkin diagram of type �5.

The proof is concluded by observing that since O(1, 1, 1) is basepoint-
free and the restriction

�0(� (1, 3, 4, 6),O(1, 1, 1)) −→ �0(� (2, 3, 5),O(1, 1))

is surjective, we can apply Lemma 4.4.5. �
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5 L-equivalence

5.1 The Grothendieck ring of varieties

Definition 5.1.1. Let ( be the additive group of formal linear combi-

nations of complex algebraic varieties
∑
08 [.8] with integral coefficient.

The Grothendieck ring of complex varieties  0(+0A/C) is the quotient of
( by respect to the following equivalence relation:

[.1] − [.2] − [.1 \ .2] (5.1.1)

and a ring structure defined by the Cartesian product:

[.1] · [.2] = [.1 × .2] (5.1.2)

In the remainder of this work, since we are only interested in complex

varieties, we will refer to such object as “the Grothendieck ring” without

ambiguity.

One has the following standard result (see for example (CLNS18, Propo-

sition 2.3.3)):

Lemma 5.1.2. Let 5 : - −→ . be a piecewise trivial fibration with fiber

�. Then one has [-] = [. ] · [�].

By Equation 5.1.2 we see that the class of a point is [?C] = 1. If we

call L the class of the affine line, the following is a standard result (e.g.

(CLNS18, Example 2.4.1)):

[P=] = 1 + L + · · · + L=. (5.1.3)
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Lemma 5.1.3. (GS14, Lemma 2.1) Let .1 and .2 be smooth birationally

equivalent varieties of dimension =. Then there exists the following

equality in the Grothendieck ring of varieties:

[.1] − [.2] = L · M (5.1.4)

whereM is a linear combination of classes of smooth projective varieties

of dimension = − 2.

Corollary 5.1.4. (GS14, Corollary 2.2) If . is a rational smooth d-

dimensional variety, then:

[. ] = [P=] + L · M. (5.1.5)

whereM. is a linear combination of classes of smooth projective varieties

of dimension = − 2.

The class in the Grothendieck ring is a powerful birational invariant,

appearing in many useful applications. Let us remind the notion of

stably birational equivalence and its relation with the more common

concept of birational equivalence:

Definition 5.1.5. Two varieties - and. are stably birational if there exist

integers <, = ≥ 0 such that - × P< and . × P= are biratinally equivalent.

This condition is weaker than the usual notion of birationally equivalent.

For instance, while - = P1 and . = {?C} are of course not birational,

they are stably birational. However, one has the following fact:

Lemma 5.1.6. (GS14, Lemma 2.6) Let - and . are stably birational

varieties of the same dimension. If - is not uniruled, then - and . are

birational.
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Theorem 5.1.7. (LL03) Let I ⊂  0(+0A/C) be the ideal generated by

the class of the affine line. One has the following ring isomorphism:

 0(+0A/C)/I ' Z[SB] (5.1.6)

where SB is the multiplicative monoid of classes of stable birational

equivalence of varieties.

Corollary 5.1.8. (LL03, Corollary 2.6) Let -1, . . . , -<, .1, . . . , .= be

smooth complete varieties such that they satisfy the following relation in

the Grothendieck ring:

<∑
8=1

08 [-8] =
=∑
9=1

1 9 [. 9 ] (5.1.7)

for some coefficients 01, . . . , 0<, 11, . . . , 1=. Then the following holds:

◦ < = =

◦ Up to reordering, -8 and .8 are stably birational for every 8 ≤ =

◦ 08 = 18 for every 8 ≤ =

A consequence of this fact is that the class of any variety, up to sta-

ble birationality, is a unique linear combination of classes of smooth

complete varieties. Heuristically, this provides a sort of “basis” of the

Grothendieck ring in terms of classes of smooth complete varieties.

The notion of L-equivalence became popular in the context of the prob-

lem of rationality of cubic hypersurface. In fact, Galkin and Shinder

proved the following result:
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Theorem 5.1.9. (GS14, Theorem 7.4) Let : be a field such that L ∈
 0(+0A/:) is not a zero divisor. Then, any smooth cubic threefold ./:
is irrational.

This result motivated the search for non birationally equivalent pairs

of complex varieties such that the (nonzero) difference of their classes

in the Grothendieck ring annihilates the class of the affine line, or a

higher power L<. This motivates the following definition:

Definition 5.1.10. ((KS18, Section 1.2)) Let -,. be complex varieties.

We say that - and . are L-equivalent if the following equation holds for

some integer < ≥ 0:

( [-] − [. ])L< = 0 (5.1.8)

Examples of L-equivalent pairs which are not birationally equivalent

have been found among Calabi–Yau varieties: the first is given by

the Pfaffian–Grassmannian pair (BC08), already studied in a physi-

cal context by (Rød98). All pairs of non birational and L equivalent

Calabi–Yau varieties have the property of being derived equivalent.

Understanding the link between derived equivalence and L-equivalence

and giving an interpretation to the minimal exponent < associated to

an L-equivalence, are still open problems.

Conjectures have been formulated in the past decade: for instance,

Kuznetsov and Shinder formulated a conjecture such that for smooth

projective simply connected varieties, derived equivalence implies L-

equivalence (KS18, Conjecture 1.6).

Remark 5.1.11. The assumption of simply connectedness of (KS18,
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Conjecture 1.6) is needed to rule out the case of abelian varieties, for

which an example of a derived equivalent pair which is not L-equivalent

has been given by Efimov (Efi18).

Examples of pairs of derived equivalent and (nontrivially) L-equivalent

Calabi–Yau varieties and  3 surfaces have been object of a recent series

of papers (IMOU19; Kuz18; KR17; KR20; KKM20; HL18; OR17;

Man17; KS18).

5.2 L-equivalence and Calabi–Yau pairs associ-
ated to a roof

Let us consider a roof - ' P(E1) ' P(E2), where for 8 ∈ {1; 2} one
has the structure morphisms ℎ8 : P(E8) −→ �8. Consider a section f

of ! with smooth zero locus, where ! is the line bundle which restricts

to O(1) on every fiber of ℎ1 and ℎ2, see Proposition 4.1.4 for details.

Call (.1, .2) the associated Calabi–Yau pair in the sense of Definition

4.1.8. We get the following diagram:

)1 " )2

-

.1 �1 �2 .2

a1

:1

;

:2

ℎ̄1 ℎ̄2 a2

ℎ1 ℎ2

C1 C2

(5.2.1)
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where " is the zero locus of f, ℎ̄8 the restriction of ℎ8 to " , )8 is the

preimage of .8 under ℎ̄8 and a8 is the restriction of ℎ̄8 to )8.

We observe that the fibers of the surjections ℎ̄8 have the following

description:

ℎ̄−1
8 (H) '

 P
A−1 if H ∈ .8
PA−2 if H ∈ �8 \ .8

(5.2.2)

due to the fact that .8 is the zero locus of the pushforward of ( to �8,

and )8 is isomporphic to the projectivization of the normal bundle E8 |.8
of .8 in �8.

Let us consider the roof from the point of view of the Grothendieck

ring of varieties. First of all observe that the bases �1 and �2 are

stably birational, therefore by results of (LL03) have equal class in the

quotient of the Grothendieck ring by the ideal generated by the L.

However, if we assume the stronger condition that �1 and �2 have

equal class in the Grothendieck ring we get an interesting consequence,

namely the difference of the classes of a pair of Calabi–Yau varieties

associated to the roof annihilates the A − 1-th power of the class of the

affine line.

In light of Lemma 5.1.2, we begin by showing that the maps ℎ̄8 are

piecewise trivial fibrations in the sense of (CLNS18, Definition 2.3.1).

This is a consequence of the fact that ℎ̄−1
8
(.8) = P(E|.8 ), and that

ℎ̄−1
8
(� \ .8) = P((E|�\.8/(ℎ8∗( |�\.8 ⊗ O� |�\.8 ))) for 8 ∈ {1; 2}.

Now, let " be the hyperplane section of - defining the pair. Then we

84



L-equivalence

have the following two descriptions of the class of ":

["] = [PA−1] · [.1] + [PA−2] · [�1 \ .1]

["] = [PA−1] · [.2] + [PA−2] · [�2 \ .2]

By the relations defining the Grothendieck ring of varieties we have

[�1 \ .1] = [�1] − [.1], and the same holds for the second equation.

Then, subtracting the two equations above, we get

0 = [PA−1] · [.1] + [PA−2] · ( [�1] − [.1])+

− [PA−1] · [.2] + [PA−2] · ( [�2] − [.2])

= ( [PA−1] − [PA−2]) ( [.1] − [.2]) + [PA−2] · ( [�1] − [�2]).

Given the identity

[P: ] = 1 + L + L2 + · · ·L: .

we have the following formula, developed in (KR20):

( [.1] − [.2])LA−1 + [PA−2] · ( [�1] − [�2]) = 0 (5.2.3)

Remark 5.2.1. In most of the known examples of roofs, Equation 5.2.3

provides L-equivalence for the associated Calabi–Yau pairs because the

bases �1 and �2 of the roof are isomorphic. This is the case of roofs

of type �2: , �: and �†2. For the roof of type �2, it has been proved

that [�8] = [P5] in (IMOU19), and L-equivalence follows.
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6 Hodge structures

In this chapter we review a generalization of the blowup formula for

cohomology in order to compare Hodge structures in the algebraic mid-

dle cohomologies of Calabi-Yau pairs associated to a roof. Let us begin

by stating the classical result for blowups.

Let -̃ be the blowup of a smooth projective variety - in a smooth

subvariety . , and let � be the exceptional divisor. We get the follow-

ing diagram:
� -̃

. -

9

? g

8

(6.0.1)

The Hodge structure of -̃ in terms of the ones of . and - can be

computed by means of the following standard result:

Theorem 6.0.1. (Voi10, Theorem 7.31) Let X be a Kähler manifold, and

let . ⊂ - be a submanifold of codimension A . Call g : -̃ −→ -

the blowup of - in . and � the exceptional divisor. Then, one has the

following isomorphism of Hodge structures:

A−2⊕
8=0

�:−28−2(.,Z) (8 + 1, 8 + 1) ⊕ �: (-,Z) �: ( -̃,Z)∼

(6.0.2)

which acts on classes in the following way:

G0, . . . GA−2, I 9∗?∗G0 + 9∗((?∗G1 ∪ b) + · · · + 9∗(?∗GA−2 ∪ bA−2) + g∗I)
(6.0.3)
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6.1 Cohomological Cayley trick

Let - be a roof with projective bundle structures ℎ8 : - −→ /8 for

8 ∈ {1; 2}, and let (.1, .2) be a Calabi–Yau pair associated to a section

of ! with zero locus " ⊂ - , in the sense of Definition 4.1.8. The

scope of this section is to give a dual description of the cohomology

of " in terms, respectively, of the cohomologies of . and /1 and the

cohomologies of .2 and /2.

More generally, given a Mukai pair (E, /) and a hyperplane section

" ⊂ - ' PE, we establish the following diagram, which will be the

setting of Theorem 6.1.1:

?−1(. ) " -

. /

@

9

?
c

(6.1.1)

where ? is a fibration such that:

?−1(G) '
 P

A−1 G ∈ .
PA−2 G ∈ / \ .

(6.1.2)

and @ is the restriction of ? to the preimage ?−1(. ). Note that this

is the same situation occurring for the maps ℎ̄1 and ℎ̄2 in Diagram 5.2.1.

Theorem 6.1.1 (Cohomological Cayley trick). Let / be a Kähler man-

ifold of dimension =, let E be a vector bundle of rank A over / and

- = P(E∨). Then, given a smooth hyperplane section " = / (() ⊂ -
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and a section . = / (c∗() ⊂ / smooth of codimension A, there exists an

isomorphism of Hodge structures

Ξ :
A−2⊕
8=0

�:−28 (/,Z) ⊕ �:−2A+2(.,Z) �: (",Z)∼ (6.1.3)

which acts on classes in the following way:

G0, . . . GA−2, I ?∗G0 + ?∗G1 ∪ b + · · · + ?∗GA−2 ∪ bA−2 + 9∗@∗I
(6.1.4)

where b ∈ �2(",Z) is the restriction to " of the hyperplane class of -

related to the Grothendieck line bundle O- (1).

Proof. The theorem is part of mathematical folklore. Its proof is anal-

ogous to the proof of the blowup formula (Voi10, Theorem 7.31) and

now contained in the recent preprint (BFM19, Proposition 46), and a

different proof is given in (DK20). �

6.2 The middle cohomology

Let us specialize to : = = + A − 2. Then Theorem 6.1.1 gives the

following morphism of middle cohomologies:

�=−A (.,Z) �=+A−2(",Z)
Ξ|�=−A (. ,Z)= 9∗◦@∗ (6.2.1)

Note also that

Ξ

(
A−2⊕
8=0

�=+A−2−28 (/,Z)
)
⊥ 9∗ ◦ @∗(�=−A (.,Z)) (6.2.2)
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where ⊥ is taken with respect to the cup product in �=+A−2(",Z). In-
deed, this follows from dimensional reasons since G8 |. ∪�=−A (.,Z) = 0

for G8 ∈ �=+A−2−28 (/,Z) where 8 ≤ A − 2.

Furthermore, we claim that 9∗ ◦ @∗ preserves the cup product pairing

up to a sign determined by the rank of E.

Lemma 6.2.1. For every �1, �2 ∈ �=−A (.,Z), the map 9∗ ◦ @∗ of Equa-
tion 6.2.1 satisfies the following identity, where A is the rank of E:

(�1 · �2). = (−1)A−1( 9∗@∗�1 · 9∗@∗�2)" . (6.2.3)

Proof. Let us work on the right-hand side of Equation 6.2.3: by an

application of the projection formula we have

( 9∗@∗�1 · 9∗@∗�2)" = 9∗( 9∗ 9∗@∗�1 · @∗�2)?−1 (. ) .

Let us focus on the term 9∗ 9∗@∗�1. By the self-intersection formula

((LMS75, Theorem 1)) we have:

9∗ 9∗@
∗�1 = @

∗�1 · 2A−1(N?−1 (. ) |").

Substituting this in the main equation we get

( 9∗@∗�1 · 9∗@∗�2)" = 9∗(@∗�1 · 2A−1(N?−1 (. ) |") · @∗�2)?−1 (. ) .

(6.2.4)

The class 2A−1(N?−1 (. ) |") ∈ �2A−2(";Z) can be described in terms of

the class b of the Grothendieck line bundle OP(E∨) (1) and the generators

�8 of the cohomology ring of / as

[?−1(. )]" = 0bA−1 +
∑

18b
8�8
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with 0, 18 ∈ Z. Since the only contributing term of 2A−1(N?−1 (. ) |") in
Equation 6.2.4 is 0bA−1, the proof reduces to showing that 0 = (−1)A−1.

This can be done observing that

0 = deg 2A−1(N?−1 (. ) |" |�)

where � is the fiber of " over a point in . , and it is isomorphic to

PA−1. By the following sequence of normal bundles

0 −→ N?−1 (. ) |" −→ N?−1 (. ) |- −→ O- (1) |?−1 (. ) −→ 0

and by the fact that the restriction of N?−1 (. ) |- to � is trivial, we get

0 = 1 if A is odd, and 0 = −1 otherwise. �

Suppose now that �∗(/,Z) is algebraic (which holds for example for

rational homogeneous varieties), then the only non-algebraic part of

the middle cohomology of " comes from �=−A (.,Z). More precisely,

since 9∗ ◦ @∗ and ?∗ map algebraic classes to algebraic classes, we

have

�=+A−2
0;6 (",Z) =

A−2⊕
8=0

�=+A−2−28 (/,Z) ⊕ �=−A
0;6 (.,Z).

Indeed, the sum of algebraic classes in the right hand side is algebraic,

but also whenever we take an algebraic class in " and decompose it by

means of (6.1.3), since all its components from
⊕A−2

8=0 �
=+A−2−28 (/,Z)

are algebraic by assumption then also the component in �=−A (.,Z)
must be algebraic.

Moreover, if we define ). := �=−A
0;6
(.,Z)⊥ ⊂ �=−A (.,Z) and )" :=

�=+A−2
0;6

(",Z)⊥ ⊂ �=+A−2(",Z), by Equation 6.2.2 we also have 9∗ ◦
@∗(). ) = )" and by Lemma 6.2.1 9∗ ◦ @∗ defines an isometry between
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these lattices up to a sign depending on the rank of E. The results of

Theorem 6.1.1 and Lemma 6.2.1 apply for each side of a roof diagram

like Diagram 5.2.1. Hence, we have two maps Ξ1 and Ξ2. Now,

provided that both /1 and /2 have algebraic cohomology, we have the

following isomorphism of integral Hodge structures:

A−2⊕
8=0

�:−28 (/1,Z) ⊕ �:−2A+2(.1,Z)

A−2⊕
8=0

�:−28 (/2,Z) ⊕ �:−2A+2(.2,Z)

Ξ−1
2 ◦Ξ1 (6.2.5)

which by Theorem 6.1.1, Lemma 6.2.1, Equation 6.2.2 and (Huy16,

Lemma 3.1), after restriction to ). determines a Hodge isometry ).1 '
).2 defined by ( 9̃∗ ◦ @̃∗ |).2

)−1 ◦ 9∗ ◦ @∗ |).1
. In light of the derived global

Torelli theorem for  3 surfaces (Orl97, Theorem 3.3), this Hodge isom-

etry gives us information about the derived categories of Calabi–Yau

pairs associated to a roof with = − A = 2. This will described more

precisely in Chapter 8.

Another application of Lemma 6.2.1 and Theorem 6.1.1 is following

proposition:

Proposition 6.2.2. Let - ' P(E∨1 ) ' P(E
∨
2 ) be a roof of dimension

2A + 2: , where E1 and E2 are vector bundles of rank A such that their

bases /1 and /2 have no odd-degree integral cohomology. Let (., .̃ ) be
the Calabi–Yau pair associated to - defined by a section ofL with smooth
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zero locus " ⊂ - . Then there exists a Hodge isometry �2:+1(.,Z) '
�2:+1(.̃ ,Z).

Proof. In this setting, Theorem 6.1.1 defines the following isomor-

phism:⊕A−2
8=0 �

2A+2:−1−28 (/,Z) ⊕ �2:+1(.,Z) �2A+2:−1(",Z)∼

(6.2.6)

where all the summands �2A+2:+1−28 (/,Z) are trivial. Then the proof

follows from Lemma 6.2.1. �

Remark 6.2.3. Proposition 6.2.2 applies to all known examples of roofs

where =− A is odd. Indeed, to the authors’ knowledge, in all the known

roofs the bases /1 and /2 are rational homogeneous varieties and their

cohomology is generated by Schubert classes.
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7 Non birational Calabi–Yau pairs: the roof
of type ��4

7.1 Duality in the space of sections

Let us recall here the geometry of the roof of typre ��4 :

"

�

- � (2, +5) � (3, +5) .

51 52

? @

(7.1.1)

The notation is the following:

◦ +5 is a five-dimensional vector space and � = � (2, 3, +5).

◦ ? and @ are the natural projections from � to the two Grassman-

nians.

◦ The flag variety � has Picard group generated by the pullbacks of

the hyperplane bundles of the two Grassmannians � (2, +5) and
� (3, +5). We denote the pullbacks of O� (2,+5) (1) and O� (3,+5) (1)
by O(1, 0) and O(0, 1) respectively. In this notation " is the

zero locus of a section B ∈ �0(�,O(1, 1)).
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◦ One has that ?∗O(1, 1) = Q∨2 (2) and @∗O(1, 1) = U3(2), where
we call U8 the universal bundle of a Grassmannian � (8, +5) and
Q8 its universal quotient bundle. The varieties - and . are,

respectively, the zero loci of the sections ?∗B and @∗B of Q∨2 (2)
and U3(2),

◦ 51 is a fibration over � (2, +5) with fiber isomorphic to P1, for

points outside the subvariety - whereas the fibers are isomorphic

to P2 for points on - . Similarly 52 is a map onto � (3, +5) whose
fibers are P1 outside . and P2 over . .

The rest of this chapter is focused on proving that the general Calabi–

Yau pair associated to the roof of type �4, in the sense of Definition

4.1.8 is non birationally equivalent.

Lemma 7.1.1. Let - be the zero locus of a regular section

B2 ∈ �0(� (2, +5),Q∨2 (2)).

Then B2 is uniquely determined by - up to scalar multiplication. Simi-

larly, if . is the zero locus of a regular section B3 ofU3(2) on � (3, +5),
B3 is uniquely determined by . .

Proof. We will prove the result for � (2, +5), the proof for the case

of � (3, +5) is identical. Let us suppose - is the zero locus of two

sections B2 and B̃2. Then, the Koszul resolutions with respect to these

two sections can be extended to the diagram:

· · · Q2(−2) I- 0

· · · Q2(−2) I- 0

UB2

V

UB̃2

(7.1.2)
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where the existence of the arrow V is given by the following claim:

Claim. The map

Hom(Q2(−2),Q2(−2)) −→ Hom(Q2(−2),I-) (7.1.3)

is surjective.

This can be verified by proving surjectivity of the following map:

�0(Q∨2 ⊗ Q2) −→ �0(Q∨2 (2) ⊗ I-) (7.1.4)

This can be achieved by tensoring the Koszul resolution of I- by Q∨2 (2).
In fact, by the identities detQ2 = O(1) and Q2 ' ∧2Q∨2 (1) one has the

exact sequence

0 −→ Q∨2 (−3) −→ Q∨2 ⊗ Q
∨
2 (−1) −→ Q∨2 ⊗ Q2 −→ Q(2) ⊗ I- −→ 0

(7.1.5)

where by the Borel-Weil-Bott theorem one finds:

�•(� (2, +5),Q∨2 (−3)) = 0,

�•(� (2, +5),Q∨2 ⊗ Q
∨
2 (−1)) = C[−2],

�•(� (2, +5),Q∨2 ⊗ Q2) = C[0] .

(7.1.6)

which proves our claim.

In particular, if two sections define the same - , then the identity of

the ideal sheaf lifts to an automorphism of Q2(−2). However, since

Ext•(Q2,Q2) = C[0], the only possible automorphisms of Q2(−2) are
scalar multiples of the identity. That implies that the sections differ by

multiplication with a nonzero constant. �
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Corollary 7.1.2. Let - = / (B2) ⊂ � (2, +5). Then there exists a unique

hyperplane section " of � such that the fiber ? |−1
"
(G) is isomorphic to

P2 for G ∈ - and is isomorphic to P1 for G ∈ � (2, +5) \ - . Similarly for
. = / (B3) ⊂ � (3, +5) there exists a unique hyperplane section " of �

such that the fiber @ |−1
"
(G) is isomorphic to P2 for G ∈ . and is isomorphic

to P1 for G ∈ � (3, +5) \ . .

Proof. We consider only the case - = / (B2) ⊂ � (2, 5) the other being

completely analogous. Since � is the projectivization of a vector bundle

over � (2, +5), then the pushforward ?∗ defines a natural isomorphism

�0(�,O(1, 1)) = �0(� (2, +5),Q∨2 (2)).

Hence B2 = ?∗(B) for a unique B ∈ �0(�,O(1, 1)). We define " = / (B)
which satisfies the assertion by the discussion above. The uniqueness

of " follows from Lemma 7.1.1. Indeed, for any hyperplane section

"̃ = / ( B̃), the fibers ? |−1
"̃
(G) are isomorphic to P2 exactly for G ∈

/ (?∗ B̃), but / (?∗ B̃) = - only if ?∗ B̃ is proportional to B2 which means

that B̃ is proportional to B and this proves uniqueness. �

Let us consider an isomorphism

5 : � (2, +5) −→ � (3, +5). (7.1.7)

Every such isomorphism is induced by a linear isomorphism ) 5 : +5 −→
+∨5 in the following way:

5 = � ◦ q2 : � (2, +5) −→ � (3, +5). (7.1.8)
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where � is the canonical isomorphism

� : � (8, +5) −→ � (5 − 8, +∨5 ) (7.1.9)

and q8 is the induced action of ) 5 on the Grassmannian:

q8 : � (8, +5) −→ � (8, +∨5 ) (7.1.10)

Similarly, we consider dual maps 5 ∨ : � (3, +∨5 ) −→ � (2, +∨5 ), ex-

pressed as 5 ∨ = q∨2 ◦ �
∨.

Note that above maps 5 , �, q2, q3 are restrictions of linear maps

between the Plücker spaces of the corresponding Grassmannians. By

abuse of notation we shall use the same name for their linear extensions.

We can now introduce the following notion of duality.

Definition 7.1.3. Given an isomorphism 5 : � (2, +5) −→ � (3, +5), we
say - ⊂ � (2, +5) is 5 -dual to . ⊂ � (2, +5) if (-, 5 (. )) is a Calabi–Yau
pair associated to the roof of type ��4 , in the sense of Definition 4.1.8.

Let us start by defining % = P(∧2+5) × P(∧2+∨5 ), where ∧
2+5 is identi-

fied with ∧3+∨5 by means of �. In that case � is a linear section of %

(in its Segre embedding) by a codimension 25 linear space.

Remark 7.1.4. Recall that (Wey03, Proposition 3.1.9) the equations of

� in % are described by the following sections BG∗⊗H ∈ �0(%,O(1, 1))

BG∗⊗H (U, l) = l(G∗) ∧ U ∧ H (7.1.11)

for l ∈ Λ2+∨5 = Λ3+5, U ∈ Λ2+5 and for every G∗ ⊗ H ∈ +∨5 ⊗ +5.
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In other words, we have

BG∗⊗H (U, l) = 0 for ( [U], [l]) ∈ � (2, 3, +5) ⊂ P(Λ2+5) × P(Λ3+5).

This defines a 25 dimensional subspace �0(%,I� (1, 1)) ⊂ �0(%,O(1, 1))
spanned by linearly independent sections corresponding to G∗ = 4∗

8
,

H = 4 9 for 8, 9 ∈ {1 . . . 5} and a chosen basis {48} for +5.

Now, for every 5 as in (7.1.7) we define the following function:

% %

(G, H) (( 5 ∨)−1(H), 5 (G))

] 5

(7.1.12)

which induces the following map at the level of sections:

�0(%,O% (1, 1)) �0(%,O% (1, 1))

B B ◦ ] 5

]̃ 5

(7.1.13)

Note that ] 5 is a linear extension of an automorphism of the flag variety

� ⊂ %. It is constructed in such a way that we have that - is defined by

a section ?∗(B) ∈ �0(� (2, +5),Q∨2 (2)) if and only if 5 (-) is defined

by @∗ (̃] 5 (B)) ∈ �0(� (3, +5),U∨3 (2)).

Our aim is to interpret 5 -duality in the setting above as explicitly as

possible. For that we will identify �0(�,O(1, 1)) with a subspace H�

of sections in �0(%,O(1, 1)) invariant under our transformations. The

following lemmas will be useful in the proof of non-birationality of

general Calabi–Yau pairs.
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Lemma7.1.5. The space�0(%,O(1, 1)) decomposes as�0(I� |% (1, 1))⊕
�0(�,O(1, 1)) and the decomposition is invariant under the action of

]̃ 5 for every isomorphism 5 : � (2, +5) → � (3, +5). More precisely

]̃ 5�
0(I� |% (1, 1)) = �0(I� |% (1, 1)) and there exists a subspace H� ⊂

�0(%,O(1, 1)) isomorphic to �0(�,O(1, 1)) such that ]̃ 5 (H�) = H� .

Proof. By the Borel–Weil–Bott theorem, one has �0(%,O(1, 1)) =
+l2 ⊗+l3 , which is the representation space of the product of represen-

tations of weights l2 and l3 of �! (+5). By the Littlewood-Richardson

rule, this space decomposes in the following way, and the decomposi-

tion is �! (+5)-invariant:

+l2 ⊗ +l3 ' +l2+l3 ⊕ +l1+l4 . (7.1.14)

Moreover, again by the Borel–Weil–Bott theorem, one has +l2+l3 =

�0(�,O(1, 1)) from which we get a surjection:

�0(%,O(1, 1)) −→ �0(�,O(1, 1)) (7.1.15)

from which the claim follows once we set H� := +l2+l3 .

Alternatively, one can proceed in the following way: it is well known

that Aut(�) ' �! (+5) o Z/2. Moreover, the action of Aut(�) on �
is linear and extends to an action of Aut(�) on % compatible with ]̃ 5 .

It follows that �0(I� |% (1, 1)) is invariant under ]̃ 5 since it is clearly

invariant under Aut(�). Furthermore the dual action of Aut(�) on
%∨ preserves the dual flag variety, hence �0(I�∨ |%∨ (1, 1)) is invariant

under the dual action of ]̃ 5 . We can define H� = �
0(I�∨ |%∨ (1, 1))⊥.

The latter space is invariant under Aut(�), so it is also invariant under

]̃ 5 and the map H� → �0(�,O(1, 1)) defined by restriction is an

isomorphism. �
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Note that, by construction, the action of ]̃ 5 on �0(�,O(1, 1)) cor-
responds to the action ]̃ 5 on H� . It means that we can think of

�0(�,O(1, 1)) equipped with the action induced by ]̃ 5 as a subset

of �0(%,O(1, 1)) invariant under the action of ]̃ 5 on �0(%,O(1, 1))
.

Remark 7.1.6. Note that, by applying the procedure of Remark 7.1.4

to describe the equations of the dual flag �∨ with respect to the dual

basis of +5, one can find explicit equations defining H� in terms of

matrices in �0(%,O(1, 1)) ' "10×10. In particular, in our choice of

basis, Equation 7.1.11 provides explicit linear conditions on the entries

of 10 × 10 matrices to be elements of H� . This will be useful in the

proof of Theorem 7.2.6.

Lemma 7.1.7. The variety - is 5 -dual to . if and only if there exists a

constant _ ∈ C∗ such that sections B- ∈ H� , B. ∈ H� defining - and .

respectively satisfy ]̃ 5 (B. ) = _B- .

Proof. By definition, - is 5 -dual to . if there exists a section B̂ ∈
�0(�,O(1, 1)) such that ?∗ B̂ defines - while @∗ B̂ defines 5 (. ). By

Lemma 7.1.5 there then exists a unique section B ∈ H� such that

B̂ = B |� . Now, by definition of ]̃ 5 , since @∗B defines 5 (. ) we have

?∗ (̃] 5 )−1(B) defines . . Furthermore by Lemma 7.1.5 we know that

(̃] 5 )−1(B) ∈ H 5 . We conclude from Lemmas 7.1.1 and 7.1.5 that up to

multiplication by constants B = B- and (̃] 5 )−1(B) = B. . �

From now on, let us fix a basis of +5 inducing a dual basis on +∨5 , and

natural bases on ∧2+5 and ∧2+∨5 which are dual to each other.
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A section B ∈ �0(%,O% (1, 1)) is represented by a 10 × 10 matrix ( in

the following way

B : (G, H) H)(G (7.1.16)

where G and H are expansions of G and H in the chosen bases of ∧2+5

and ∧2+∨5 . Once fixed our bases, q2 is represented by a 10× 10 invert-

ible matrix " 5 , which is the second exterior power of the invertible

matrix associated to ) 5 .

We can now describe very explicitly the 5 -duality in terms of matrices

using the following.

Lemma 7.1.8. If ( is the matrix associated to B ∈ �0(%,O% (1, 1)) then
the matrix associated to ]̃ 5 (B) is "−1

5
()" 5 .

Proof. On a pair (G, H), the map ] 5 acts via ] 5 (G, H) = ((q∨2 )
−1(H), q2(G)).

Furthermore, in our choice of basis q2(G) = " 5 G and (q∨2 )
−1(H) =

(")
5
)−1H.

This yields:

]̃ 5 (B) (G, H) = B ◦ ] 5 (G, H) = (" 5 G))((")
5 )
−1H = H)"−1

5 (
)" 5 G

(7.1.17)

. �

Remark 7.1.9. In (OR17, sec. 5), it is proven that [E] ∈ P(gl(+)) defines
a section BE of ∧2+ (1), whose projection to �0(� (2, +5),∧2Q2(2)) cuts
out the threefold -[E] . Then BE corresponds to a 10 × 10 matrix ( that

we defined in (7.1.16). Hence, from Lemmas 7.1.7 and 7.1.8 follows
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that -[E] and -[E) ] are �-dual. This means that our duality relation on

X25 between - and . given by the condition of (-,. ) being a Calabi–

Yau pair associated to the roof of type ��4 is equivalent to the duality

notion defined in (OR17, Section 5), extending the duality defined on

X25.

7.2 Non birationality of the general pair

In this section, we prove that a general section B ∈ �0(�,O(1, 1))
gives rise to two non-isomorphic Calabi–Yau threefolds - = / (?∗B)
and . = / (@∗B), this result will be stated in Theorem 7.2.6. Be-

fore proving the theorem, we will discuss some auxiliary results. In

(BCP20), an argument to show that every -̃ ⊂ X25 is contained in just

one pair of Grassmannians has been explained. Using similar ideas,

we will prove an analogous result for the boundary X̄25 of the family,

namely that every Calabi–Yau threefold in X̄25 is contained in just one

Grassmannian.

Lemma 7.2.1. Let - be a Calabi–Yau threefold described as the zero

locus of a section of Q∨2 (2). Then the following equalities hold for every

C ≥ 0:

�0(� (2, +5),Q2(−C)) = �0(-,Q2 |- (−C)); (7.2.1)

�0(� (2, +5),∧2Q2(−C)) = �0(-,∧2Q2 |- (−C)). (7.2.2)
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In particular, �0(-,Q2 |-) ' +5 and

�0(-,Q2 |- (−C)) = �0(-,∧2Q2 |- (−C)) = 0

for C strictly positive.

Proof. Let us consider the following short exact sequence which comes

from tensoring the ideal sheaf sequence of - with Q2:

0 −→ I-/� (2,+5) ⊗ Q2(−C) −→ Q2(−C) −→ Q2 |- (−C) −→ 0 (7.2.3)

Given this sequence, we need to show the vanishing of the first two

degrees of cohomology for I-/� (2,+5) ⊗ Q2. To do this, we consider the

sequence obtained tensoring with Q2 the Koszul resolution of the ideal

sheaf of -:

0 −→ Q2(−5 − C) \−−→ Q2 ⊗ Q∨2 (−3 − C) −→

−→ Q2 ⊗ Q2(−2 − C)
q
−−→ I-/� (2,+5) ⊗ Q2(−C) −→ 0

(7.2.4)

The bundles Q∨2 (−5 − C) and Q2 ⊗ Q∨2 (−3 − C) have no cohomology in

degree smaller than six: this follows from the isomorphisms

Q∨2 (−5 − C) ' ∧2Q∨2 ⊗ (∧
3Q∨2 )

⊗(4+C)

Q2 ⊗ Q∨2 (−3 − C) ' (∧3Q∨2 )
⊗(2+C) ⊗ ∧2Q∨2 ⊗ Q

∨
2

(7.2.5)

and by a Borel–Weil–Bott computation. This, in turn, proves that

�<6(� (2, +5), ker(q)) = 0 in (7.2.4). Similarly, one finds that Q2 ⊗
Q2(−2− C) has no cohomology in degree smaller than four, due to Q2⊗
Q2(−2−C) ' (∧2Q∨2 )

⊗(2+C) . Therefore �0(� (2, +5),I-/� (2,+5) ⊗ Q2) = 0

and �1(� (2, +5),I-/� (2,+5) ⊗ Q2) = 0. This, together with (7.2.3),

proves our claim (7.2.1). The second equality follows from a totally
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analogous computation, namely it involves the tensor product of the

ideal sheaf sequence with the wedge square of Q2. �

Lemma 7.2.2. Let - be a Calabi–Yau threefold described as the zero

locus of a section of Q∨2 (2). Then the restriction Q
∨
2 (2) |- is slope-stable.

Proof. Consider a subobject F ⊂ Q∨2 |- (2). Then, since � (2, +5) has
Picard number one, we have 21(F ) = O(C) for some C and this leads to

the injection

0 −→ O −→ ∧AQ∨2 |- (2A − C) (7.2.6)

where A is the rank of F , which can be either one or two. To have

F as a destabilizing object for Q∨2 |- (2), C must satisfy the following

inequality of Mumford slopes

C

A
= `(F ) ≥ `(Q∨2 |- (2)) =

5
3
. (7.2.7)

On the other hand, for the injection in (7.2.6) to exist it means that

∧AQ∨2 |- (2A − C) has global sections. Let us now consider the case

A = 1. Then Q∨2 |- (2− C) has sections only for C ≤ 1, but for such values

the inequality 7.2.7 cannot be satisfied. We can prove that the same

happens for A = 2: in fact, ∧2Q∨2 |- (4− C) ' Q2(3− C) has sections only
for C ≤ 3, but the inequality 7.2.7 cannot be fulfilled with these values

of C. �

Let us suppose - is contained in two Grassmannians �1 and �2, where

the latter is the image of the former under an isomorphism of P9. Since

both the restrictions of the normal bundles N8 |- = N�8/P9 |- = Q∨28 (2) |-
are stable with the same slope, every morphism between them must

106



Non birational Calabi–Yau pairs: the roof of type ��4

be either zero or an isomorphism. Below we furthermore prove that

the isomorphism class of the normal bundle determines the Grassman-

nian. Combining these two facts will give us the uniqueness of the

Grassmannian containing - .

Lemma 7.2.3. Let - be a Calabi–Yau threefold described as the zero

locus of a section of Q∨2 (2). Then the following isomorphism holds:

�0(P9,O(1)) ' �0(-,O- (1)) (7.2.8)

Proof. The claim follows by proving separately the following claims:

�0(P9,OP9 (1)) ' �0(� (2, +5),O� (2,+5) (1)) (7.2.9)

�0(G(2, +5),O� (2,+5) (1)) ' �0(-,O- (1)) (7.2.10)

Let us begin by verifying Equation 7.2.10. A twist of the Koszul

resolution of - ⊂ � (2, +5) yields:

0 −→ O(−4) −→ ∧2Q2(−3) −→ Q2(−1) −→ O(1) −→ 8∗O- (1) −→ 0

(7.2.11)

where 8 is the embedding of - in � (2, +5). The desired isomorphism is

a consequence of the vanishing of cohomology of the first three bundles.

To prove the validity of Equation 7.2.9 we follow basically the same

argument applied to the Pfaffian resolution of � (2, +5), yielding the

following exact sequence on P9:

0 −→ O(−4) −→ +5 ⊗ O(−2) −→ +5 ⊗ O(−1) −→

−→ OP9 (1) −→ 9∗O� (2,+5) (1) −→ 0
(7.2.12)

where 9 is the embedding of � (2, +5) in P9. Again the first three

bundles have no cohomology. For both computations, the vanishings
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can be computed by the Borel–Weil–Bott theorem (or, in the first case,

by Lemma 7.2.1). �

Lemma 7.2.4. Consider a Calabi–Yau threefold - ∈ X25 such that - is

contained in two translates �1, �2 of � (2, +5) in P9. If N�1 |P(∧2+5) |- '
N�2 |P(∧2+5) |- , then �1 = �2.

Proof. Let E be a globally generated rank three vector bundle on -

such that �0(-, E) = +5. Then it defines a unique morphism 5 : - −→
� (2, +5) such that 5 ∗Q2 ' E (Arr96, Proposition 2.1). For 8 ∈ {1; 2},
let us now apply such result to the choice E = N∨

- |�8 (2) = Q2 |- (recall

that, by Lemma 7.2.1, �0(� (2, +5),Q2) ' �0(-1,Q2) ' +5). This

proves that the normal bundle N- |�8 determines the map 58 : - −→ �8

up to automorphisms of �8.

Since ∧3Q2 ' O(1) and by Lemma 7.2.3 one has �0(-,O(1)) '
�0(�8,O(1)) ' ∧2+5, we deduce that �0(-,O- (1)) ' ∧3�0(-,Q2 |-) '
∧2+5. Then 58, by composition with the Plücker embedding �, gives

the embedding qO- (1) : - ↩−−→ P(∧2+5) defined by O- (1):

�8

- P(∧2+5) = P(�0(-,O- (1)))

�
58

qO- (1)

(7.2.13)

The proof is concluded by observing that sinceN�1 |P(∧2+5) |- ' N�2 |P(∧2+5) |- ,
one has 51 = 52, and hence �1 = �2. �

Corollary 7.2.5. If - ⊂ P9 is a Calabi–Yau threefold from the family
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X̄25, then - is contained as a zero locus of a vector bundle in a unique

Grassmannian � (2, 5) in its Plücker embedding.

Proof. Suppose that - is contained in two Grassmannians �1, �2 such

that for each of them we have an exact sequence:

0→ N- |�8 → N- |P9 → N�8 |P9 |- → 0

Combining the two exact sequences we obtain a map: q : N- |�1 →
N�2 |P9 |- . Note that we have N- |�8 ' N�8 |P9 |- ' Q∨28 (2) |- . By stability

of &∨28 (2) we have q is either trivial or an isomorphism. If it is an

isomorphism it induces an isomorphism N�1 |P9 |- ' N�2 |P9 |- and we

conclude by Lemma 7.2.4. If it is trivial it lifts to an isomorphism

N- |�1 ' N- |�2 which again gives an isomorphism N�1 |P9 |- ' N�2 |P9 |-
and permits us to conclude again by Lemma 7.2.4.

�

Now we are ready to prove the main theorem of this chapter.

Theorem 7.2.6. Let � be the partial flag manifold � (2, 3, +5), let ? and

@ be the projections to the two Grassmannians � (2, +5) and � (3, +5).
Then a general section B ∈ �0(�,O(1, 1)) gives rise to two non-birational
Calabi–Yau threefolds - = / (?∗B) and . = / (@∗B).

Proof. Let (-,. ) be a Calabi–Yau pair associated to the roof of

type ��4 . Because of Lemma 7.1.1, we deduce that if there ex-

ists an isomorphism mapping - to . , then it is given by a map

5 : � (2, +5) → � (3, +5). Recall that such a map is determined by

a linear isomorphism from ) 5 : +5 → +∨5 .
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Thus, because of Corollary 7.2.5, - and . are isomorphic only if

there exists 5 : � (2, +5) → � (3, +5) such that - is 5 -dual to - . This,

by Corollary 7.1.8 translates to the fact that a section B- ∈ H� from

Lemma 7.1.5 defining - on � satisfies "−1
5
()" 5 = _( for ( being

the matrix associated to the section B- and some constant _. But since

( and () are similar matrices then multiplication by _ must then pre-

serve the spectrum of (. The proof amounts now to find a matrix (

corresponding to an element of H� with spectrum that is not fixed by

multiplication with _ ≠ 1 and such that the equation

()" − "( = 0

has no solutions among matrices " of the form " = ∧2) , and then

expand by openness to the general element of H� . This is done via the

following script in Macaulay2 (GS19):

R=QQ[a_1..a_25]

S=matrix{

{ 1 ,0,0,0,0,0,0,0,0,0},

{0, 2 ,0,0,0,0,0,0,0,0},

{0,0, 0 ,0,0,0,0,0,0,0},

{0,0,0, 0 ,0,0,0,0,0,0},

{0,1,0,0, 0 ,0,0,0,0,0},

{0,0,0,0,0, 1 ,0,0,0,0},

{0,0,0,0,0,0,-1 ,0,0,0},

{0,0,0,0,0,0,0,-1 ,0,0},

{0,0,0,0,0,0,0,0,-1 ,0},
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{0,0,0,0,0,0,0,0,0,-1 }}

T=genericMatrix(R,5,5)

M=exteriorPower(2,T)

Sol=ideal flatten(transpose(S)*M-M*S)

saturate(Sol, ideal det T)

Here we chose a matrix ( satisfying the equations defining H� =

�0(��∨ |%∨)⊥ as in Remark 7.1.6.

This implies that a general hyperplane section B of the flag variety

� yields two Calabi–Yau threefolds - and . which are dual, but not

projectively isomorphic. By the fact that the studied manifolds have

Picard number one we conclude that they are not birational (OR17,

proof of Theorem 4.1). �

The proof above being very explicit has the advantage that it permits

to construct concrete examples of pairs of Calabi–Yau varieties in our

family which are dual but not birational. We can however perform a

more conceptual proof, which is more suitable to generalization and

allows to estimate the expected codimension of the fixed locus of our

duality.

7.3 An alternative proof

Let us present here an alternative argument for the key step of the

proof of Theorem 7.2.6, based on Kleiman’s transversality of a general
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translate. Before that, let us give the following preparatory lemma,

which is a simple result of linear algebra:

Lemma 7.3.1. Let ( be a general element inH� . The space of matrices

" ∈ �! (∧2+) which satisfy (" = "() is a 10 dimensional subset of

symmetric matricesM� .

Proof. Let us first observe that ( is a matrix with distinct nonzero eigen-

values and whose spectrum is not preserved by multiplication with any

_ ∈ C \ {1}. This can be checked in a specific example and expanded

by openness.

Let us fix a basis of �0(%,O% (1, 1)) and put ( in Jordan normal form

( = �−1�� where � is a diagonal matrix with distinct nonzero entries.

Then, �−1��" = "�)��−) leads to the conclusion that �"�) com-

mutes with �, hence it is diagonal. It follows that " is symmetric.

The dimension ofM� follows from the fact that once we fix �, one has

M� =
{
" ∈ Sym2(∧2+) : ∃' ∈ diag(10) with" = �−1'�−)

}
.

(7.3.1)

where diag(10) denotes the subspace of "10×10 of diagonal matrices.

�

Theorem 7.3.2. There exists ( ∈ H� whose spectrum is not fixed by

multiplicationwith_ ≠ 1 and such that there is no element" ∈ ∧2�! (+)
satisfying the equation (" = "() .

Proof. Define T := {(�, ") ∈ �! (∧2+)×Sym2(∧2+) : �"�) is diagonal }
with its natural morphism @ to Sym2(∧2+). We introduce the notation
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∧2�! (+) to denote the following set:

∧2 �! (+) := {" ∈ �! (∧2+) : ∃ ) ∈ �! (+) satisfying" = ∧2)}.
(7.3.2)

Consider a fibration \ fitting in the following diagram:

T

�! (10) Sym2(∧2+) Sym2(∧2+) ∩ ∧2�! (+)

�

A @
?

\

(7.3.3)

Suppose the following conditions are satisfied:

1. the fibration \ has relative dimension 25 and for every 1 ∈ � the

fiber \−1(1) intersects with nonnegative dimension the following

set:

V = { ∈ �! (10) | ∃ � diagonal with distinct

nonzero eigenvalues satisfying  −1� ∈ H�}
(7.3.4)

2. the morphism @ is flat

Then, by (Klei74, Lemma 1) and by Lemma 7.3.1, the dimension of

W := ?−1(1) ×Sym2 (∧2+) (Sym2(∧2+) ∩∧2�! (+)) can be computed in
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the following way:

dim(W) = dim(?−1(1)) + dim(Sym2(∧2+) ∩ ∧2�! (+))+

− dim(Sym2(∧2+))

= 25 + 10 + 15 − 55 = −5.

(7.3.5)

where we used the fact that Sym2(∧2+) ∩ ∧2�! (+) has dimension 15.

This shows that for every � ∈ \−1(1) ⊂ �! (∧2+) and every � diago-

nal with distinct nonzero eigenvalues there is no solution to (" = "()

where ( = �−1�� and " ∈ ∧2�! (+). By our choice of fibration the

latter includes some ( ∈ H� , and this completes the proof.

To prove that our setting satisfies Condition 1 let us consider the fol-

lowing diagram:

�! (∧2+) × C10

�! (∧2+) H% H�

: ℎ (7.3.6)

where ℎ(�, �) = �−1�� and : is the projection to the first factor.

One has that the dimension of the general fiber ℎ−1(() is 10, hence

dim(ℎ−1(H�)) = 75 + 10 = 85. Observe that V is the image of

ℎ−1(H�) under : , and it has dimension 75. Let us now pick a fibra-

tion \ : �! (∧2+) −→ � of relative dimension 25. Then, given any

1 ∈ �, the intersection of \−1(1) with V has dimension 25 + 75- 100

= 0. This proves that it is possible to construct a fibration \ of relative

dimension 25 such that every fiber over � intersects V in �! (∧2+).
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Let us now focus on Condition 2. First, by generic flatness, on has

that there exists an open set U ⊂ Sym(∧2+) such that @ is flat over

U. But then one can proceed by observing that there exists a tran-

sitive �! (10)-action on Sym(∧2+) given by � ¤" = �"�) . If @ is

�! (10)-homogeneous, then flatness of @ follows from the fact that

each restriction @−1(� · U) −→ � · U is isomorphic to @−1(U) −→ U
and the translates of U, by transitivity of the �! (10)-action, give an

open cover of Sym(∧2+). We can prove that @ is homogeneous by

describing a �! (10)-action omn T which is compatible with @ and

the �! (10)-action on the base Sym(∧2+). Such action is given by the

following diagram:

(�, ") "

(��−1, �"�) ) �"�)

�

@

�

@

(7.3.7)

�

Corollary 7.3.3. If -̃ , .̃ are general Calabi–Yau threefolds in X25 which

are dual in the sense of (OR17; BCP20) then they are not birational.

Proof. By the discussion of Remark 7.1.9, the duality in X25 degen-

erates to X̄25 to the duality relation between - and . given by the

condition of (-,. ) being a Calabi–Yau pair associated to the roof

of type ��4 . Consider an open neighborhood U ⊂ X25 of a general

- ∈ X̄25. Consider also the family V of duals parametrized by U. Now
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U and V are families of polarized Calabi–Yau threefolds such that, by

Theorem 7.2.6, there exists a fiber of U which is not isomorphic to

the corresponding fiber of V. Then by the Matsusaka–Mumford theo-

rem (MM86) the corresponding general fibers are not isomorphic and

consequently general dual pairs in X25 are not isomorphic. �
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8 Pairs of  3 surfaces

8.1 Transcendental lattice and the derived global
Torelli theorem

Let us recall some basic facts about lattice theory for  3 surfaces.

For Calabi–Yau manifolds . of dimension = ≥ 2 there exists an iso-

morphism 5 : Pic(. ) −→ �2(.,Z) as a consequence of the condition

�: (.,O) = 0 for 1 ≤ : ≤ =−1 and the exponential sequence. However,

for  3 surfaces, 5 is not surjective: hence the exponential sequence

yields a natural embedding of the Picard group as a submodule of

�2(.,Z).

Let us see this embedding from a Hodge-theoretical point of view:

we call an integral Hodge structure of  3 type a free Z-module + with

a direct sum decomposition of its complexification

+ ⊗ C =
⊕
?+@=2

+ ?,@

such that:

1. + ?,@ = +@,?

2. dim+2,0 = 1

3. + ?,@ = 0 for |? − @ | > 2
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Moreover, we say a Hodge structure + of weight = is polarizable if

there exists a map

+ ⊗ + −→ Q(−=)

which fulfills the following requirements (see (Huy16, Definition 1.6)

for additional details):

1. it is a morphism of Hodge structures, where we consider Q(−=)
a Hodge structure of weight 2= whose only nontrivial direct sum-

mand is the one of bidegree (=, =).

2. its R-linear extension is a bilinear form defined by a symmetric

matrix # via U, V ↦−→ (U, #V).

Clearly, the Z-module �2(.,Z) for a  3 surface . can be seen as a

 3-type polarizable Hodge structure of weight 2 where the polarization

is given by the intersection product, and the embedding of the Picard

group in �2(.,Z) is a morphism of Hodge structures since the Picard

group is given by the Hodge classes �1,1(. ) ∩ �2(.,Z).

Observe that the intersection pairing gives �2(.,Z) the structure of

a lattice, we can thus identify the Picard sublattice %82(. ) ⊂ �2(.,Z)
observing that the restriction of the intersection pairing to the Picard

group is nondegenerate (Huy16, Proposition 2.4).

Another important sublattice of �2(.,Z) is the transcendental lat-

tice ). defined Hodge-theoretically as the minimal sub-Hodge structure

containing �2,0(. ) such that �2(.,Z)/). is torsion-free. Moreover,

the transcendental lattice of a polarizable Hodge structure of  3 type
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is itself a polarizable irreducible Hodge structure of  3 type, and

). = Pic(. )⊥ (Huy16, Lemma 2.7).

The following theorem (Orl03, Proposition 4.2.3) provides a practi-

cal tool to understand whether two  3 surfaces are derived equiva-

lent:

Theorem 8.1.1. Let. , .̃ be complex algebraic  3 surfaces. Then �1. '
�1.̃ if and only if there exists a Hodge isometry

5 : ). −→ )
.̃
.

The following result is a consequence of Theorem 8.1.1 and the Hodge

structure of a hyperplane section of a roof, as we described it in Chapter

6.

Proposition 8.1.2. Let E and Ẽ be vector bundles of rank A on rational

homogeneous bases � and �̃. Let - ' P(E∨) ' P(Ẽ∨) be a roof of

dimension A + 2 and (., .̃ ) the Calabi–Yau pair associated to - defined

by a hyperplane section ( ∈ �0(-,L). Then . and .̃ are derived

equivalent.

Proof. Given the dimension and rank of the Mukai pairs, . and .̃

are  3 surfaces. By the fact that � and �̃ are rational homogeneous,

Equation 6.2.5 provides an isometry of transcendental lattices ). ' ).̃ .
This, in turn, by Theorem 8.1.1, proves that . and .̃ are derived

equivalent. �
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8.2 Non isomorphic  3 pairs

Let us consider a roof - where the bases of its vector bundles are

smooth quadrics & and &̃, denote by ! the line bundle which restricts

to O(1) on each fiber of both the projective bundle structures of - .

Call " the zero locus of a general section of ! such that the associated

Calabi–Yau pairs have dimension two (see Chapter 4 for details). Both

& and &̃ have cohomology generated by algebraic classes, hence we

have an isometry ( 9̃∗◦@̃∗ |)
.̃
)−1◦ 9∗◦@∗ |). between transcendental lattices

). ' ).̃ for each associated Calabi–Yau pair (., .̃ ) (in fact K3 pair in

this case). Moreover, if . and .̃ are general, by (Ogu01, proof of

Lemma 4.1) ). and )
.̃
admit no self-isometries different from ± Id.

Hence, to prove that . and .̃ are not isomorphic it is enough to prove

that none of the isometries ±( 9̃∗ ◦ @̃∗ |)
.̃
)−1 ◦ 9∗ ◦ @∗ |). extends to an

isometry between �2(.,Z) and �2(.̃ ,Z). We will prove it by studying

the action of the constructed isometry on the discriminant groups of

the associated transcendental lattices. For that we will consider the

following notation. Given a lattice ', let us call 3' the discriminant

group defined by the exact sequence

0 −→ ' −→ HomZ(',Z) −→ 3' −→ 0. (8.2.1)

Recall that if . is a K3 surface of Picard number one, with ! denoting

the generator of its Picard group, then 〈!〉 = (). )⊥ ⊂ �2(.,Z) and
since �2(.,Z) is unimodular 3). ' 3〈!〉 ' Z/!2Z and there is a

distinguished generator of 3). corresponding to [ !
!2 ] under the canon-

ical identification 3). ' 3〈!〉. Similarly, .̃ is a K3 surface of Picard

number one and if we denote by !̃ the generator of its Picard group,

120



Pairs of  3 surfaces

we have [ !̃
!̃2 ] representing the generator of 3)

.̃
associated to the em-

bedding )
.̃
⊂ �2(.̃ ,Z).

Note that under the generality assumption for ., .̃ (using (Ogu01,

proof of Lemma 4.1)) each of the lattices ). , ).̃ can be identified

with )" in a unique way up to ± Id, and this identification is given by

± 9∗ ◦ @∗ |). and ± 9̃∗ ◦ @̃∗ |)
.̃
. Furthermore, �: (",Z) is unimodular and

hence 3). and 3)
.̃
admit canonical identifications with 3�2A

0;6
(",Z).

On the other hand, by Theorem 6.1.1 and Lemma 6.2.1 both �2(.,Z)
and �2(.̃ ,Z) admit Hodge isometric embeddings into �2A (",Z) ex-
tending the embeddings of the transcendental lattices. We conclude

that under our identifications [ !
!2 ] = ±[ 9∗@

∗!
!2 ] ∈ 3�2A

0;6
(",Z) and

[ !̃
!̃2 ] = ±[

9̃∗@̃∗ !̃

!̃2 ] ∈ 3�2A
0;6
(",Z). To prove that . and .̃ are not isomor-

phic it remains to check that [ 9∗@
∗!
!2 ] and ±[ 9̃∗@̃

∗ !̃

!̃2 ] are distinct elements

in 3�2A
0;6
(",Z). Indeed, if . and .̃ were isomorphic then the iso-

morphism would need to map ! to !̃ and identify [ !
!2 ] with ±[ !̃!̃2 ] in

3)" = 3�2A
0;6
(",Z), contradicting the fact that that [ 9∗@

∗!
!2 ] ≠ ±[ 9̃∗@̃

∗ !̃

!̃2 ]
in 3�2A

0;6
(",Z).

This is checked in each of the two known cases by the following

Lemma.

Lemma 8.2.1. Let - be a roof of type �†2 or �4, " ⊂ - a general

hyperplane and ., .̃ the associated pair of  3 surfaces of degree 12.

Then there is a unique isometry of transcendental lattices ). ' ).̃ up

to ± Id and this isometry descends to an isomorphism of discriminant

groups which maps [ !12 ] to ±7[ !̃12 ].
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Proof. By the discussion before the Lemma we just need to compare

[ 9∗@
∗!

12 ] and [
9̃∗@̃∗ !̃

12 ] in 3�2A
0;6
(",Z). For that we will present 9∗@∗!

and 9̃∗@̃∗ !̃ in a chosen basis of �2A
0;6
(",Z). The computations differ

slightly in each of the two cases. Let us first illustrate the proof for the

roof of type �†2, which is easier because of the simpler structure of the

cohomology ring of the quadric, which is odd dimensional.

By abuse of notation let us denote by ! ∈ �2(&,Z) the hyperplane

class of &, its restriction to . which is the polarization, as well as its

pullback to - together with its restriction to " . Fix b ∈ �2(-,Z) the
class of the Grothendieck line bundle OP(G∨ (−1)) (1), we also denote by

b its restriction to " .

Claim: We claim that a basis for �6
0;6
(",Z) is given by the classes

Π, !2b, !b2, where Π = 1
2!

3 is the class of a plane in &.

To see that, first observe that these are generators �6
0;6
(-,Z) which

after restriction to " define a sublattice of �6
0;6
(",Z).

Now, given the Grothendieck relation on - as a projective bundle on

& (Laz04a, page 310):

b3 − 5!b2 + 9!2b − 12Π = 0 (8.2.2)

we can write the intersection form:

Π !2b !b2

Π 0 1 5

!2b 1 10 32

!b2 5 32 82

122



Pairs of  3 surfaces

It follows that the sublattice 〈Π, !2b, !b2〉 ⊂ �6
0;6
(",Z) has rank 3 and

discriminant 12. In light of Theorem 6.1.1 and the intersection form

above, also �6
0;6
(",Z) has rank 3 and discriminant 12. We conclude

that 〈Π, !2b, !b2〉 is the whole �6
0;6
(",Z) proving the claim.

Knowing that ( 9∗@∗!) · !2b = ( 9∗@∗!) ·Π = 0 and 9∗@∗! is an effective

primitive class in �6
0;6
(",Z) we get:

9∗@
∗! = !b2 − 5!2b + 18Π (8.2.3)

which, from the relation

b = ! + !̃

gives

9∗@
∗! = 7!̃b2 − 23!̃2b + 42Π̃.

Now by the same argument repeated for .̃ we have

9̃∗@̃
∗ !̃ = !̃b2 − 5!̃2b + 18Π̃.

We conclude that

1
12
( 9∗@∗! − 7 9̃∗@̃∗ !̃) = !̃2b − 7Π̃ ∈ �6

0;6 (",Z).

Let us now focus on the roof of type �4. Here the  3 surfaces are

zero loci of S∨(1). The cohomology ring of a six dimensional quadric

is slightly more complicated, since there exist two disjoint families of

maximal isotropic linear spaces Π1,Π2. They satisfy the following

relations in the cohomology ring:

!3 = Π1 + Π2, Π1 · ! = Π2 · !, Π2
1 = Π

2
2 = 0, Π1 · Π2 = 1. (8.2.4)
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By the same argument as above, we can construct a basis of the middle

cohomology �8(",Z) given by the classes Π1!,Π1b,Π2b, !
2b2, !b3.

The Grothendieck relation is

b4 − 6!b3 + 14!2b2 − 14Π1b − 16Π2b + 12Π1! = 0 (8.2.5)

which yields the following intersection matrix:

Π1! Π1b Π2b !2b2 !b3

Π1! 0 0 0 1 6

Π1b 0 0 1 6 22

Π2b 0 1 0 6 22

!2b2 1 6 6 44 126

!b3 6 22 22 126 308

As for the non homogeneous roof, we can compute the representation

of 9∗@∗! in terms of the basis above:

9∗@
∗! = !b3 − 6!2b2 + 14Π1b + 14Π2b − 30Π1!

= !b3 − 6!2b2 + 14!3b − 15!4.
(8.2.6)

where the second equality follows from the relations 8.2.4. By substi-

tuting the expression ! = b − !̃ in Equation 8.2.6 we find

9∗@
∗! = −6b4 + 29!̃b3 − 54!̃2b2 + 46!̃3b − 15!̃4

which by Equation 8.2.5 can be rewritten as

9∗@
∗! = −7!̃b3 + 30!̃2b2 − 38Π̃1b − 50Π̃2b + 42Π̃1 !̃.
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On the other hand, we can apply the same argument which leads to

Equation 8.2.6 in order to get:

9̃∗@̃
∗ !̃ = !̃b3 − 6!̃2b2 + 14Π̃1b + 14Π̃2b − 30Π̃1 !̃.

Finally, we have:

1
12
( 9∗@∗! + 7 9̃∗@̃∗ !̃) = !̃2b2 − 5Π̃1b − 4Π̃2b + 14Π̃1 !̃ ∈ �8

0;6 (",Z).

�

As a result of the discussion above, we get the following:

Corollary 8.2.2. Let - be a roof of type �†2 or �4, " ⊂ - a general

hyperplane and ., .̃ the associated pair of  3 surfaces of degree 12.

Then . and .̃ are not isomorphic.

8.3 Fourier–Mukai transform

Let us briefly recall some standard definitions (see, for example, (Huy16)).

Given a  3 surface ( one has the following Hodge structure of weight

two:

�̃1,1(() = �1,1(() ⊕ �0(() ⊕ �4(() ; �̃2,0(() = �2,0(() (8.3.1)

The Mukai lattice �̃ ((,Z) of ( is the lattice given by the Mukai pairing

on �∗((,Z) with the Hodge structure above, where the Mukai pairing

is defined by the following expression:

〈U, V〉 = U2 · V2 − U0 · V4 − U4 · V0 (8.3.2)
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Moreover, given an object E ∈ �1 ((), one defines the Mukai vector of

E as:

E(E) = ch(E)
√

td(E) = (rk(E), 21(E), ch2(E) + rk(E)) (8.3.3)

Let us consider a pair . , .̃ of  3 surfaces. Then, by the derived Torelli

theorem, they are derived equivalent if and only if there exists a Hodge

isometry of the Mukai lattice (Orl03, Theorem 4.2.1).

Let us now specialize to a general pair of  3 surfaces associated to

a roof of type �†2. Then they are derived equivalent by Theorem

8.1.2 and, by the derived Torelli theorem, it is possible to find an ex-

plicit expression of the Mukai vector of the associated cohomological

Fourier–Mukai transform. This, in turn, allows us to gain some infor-

mation on the Fourier–Mukai transform defining the equivalence.

Let �̃ (.,Z) be the Mukai lattice of . . Then we can construct a

Hodge isometry

\ : �̃ (.,Z) −→ �6
0;6 (",Z) (8.3.4)

which can be explicitly described in terms of the basis {Π, !2b, !b2}
of �6

0;6
(",Z). In particular, we must have \ (!) = 9∗@∗! = 18Π −

5!2b + !b2. The images \ (E) and \ (F) of the generators E of �0(.,Z)
and F of �4(.,Z), can be determined, up to an overall sign and up

to exchanging them, by the conditions \ (E) · \ (!) = \ (F) · \ (!) =
\ (E) · \ (E) = \ (F) · \ (F) = 0 and \ (E) · \ (F) = 1. Imposing such con-

ditions we get (up to exchanging E with F or an overall sign) \ (E) = Π
and \ (F) = −5Π + !2b. Note that, a priori, uniqueness of \ is not

obvious.

126



Pairs of  3 surfaces

Let us now consider the derived equivalence Φ : �1 (. ) −→ �1 (.̃ )
given by the isometry ). ' ).̃ discussed in Corollary 8.1.2. Then,

by (Orl03, Theorem 4.2.1), it induces an isometry ]Φ : �̃ (.,Z) −→
�̃ (.̃ ,Z), and the image ]Φ(E) under such isometry is the Mukai vector

defining the Fourier–Mukai transform. Summing all up, we have the

following commutative diagram:

�6
0;6
(",Z) �6

0;6
(",Z)

�̃ (.,Z) �̃ (.̃ ,Z)

id

\

]Φ

\̃
(8.3.5)

where the vertical arrows are given by Equation 8.3.4. Then, we can

find explicitly the image ]Φ(E) of the generator E of �0(.,Z) using
]Φ(E) = \̃−1(\ (E)). By direct computation we find the Mukai vector

(2, 1,−3).

Proposition 8.3.1. Let . , .̃ be a pair of  3 surfaces of Picard number

1 defined by a hyperplane section " of a roof of type �†2. Then .̃ is

isomorphic to the moduli space M. (D) of vector bundles F on . with

Mukai vector

E(F ) = D = (2, 1,−3).

Proof. The proof follows from the computation above and the proof of

(Orl03, Theorem 4.2.3). Indeed, in the reference the author identifies

by means of the Torelli theorem the variety .̃ with the Moduli space

M. (D) (introduced and studied in (Muk87)) of stable sheaves on .

with given Mukai vector D . �
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We thus recover the well-known Fourier–Mukai transform yielding

Mukai duality for  3 surfaces of degree 12 (Muk98, Example 1.3).

This also gives an alternative proof of non-isomorphicity of . , .̃ .

Remark 8.3.2. It is tempting to extend this approach to the roof of

type �4. However, instead of the isometries \ and \̃, one can construct

isometries of �8
0;6
(",Z) with a lattice of rank 5 containing a hyperbolic

lattice and the Picard lattice. This construction is highly non unique,

and it is not known, a priori, if a diagram such as 8.3.5 exists.
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9 Derived equivalence of Calabi–Yau pairs

9.1 Setup and general strategy

Let us recall some terminology. In the following, �/% is a homo-

geneous roof of rank A, i.e. a homogeneous Fano variety with two

different projective bundle structures P(E8) −→ �/%8, where �/%8 is
the generalized Grassmannian given by the quotient of the reductive

linear group � by the parabolic subgroup %8, for 8 ∈ {1; 2} (see Defini-
tion 4.1.5). Let ! be the very ample line bundle which restricts to O(1)
on each fiber of both projectivizations, whose existence follows from

Proposition 4.1.4, and call " ⊂ �/% the (smooth) zero locus of a gen-

eral section of !. We will commit the abuse of notation of denoting by

! alos the pullback of such line bundle to " . Let (.1, .2) be the asso-

ciated Calabi–Yau pair, i.e. .1 and .2 are zero loci of pushforwards of

a section defining " along the projective bundle maps (see Definition

4.1.8). One has the following diagram (Diagram 5.2.1):

)1 " )2

�/%

.1 �/%1 �/%2 .2

a1

:1

;

:2

ℎ1 |" ℎ2 |" a2

ℎ1 ℎ2

C1 C2

(9.1.1)
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where )8 is the preimage of .8 under ℎ8 |" , and a8 is the restriction of

ℎ8 |" to )8 for 8 ∈ {1; 2}.

By an application of the Cayley trick (Orl03, Proposition 2.10), one

finds the following semiorthogonal decompositions:

�1 (") ' 〈:1∗a
∗
1�

1 (.1), ℎ1 |∗"�1 (�/%1) ⊗ !, . . . , ℎ1 |∗"�1 (�/%1) ⊗ !⊗(A−1)〉

' 〈:2∗a
∗
2�

1 (.2), ℎ2 |∗"�1 (�/%2) ⊗ !, . . . , ℎ2 |∗"�1 (�/%2) ⊗ !⊗(A−1)〉
(9.1.2)

Remark 9.1.1. Note that in the case of roofs of type �= × �= we can

proceed observing that the zero locus " ⊂ P= × P= of a section of ! is

isomorphic to a flag variety � (1, =, =+1). Hence, by Orlov’s formula for

semiorthogonal decompositions of projective bundles (Theorem 3.3.1),

we recover the same decomposition of Equation 9.1.2 except for the

fact that �1 (.1) and �1 (.2) do not appear. This is of course not a

surprise, since for roofs of type �= × �= the zero loci .1 and .2 are

empty.

Assume that both �1 (�/%1) and �1 (�/%2) admit a known full ex-

ceptional collection of homogeneous vector bundles (see Remark 10.1.2

for the list of roofs where this is true). In this section, for several ex-

amples of roofs, we will describe a sequence of mutations realizing the

following equivalence:

�1 (") ' 〈:1∗a
∗
1�

1 (.1), ℎ1 |∗"�1 (�/%1) ⊗ !, . . . , ℎ1 |∗"�1 (�/%1) ⊗ !⊗(A−1)〉

→ 〈k�1 (.1), ℎ2 |∗"�1 (�/%2) ⊗ !, . . . , ℎ2 |∗"�1 (�/%2) ⊗ !⊗(A−1)〉
(9.1.3)

where k is an equivalence functor defined by the action of mutations on

the Calabi–Yau subcategory. We compare this last decomposition with
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the one obtained applying (Orl03, Proposition 2.10) to the right-hand

side of Diagram 9.1.1:

�1 (") ' 〈:2∗a
∗
2�

1 (.2), ℎ2 |∗"�1 (�/%2) ⊗ !, . . . , ℎ2 |∗"�1 (�/%2) ⊗ !⊗(A−1)〉
(9.1.4)

hence realizing an equivalence �1 (.1) ' �1 (.2).

Note that, by construction, all exceptional objects appearing in the

above semiorthogonal decomposition are pullbacks from �/%. All mu-

tations computed in this chapter involve only objects of this kind. We

will prove that such mutations fulfill also the following condition, which

will be needed for further applications in Chapters 10 and 11.

Definition 9.1.2. Consider a mutation (�1, �2) −→ (L�1�2, �1) of ex-
ceptional objects on" . We say that such mutation satisfiesCondition (†)
if there exist exceptional objects �1, �2 on �/% such that for 8 ∈ {1; 2}
one has ;∗�8 = �8 and the following vanishings hold:

Ext•
�/% (�2, �1) = Ext•

�/% (�1 ⊗ !, �2) = 0. (†)

The same condition is defined for rightmutations (�1, �2) −→ (�2,R�2�1).

Definition 9.1.2 will be generalized in Chapter 10, using the notion of

!-semiorthogonality (Definition 10.3.2) which is related by Proposition

10.3.4 to the concept of mutations commuting with ;∗, in the sense of

Definition 10.3.1. However, at this stage, all mutations are computed

directly, hence there is no need to introduce such definition here.
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9.2 Derived equivalence for the roof of type�2

Let +4 be a vector space of dimension four. A roof of type �2 is given

by the following diagram:

�� (1, 2, +4)

�� (1, +4) �� (2, +4)

ℎ1 ℎ2

(9.2.1)

where �� and �� denote, respectively symplectic Grassmannians and

flag varieties. Note that �� (1, +4) ' P3 and �� (2, +4) is a three

dimensional quadric in P4. Both ℎ1 and ℎ2 are P1-fibrations. Let

us fix ! = O(1, 1) := ℎ∗1O(1) ⊗ ℎ
∗
2O(1), choose a general section

f ∈ �0(�� (1, 2, +4),O(1, 1)) and call " = / (f) its zero locus, em-

bedded by ; in � (1, 2, +4). Then, by dimensional reasons and Lemma

4.1.6, the zero loci .1 = / (ℎ1∗f) and .2 = / (ℎ2∗f) are elliptic curves.

Let us call U the pullback to �� (1, 2, +4) of the tautological vector

bundle of �� (2, +4). By Cayley trick (Orl03, Proposition 2.10) we

write the following semiorthogonal decompositions:

�1 (") '〈q1�
1 (.1),O" (−1, 1),O" (0, 1),O" (1, 1),O" (2, 1)〉

'〈q2�
1 (.2),O" (1, 1), ;∗U∨(1, 1),O" (1, 2),O" (1, 3)〉

(9.2.2)

where q8 = :8∗a∗8 in the notation of Diagram 9.1.1. We formulate the

following lemma:
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Lemma 9.2.1. In the setting above, there is a sequence of mutations real-
izing a derived equivalence �1 (.1) −→ �1 (.2) and satisfying Condition
†.

Proof. First, let us apply the Serre functor to the last four objects of

each collection, obtaining:

�1 (") '〈O" (−2, 0),O" (−1, 0),O" ,O" (1, 0), q1�
1 (.1)〉

'〈O" , ;∗U∨,O" (0, 1),O" (0, 2), q2�
1 (.2)〉

(9.2.3)

For brevity, let us fix � := �� (1, 2, +4). Our approach for finding the

right mutations follows (Mor19) closely. Let us start from the first

collection. We can send the first bundle to the far right, then move

q1�
1 (.1) one step to the right, obtaining

�1 (") '〈O" (−1, 0),O" ,O" (1, 0),O" (−1, 1),RO" (−1,1)q1�
1 (.1)〉
(9.2.4)

We have the following short exact sequence on � (and its pullback on

") (Mor19, Equation 2.2):

0 −→ O(−1, 1) −→ U∨ −→ O(1, 0) −→ 0 (9.2.5)

All cohomology in the following is computed by Borel–Weil–Bott’s

theorem. First, since one has

Ext•� (O(1, 0),O(−1, 1)) = Ext•" (O" (1, 0),O" (−1, 1)) = C[−1]
(9.2.6)

we can mutate O" (1, 0) and get:

�1 (") '〈O" (−1, 0),O" ,O" (−1, 1), ;∗U∨,RO" (−1,1)q1�
1 (.1)〉

(9.2.7)
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and we compute the following vanishings:

Ext•� (O(2, 1),O(−1, 1)) = Ext•� (O(−1, 1),O(1, 0)) = 0 (9.2.8)

which are required to fulfill Condition (†). The next step is to exchange

the second and the third bundles. We have:

Ext•� (O,O(−1, 1)) = Ext•" (O" ,O" (−1, 1)) = 0 (9.2.9)

hence we can move the first two to the end and send RO" (−1,1)q1�
1 (.1)

to the far right. Again, this mutation fulfills Condition (†) since:

Ext•� (O(−1, 1),O) = Ext•� (O(1, 1),O(−1, 1)) = 0. (9.2.10)

We find:

�1 (") '〈O" , ;∗U∨,O" (0, 1),O" (0, 2),

RO" (0,2)RO" (0,1)RO" (−1,1)q1�
1 (.1)〉

(9.2.11)

In the first four bundles we recognise �1 (�� (2, +4)). Hence, compar-

ing Equation 9.2.3 with Equation 9.2.11 we prove our claim. �

Remark 9.2.2. Note that the derived equivalence �1 (.1) ' �1 (.2) is a
consequence of the derived equivalence of local Calabi–Yau fivefolds

described in (Mor19): in fact, one can follow the approach of (Ued19)

based on matrix factorization categories. In general, given a roof of

type �/% with PA−1-bundle structures ℎ8 : �/% −→ �/%8, let us call

E8 := ℎ8∗O(1, 1) and .8 = / (ℎ8∗f), where f is a general section of

O(1, 1). Then, one can define by the data of a section of E8 a superpo-
tential F8 such that the derived category of matrix factorizations of the

Landau–Ginzburg model (E∨
8
, F8) is equivalent to �1 (.8) via Knörrer
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periodicity (for more details, see Chapter 14). Then, by (Ued19) if

there is a derived equivalence �1 (Tot E∨1 ) ' �
1 (Tot E∨2 ) satisfying a

C∗-equivariancy condition, it lifts to a derived equivalence of the matrix

factorization categories of (E∨
8
, F8), and �1 (.1) ' �1 (.2) follows from

this last equivalence composed with Knörrer periodicity. This gives a

derived equivalence for Calabi–Yau pairs of type ��4 , �2 (Mor19) and

�2 (Ued19).

9.3 Derived equivalence for the roof of type �"=
Let + be a vector space of dimension =+1. A roof of type �"= is given

by the following diagram:

� (1, =,+)

� (1, +) � (=,+)

ℎ1 ℎ2 (9.3.1)

Fix ! = O(1, 1) := ℎ∗1O(1) ⊗ ℎ
∗
2O(1) and choose f to be a general

section of such bundle. Call " = / (f) and define the immersion

; : " = / (f) ↩−−→ � (1, =,+). Then the zero loci .8 = / (ℎ8∗f) are
zero-dimensional. Nonetheless we discuss their derived equivalence via

mutations, since it will be necessary to prove further results in Chapters

10 and 11. A similar result has been previously found in the context of

Mukai flops by (Kaw02; Nam03), later (Mor19) developed a sequence

of mutations to achieve such result. The proof we will describe is

similar to the one by (Mor19).
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By Cayley trick we recover the following semiorthogonal decompo-

sitions:

�1 (") '〈q1�
1 (.1), ℎ1 |∗"�1� (1, +) ⊗ !, . . . , ℎ1 |∗"�1� (1, +) ⊗ !⊗(=−1)〉

'〈q2�
1 (.2), ℎ2 |∗"�1� (=,+) ⊗ !, . . . , ℎ2 |∗"�1� (=,+) ⊗ !⊗(=−1)〉

(9.3.2)

where q8 := ;∗a∗8 . By choosing the right twists of Beilinson’s full

exceptional collection for P= (Bei78) we write:

�1 (") ' 〈q1�
1 (.1),O" (1, 1), . . . . . . . . . . . . . . . ,O" (= + 1, 1),

...
...

O" (= − 1, = − 1), . . . ,O" (2= − 1, = − 1)〉

' 〈q2�
1 (.2),O" (1, 1 − =), . . . . . . . . . . . . . . . ,O" (1, 1),

...
...

O" (= − 1,−1), . . . , . . .O" (= − 1, = − 1)〉
(9.3.3)

First, we need the following vanishing results:

Lemma 9.3.1. For 1 < < < = + 1 one has:

Ext•" (O" (< + 1, 1),O" (2, 2)) = Ext•
� (1,=,+) (O(< + 1, 1),O(2, 2)) = 0.

(9.3.4)

Proof. We need to compute the cohomology of O(1−<, 1) and O" (1−
<, 1). Twisting the Koszul resolution for " yields:

0 −→ O(−<, 0) −→ O(1 − <, 1) −→ O" (1 − <, 1) −→ 0 (9.3.5)
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Observe that O(0, 1) is flat over � (=,+) (Har77, Proposition III.9.2),

and for every ; one has that dim�; (ℎ−1
2 (G),O(0) |ℎ−1

2 (G)
) does not de-

pend on G. Hence, by (Mum12, Page 50, Corollary 2) for every

G ∈ � (=,+):

'•ℎ2∗O(0, 1)G ' �•(ℎ−1
2 (G),O(0) |ℎ−1

2 (G)
) (9.3.6)

This is identically zero for 0 = −< or 0 = 1 − <. Thus, by the Leray

spectral sequence, both O" (1 − <, 1) and O(1 − <, 1) are acyclic. �

Lemma 9.3.2. For 1 < < < = + 1 the following holds:

Ext•
� (1,=,+) (O(2, 2),O(<+1, 1)) = Ext•

� (1,=,+) (O(<+2, 2),O(2, 2)) = 0.

(9.3.7)

Proof. This is a consequence of the semiorthogonality of

�1 (� (1, =,+)) '〈O" (0, 0), . . . . . . . . . . . . . . . ,O" (=, 0),
...

...

O" (= − 1, = − 1), . . . ,O" (2= − 1, = − 1)〉.

(9.3.8)

Alternatively, one can formulate a direct computation as in the proof

of Lemma 9.3.1. �

Lemma 9.3.3. In the setting above, there is a sequence of mutations of

exceptional objects of �1 (") satisfying Condition (†) and realizing a

derived equivalence �1 (.1) ' �1 (.2).

Proof. Let us switch to a more compact notation: hereafter O0,1 :=
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O" (0, 1). Hence, Equation 9.3.2 becomes:

�1 (") ' 〈q1�
1 (.1),O1,1, . . . . . . . . . . . . . . . ,O=+1,1,

O2,2, . . . . . . . . . . . . . . . ,O=+2,2,
...

...

O=−1,=−1, . . . . . . . . . ,O2=−1,=−1〉.

(9.3.9)

First, let us move q1�
1 (.1) one step to the right, then let us send O1,1

to the end of the collection. We get:

�1 (") ' 〈k1q1�
1 (.1),O2,1 . . . . . . . . . . . . . . . . . . ,O=+1,1,O2,2

O3,2, . . . . . . . . . . . . . . . . . . ,O=+2,2,O3,3

...
...

O=,=−1, . . . . . . . . . . . . ,O2=−1,=−1,O=,=〉
(9.3.10)

where k1 := RO1,1 . By Lemma 9.3.1 we can move O2,2 leftwards until

it stops at the right of O2,1, since it is orthogonal to all the bundles in

between. These mutations, by Lemma 9.3.2, satisfy Condition (†). We

can repeat the same step on each row obtaining:

�1 (") ' 〈k1q1�
1 (.1),O2,1,O2,2,O3,1, . . . . . . . . . . . . . . . . . . ,O=+1,1,

O3,2,O3,3,O4,2, . . . . . . . . . . . . . . . . . . ,O=+2,2,
...

...

O=,=−1,O=+1,=−1,O=+2,=−1, . . . . . . ,O2=−1,=−1〉.
(9.3.11)

Now we mutate k1q1�
1 (.1) two steps to the right, then we move the
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first two bundles to the end of the collection obtaining:

�1 (") ' 〈k2q1�
1 (.1)O3,1, . . . . . . . . . . . . . . . . . . ,O=+1,1,O3,2,O3,3,

O4,2, . . . . . . . . . . . . . . . . . . ,O=+2,2,O4,3,O4,4,

...
...

O=+2,=−1, . . . . . . . . . ,O2=−1,=−1,O=+1,=,O=+1,=+1〉
(9.3.12)

where k2 = R〈O2,1,O2,2〉 ◦ k1. Then, on each row, using Lemma 9.3.1

we shift the last two bundles all the way left, until they stop at the

right of the first bundle. Again, by Lemma 9.3.2 such mutations satisfy

Condition (†). We find:

�1 (") ' 〈k2q1�
1 (.1),O3,1,O3,2,O3,3,O4,1, . . . . . . . . . . . . . . . ,O=+1,1,

O4,2,O4,3,O4,4,O5,2, . . . . . . . . . . . . . . . ,O=+2,2,
...

...

O=+1,=−1,O=+1,=,O=+1,=+1,O=+2,=−1, . . . ,O2=−1,=−1〉.
(9.3.13)

This process can be iterated moving the first three bundles to the end,

then on each row sending the last three bundles to the right of the first

one, and repeating these steps increasing by one the number of bundles

we move. We stop once we get a semiorthogonal decomposition given

by = − 1 twists of 〈O1,1, . . .O1,=+1〉 and the image of q1�
1 (.1) under

a composition of mutations. This eventually happens after = steps. We
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get the following collection:

�1 (") ' 〈k=q1�
1 (.1),O=+1,1,O=+1,2, . . . . . . . . . . . . ,O=+1,=+1,

O=+2,2,O=+2,3, . . . . . . . . . . . . ,O=+2,=+2,
...

...

O2=−1,=−1,O2=−1,=, . . . . . . ,O2=−1,2=−1〉
(9.3.14)

If we twist the whole collection by O−=,−= we obtain:

�1 (") ' 〈T−=,−= ◦ k=q1�
1 (.1),O1,1−=,O1,2−=, . . . . . . . . . . . . . . . ,O1,1,

O2,2−=,O2,3−=, . . . . . . . . . . . . . . . ,O2,2,

...
...

O=−1,−1,O=−1,0, . . . . . . . . . ,O=−1,=−1〉
(9.3.15)

where T−=,−= is the twist functor. The proof is concluded by comparing

Equation 9.3.3 with Equation 9.3.15. �

9.4 Derived equivalence for the roof of type �=×
�=

Let us fix a vector space +=+1 of dimension =+1. The relevant diagram

is:
P= × P=

P= P=

ℎ1 ℎ2 (9.4.1)
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Here the zero locus " of a general section B of ! = O(1, 1) =
ℎ∗1O(1) ⊗ ℎ

∗
2O(1) is isomorphic to � (1, =,+=+1). In the similar context

of standard flops, a proof of derived equivalence by mutations has been

found by (BO95) and later by (ADM19; Mor19). We will present a

similar sequence of mutations adapted to the present setting.

Instead of using the Cayley trick as in the previous sections, we con-

struct two semiorthogonal decompositions for " using the fact that it

admits two projective bundle structures (" is itself a roof!) obtain-

ing:

�1 (") = 〈O(0, 0) . . . . . . . . .O(=, 0)
...

...

O(=, =) . . . . . . . . .O(2=, =)〉

(9.4.2)

�1 (") = 〈O(0,−=) . . . . . . . . .O(0, 0)
...

...

O(=, 0) . . . . . . . . .O(=, =)〉

(9.4.3)

As we observed in Remark 9.1.1, there is no Calabi–Yau pair associated

to this roof since the zero loci of ℎ1∗B and ℎ2∗B are empty, which makes

the problem of derived equivalence somewhat trivial. Nonetheless, the

existence of a sequence of mutations transforming the collection 9.4.2

into 9.4.3 will be useful for further applications in Chapter 11, therefore

we formulate the following result:

Lemma 9.4.1. In the setting introduced above, there is a sequence of

mutations transforming the collection 9.4.2 into 9.4.3, and each of such

mutations satisfies Condition (†).
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Proof. The approach is nearly identical to the one we used to prove

Lemma 9.3.3, which is not a surprise since the collections are very

similar. In fact, 9.3.3 can be formally obtained by removing one row

from 9.4.2 and adding the Calabi–Yau subcategory. Hence, up to some

careful adaptation of the computation of Exts, we can apply essentially

the same argument. We first need to prove the following vanishings for

2 ≤ : ≤ =:

Ext•" (O(:, 0),O(1, 1)) = 0

Ext•P=×P= (O(: + 1, 1),O(1, 1)) = 0

Ext•P=×P= (O(1, 1),O(:, 0)) = 0.

(9.4.4)

The first vanishing has already been computed in the proof of 9.3.3. The

second one follows from the fact that Ext•P=×P= (O(: + 1, 1),O(1, 1)) =
�•(P= ×P=, ℎ∗1O(−:)) which is zero, while the third one can be proved

in the following way: since Ext•P=×P= (O(1, 1),O(:, 0)) = �•(P= ×
P=, ℎ∗1O(: − 1) ⊗ ℎ∗2O(−1)), by the Leray spectral sequence we just

need to prove that ℎ1∗(ℎ∗1O(: − 1) ⊗ ℎ∗2O(−1)) is acyclic. By the

projection formula one has

ℎ1∗(ℎ∗1O(: − 1) ⊗ ℎ∗2O(−1)) = O(: − 1) ⊗ ℎ1∗ℎ
∗
2O(−1) (9.4.5)

and our claim follows by ℎ1∗ℎ∗2O(−1) = 0.

We are ready to explain the mutations. The main part of the pro-

cess starts from the collection 9.4.2 and it can be described by = steps

where the : Cℎ step consists in:

◦ sending the first block of : bundles to the end by means of the

inverse Serre functor, they get twisted by O(= + 1, = + 1)
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◦ the same block is orthogonal to the = − : bundles at its left by

Equation 9.4.4, hence we can move it = − : steps to the left

After = steps we obtain the following collection:

�1 (") = 〈O(=, 0) . . . . . . . . .O(=, =)
...

...

O(2=, =) . . . . . . . . .O(2=, 2=)〉

(9.4.6)

and we can recover 9.4.3 with a twist by O(−=,−=). Note that by

Equation 9.4.4 all mutations satisfy Condition (†), thus the proof is

concluded. �

9.5 Derived equivalence for the roof of type ��4
Let +5 be a vector space of dimension five. We recall the construction

of the roof of type ��4 :

� (2, 3, +5)

� (2, +5) � (3, +5)

ℎ1 ℎ2 (9.5.1)

In the following, as for the previous cases, we will call " the zero locus

of a general section of O(1, 1) = ℎ∗1O(1) ⊗ ℎ
∗
2O(1), and the embedding

of " in � (2, 3, +5) will be denoted by ;. We will call U: and Q:
respectively the tautological and the quotient bundle of � (:,+5). We

will use the minimal Lefschetz decomposition for � (2, +5) introduced
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in (Kuz08):

�1� (2, +5) =
〈
O,U∨2 ,O(1),U

∨
2 (1),O(2),U

∨
2 (2),O(3),U

∨
2 (3),O(4),U

∨
2 (4)

〉
(9.5.2)

The duality isomorphism between � (2, +5) and � (3, +5) exchanges

U∨2 with Q3 and allows us to write a minimal Lefschetz exceptional

collection for � (3, +5):

�1� (3, +5) = 〈O,Q3,O(1),Q3(1),O(2),Q3(2),O(3),Q3(3),O(4),Q3(4)〉 .
(9.5.3)

Now, before explaining the mutations which will lead to our derived

equivalence, let us prove some cohomology calculations which will

be needed to perform such mutations. For the sake of brevity, in the

remainder of this section, we will omit pullbacks to " while denoting

exceptional objects of �1 ("), but we will always keep track of the

variety where Exts are computed.

Lemma 9.5.1. The following relation holds for every integer : and for

non negative integers 0, 1 which satisfy 1 + 0 ≤ 1 ≤ 4 + 0 except for

1 = 2 + 0:

Ext•" (Q3(:, : + 1),O(1 + :, 1 + : + 0)) = 0

Proof. The proof is an application of Borel–Weil–Bott theorem. In

particular, in light of the Koszul resolution of " , we are interested in

understanding on which conditions on 0 and 1 we can obtain:

�0(�,Q∨3 (1, 2 + 0 − 1)) = 0

�0(�,Q∨3 (0, 1 + 0 − 1)) = 0
(9.5.4)

Due to the Leray spectral sequence, our problem simplifies to showing

that the pushforward of these bundles with respect to one of the two
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projections from the flag has no cohomology.

Namely, due to the projection formula, we have:

ℎ2∗Q∨3 (1, 2 + 0 − 1) = U3(1) ⊗ Q∨3 (2 + 0 − 1) = ∧
2U∨3 ⊗ Q

∨
3 (2 + 0 − 1)

= ∧2U∨3 ⊗
(
∧3U∨3

)⊗(2+0)
⊗ Q∨3 ⊗

(
∧2Q∨3

)⊗1
The Borel–Weil–Bott theorem states that the cohomology of ∧2U∨3 ⊗(
∧3U∨3

)⊗(2+0)
vanishes in every degree if two or more of the following

integers coincide:

8 + 0; 7 + 0; 5 + 0; 3 + 1; 1 + 1.

while the cohomology of Q∨3 (0, 1+0−1) vanishes for −5 ≤ 0−1 ≤ −1

and this completes the proof. �

A similar result can be obtained with the same argument:

Lemma 9.5.2. The following relation holds for every : ∈ Z and for non

negative integers 0, 1 which satisfy 3 + 0 ≤ 1 ≤ 6 + 0:

Ext•" (O(1 + :, 1 + :),O(2 + :, 2 + 0 + :)) = 0

We also prove the following statement, which will be necessary to

verify Condition (†):

Lemma 9.5.3. For every integer : and for non negative integers 0, 1

which satisfy 1 + 0 ≤ 1 ≤ 4 + 0 one has:

Ext•� (Q3(: + 1, : + 1 + 1),O(: + 1, : + 1 + 0)) = 0

Ext•� (O(: + 1, : + 1 + 0),Q3(:, : + 1)) = 0.
(9.5.5)
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Moreover, for every integer : and non negative integers 0, 1 which satisfy

3 + 0 ≤ 1 ≤ 6 + 0 one has:

Ext•� (O(2 + :, 1 + 1 + :),O(2 + :, 2 + 0 + :)) = 0

Ext•� (O(2 + :, 2 + 0 + :),O(1 + :, 1 + :)) = 0.
(9.5.6)

Proof. All the claims are proven by semiorthogonality of the follow-

ing full exceptional collection, which follows from an application of

Theorem 3.3.1:

�1 (�) = 〈O(0, 0),Q3(0, 0), . . . . . . . . . ,O(0, 4),Q3(0, 4),

O(1, 1),Q3(1, 1), . . . . . . . . . ,O(1, 5),Q3(1, 5),

O(2, 2),Q3(2, 2), . . . . . . . . . ,O(2, 6),Q3(2, 6)〉.

(9.5.7)

�

Another useful vanishing condition comes from the Leray spectral se-

quence and the Koszul resolution of ":

Lemma 9.5.4. Let �1 and �2 be vector bundles on � such that they are

pullbacks of vector bundles on � (2, +5). Then the following relation

holds for every 0, 1, 2, 3 such that 3 − 1 = −1:

Ext•� (�1(0, 1), �2(2, 3)) = Ext•" (�1(0, 1), �2(2, 3)) = 0 (9.5.8)

Moreover, ifExt•
�
(�2(2+1, 3+1), �1(0, 1)) = Ext•

"
(�2(2, 3), �1(0, 1)) =

0 one has:

Ext•� (�2(2 + 3), �1(0 + 1)) = 0. (9.5.9)

The same result holds if �1 and �2 are pullbacks from � (3, +5) for every
0, 1, 2, 3 such that 2 − 0 = −1.
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Proof. By the Koszul resolution of " , we need to compute the co-

homology of �∨1 (−0,−1) ⊗ �2(2, 3) and �∨1 (−0,−1) ⊗ �2(2, 3) ⊗
O(−1,−1) on �. We observe that

ℎ1∗(�∨1 (−0,−1) ⊗ �2(2, 3)) = ℎ1∗(ℎ∗1(�
∨
1 ⊗ �2(2 − 0)) ⊗ ℎ∗2O(3 − 1))

= �∨1 ⊗ �2(2 − 0) ⊗ ℎ1∗ℎ
∗
2O(3 − 1)

(9.5.10)

where the second equality follows by the projection formula, and simi-

larly

ℎ1∗(�∨1 (−0,−1) ⊗ �2(2, 3) ⊗ O(−1,−1)) =

= �∨1 ⊗ �2(2 − 0 − 1) ⊗ ℎ1∗ℎ
∗
2O(3 − 1 − 1).

(9.5.11)

These bundles are zero for 3 − 1 = −1 because both ℎ1∗ℎ∗2O(−1) and
ℎ1∗ℎ∗2O(−2) are zero, hence the cohomology of �∨1 (−0,−1) ⊗ �2(2, 3)
vanishes by the Leray spectral sequence.

About Equation 9.5.9, the claim follows from the long exact sequence of

cohomology associated to the Koszul resolution of �∨2 ⊗�1(0−2, 1−3):

�0(�, �∨2 ⊗ �1(0 − 2 − 1, 1 − 3 − 1)) ↩−−−→ �0(�, �∨2 ⊗ �1(0 − 2, 1 − 3)) −→

�0(", �∨2 ⊗ �1(0 − 2, 1 − 3)) −→ �1(�, �∨2 ⊗ �1(0 − 2 − 1, 1 − 3 − 1)) −→ · · ·
(9.5.12)

The proof for the statement about pullbacks from � (3, +5) is identical.
�

Lemma 9.5.5. We have the following mutations in the derived category

of " for every choice of the integers 0, 1 and for : ∈ {1; 2}:

LO(0,1)U∨: (0, 1) = Q
∨
: (0, 1)

RO(0,1)Q∨: (0, 1) = U
∨
: (0, 1)

(9.5.13)
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and they satisfy Condition (†).

Proof. Let us compute LO(0,1)U∨: (0, 1). The following result

Ext•" (O(0, 1),U∨: (0, 1)) = +
∨
5 [0] (9.5.14)

follows from the Borel–Weil–Bott theorem, it tells us that the mutation

we are interested in is the cone of the morphism

+∨5 ⊗ O(0, 1) −→ U
∨
: (0, 1). (9.5.15)

From the dual of the universal sequence

0 −→ U −→ +5 ⊗ O −→ Q −→ 0 (9.5.16)

we see that the morphism is surjective, thus the cone yields the kernel

Q∨
:
(0, 1). The mutation RO(0,1)Q∨: (0, 1) follows from an identical ar-

gument.

Both mutations satisfies Condition (†) because of the relations:

Ext•� (O,U∨: ) = Ext•� (U∨: (1, 1),O) = 0

Ext•� (Q∨: ,O) = Ext•� (O(1, 1),Q∨: ) = 0
(9.5.17)

which can be verified by the Borel–Weil–Bott theorem. �

Lemma 9.5.6. In the derived category of " , for every 0 and 1 one has

the following mutations, which satisfy Condition (†):

RO(0+1,1−1)Q3(0, 1) = Q2(0, 1)

RO(0+1,1−1)U3(0, 1) = U2(0, 1)

LO(0−1,1+1)Q∨3 (0, 1) = Q
∨
2 (0, 1)

LO(0−1,1+1)U∨3 (0, 1) = U
∨
2 (0, 1).

(9.5.18)
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Proof. With the Borel–Weil–Bott theorem we have:

Ext•" (Q3(0, 1),O(0 + 1, 1 − 1)) = C[−1]

Ext•� (Q3(0 + 1, 1 + 1),O(0 + 1, 1 − 1)) = 0

Ext•� (O(0 + 1, 1 − 1),Q3(0, 1)) = 0

(9.5.19)

so RO(0+1,1−1)Q3(0, 1) is an extension and satisfies Condition (†). The
relevant exact sequence is

0 −→ O(1,−1) −→ Q2 −→ Q3 −→ 0, (9.5.20)

which can be found computing the rank one cokernel of the injection

U2 ↩−→ U3, comparing the universal sequences of the two Grassmanni-

ans and applying the Snake Lemma, this proves our first claim.

In order to verify the second one, we write the sequence involving the

injection between the universal bundles, which is

0 −→ U2 −→ U3 −→ O(1,−1) −→ 0. (9.5.21)

The related Ext, in this case, is C[0], so the mutation is the cone of

the morphism U3 −→ O(1,−1), yielding the desired result. Condition

(†) is satisfied due to the following cohomological results:

Ext•� (U3(0 + 1, 1 + 1),O(0 + 1, 1 − 1)) = 0

Ext•� (O(0 + 1, 1 − 1),U3(0, 1)) = 0.
(9.5.22)

The proof for the last two mutations follow from the same arguments

applied to the duals of Equations 9.5.21 and 9.5.20 and similar coho-

mological computations. �

Now we are ready to introduce the following result, which is the key

of the proof of the derived equivalence.
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Proposition 9.5.7. Let .1 and .2 be the zero loci of the pushforwards of

a general B ∈ �0(�,O(1, 1)). Then there is a composition of mutations

satisfying Condition (†), which yields an equivalence of categories〈
q2�

1 (.2), �1 (� (3, +5)) ⊗ O(1, 1), �1 (� (3, +5)) ⊗ O(2, 2)
〉 ∼−→〈

k�1 (.2), �1 (� (2, +5)) ⊗ O(1, 1), �1 (� (2, +5)) ⊗ O(2, 2)
〉

(9.5.23)

where k is given by a composition of mutations and q2 = :2∗a∗2 in the

notation of Diagram 9.1.1. Moreover, .1 and .2 are derived equivalent.

Proof. The idea of the proof is writing a full exceptional collection for

" in a way such that we can use our cohomology vanishing results to

transport line bundles O(0+1, 1−1) to the immediate right of Q3(0, 1),
then use Lemma 9.5.6 to get rid of Q3(0, 1), thus transforming pull-

backs of vector bundles on � (2, +5) to pullbacks of vector bundles on

� (3, +5).

We start from:

�1 (") = 〈k1�
1 (.2),

O,Q3,O(0, 1),Q3(0, 1),O(0, 2),Q3(0, 2),O(0, 3),Q3(0, 3),

O(0, 4),Q3(0, 4),O(1, 1),Q3(1, 1),O(1, 2),Q3(1, 2),O(1, 3),

Q3(1, 3),O(1, 4),Q3(1, 4),O(1, 5),Q3(1, 5)〉

which is obtained by applying the Cayley trick to the collection 9.5.3

for �1 (� (3, +5), then twisting the whole decomposition by O(−1,−1).
We defined k1 as k1 = q2(−) ⊗ O(−1,−1).
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Our first operation is moving the first five bundles past k1�
1 (.2),

then sending them to the end: they get twisted by the anticanonical

bundle of " , which, with the adjunction formula, can be shown to be

l∨
"
= O(2, 2).

�1 (") = 〈k2�
1 (.2),

Q3(0, 2),O(0, 3),Q3(0, 3),O(0, 4),Q3(0, 4),O(1, 1),Q3(1, 1),

O(1, 2),Q3(1, 2),O(1, 3),Q3(1, 3),O(1, 4),Q3(1, 4),O(1, 5),

Q3(1, 5),O(2, 2),Q3(2, 2),O(2, 3),Q3(2, 3),O(2, 4)〉

where we introduced the functor

k2 = R〈O(0,0),Q3 (0,0),O(0,1),Q3 (0,1),O(0,2)〉k1 (9.5.24)

Applying Lemma 9.5.1, we observe that O(1, 1) can be moved next

to Q3(0, 2) and these mutations satisfy Condition (†) by Lemma 9.5.3.

Then we can use Lemma 9.5.6 transforming Q3(0, 2) in Q2(0, 2). This
can be done twice due to the invariance of the operation up to overall

twists, yielding:

�1 (") = 〈k2�
1 (.2),

O(1, 1),Q2(0, 2),O(0, 3),Q3(0, 3),O(0, 4),Q3(0, 4),Q3(1, 1),

O(1, 2),Q3(1, 2),O(1, 3),O(2, 2),Q2(1, 3),O(1, 4),O(2, 3),

Q3(1, 4),O(1, 5),Q3(1, 5),Q3(2, 2),Q3(2, 3),O(2, 4)〉

The next step is to move O(1, 2) one step to the left. Since Q3(1, 1) '
Q∨3 (1, 2) the result follows from Lemma 9.5.5. Then, since by Lemma

9.5.1 and 9.5.2 O(1, 2) is orthogonal to O(0, 4) and Q3(0, 4) we apply
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Lemma 9.5.6 to transform Q3(0, 3) in Q2(0, 3). Again, all these oper-

ations can be performed twice (by invariance to overall twist) and they

fulfill Condition (†):

�1 (") = 〈k2�
1 (.2),

O(1, 1),Q2(0, 2),O(0, 3),O(1, 2),Q2(0, 3),O(0, 4),Q3(0, 4),

U∨3 (1, 2),Q3(1, 2),O(1, 3),O(2, 2),Q2(1, 3),O(1, 4),O(2, 3),

Q2(1, 4),O(1, 5),Q3(1, 5),U∨3 (2, 3),Q3(2, 3),O(2, 4)〉.

By Lemma 9.5.2 let us move O(0, 3) one step to the right. Then, by

a similar application of the Borel–Weil–Bott theorem we observe that

U∨3 (1, 2) is orthogonal to the two bundles at its left, hence we can

move it to the immediate right of Q2(0, 4). These operations fulfill

Condition (†) due to the following vanishings:

Ext•� (U3(1, 2),Q3(0, 4)) = 0

Ext•� (U3(1, 2),O(0, 4)) = 0

Ext•� (Q3(1, 5),U3(1, 2)) = 0

Ext•� (O(1, 5),U3(1, 2)) = 0.

(9.5.25)

We can then moveU∨3 (1, 2) one additional step to the left using Lemma

9.5.6. Applying the same sequence of mutations to the O(1, 1)-twist of
these objects we get the following collection:

�1 (") = 〈k2�
1 (.2),

O(1, 1),Q2(0, 2),O(1, 2),U2(0, 3),U∨2 (1, 2),O(0, 3),O(0, 4),

Q3(0, 4),Q3(1, 2),O(1, 3),O(2, 2),Q2(1, 3),O(2, 3),U2(1, 4),

U∨2 (2, 3),O(1, 4),O(1, 5),Q3(1, 5),Q3(2, 3),O(2, 4)〉.
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Again, thanks to Lemma 9.5.5, one has RO(1,3)Q3(1, 2) ' U∨3 (1, 3),
then we can apply Lemma 9.5.6 to transform Q3(0, 4) in Q2(0, 4).
But then O(1, 3) ends up next to O(0, 4), which is orthogonal to it

by application of Lemma 9.5.2, so they can be exchanged. Passing

through Q2(0, 4) via Lemma 9.5.5 and mutating it to U2(0, 4), O(0, 4)
goes right next to U∨3 (1, 3), which is mutated to U∨2 (1, 3) by applying

Lemma 9.5.6. Again all these mutations satisfy Condition (†).

Once we have done the same for the O(1, 1)-twists, we have transformed

all the rank 2 and rank 3 pullbacks from � (3, +5) in pullbacks from

� (2, +5). Removing all the duals by the identity Q2 ' ∧2Q∨2 ⊗ det(Q2)
and the analogous one for U2, we get the following result:

�1 (") = 〈k2�
1 (.2),

O(1, 1),Q2(0, 2),O(1, 2),U2(0, 3),U2(2, 2),O(0, 3),O(1, 3),

U2(0, 4),U2(2, 3),O(0, 4),O(2, 2),Q2(1, 3),O(2, 3),U2(1, 4),

U2(3, 3),O(1, 4),O(2, 4),U2(1, 5),U2(3, 4),O(1, 5)〉.
(9.5.26)

First we send O(1, 1) to the end, then we use Lemma 9.5.4 and the fact

that O(2,−2) and U∨2 (2,−2) are acyclic to order the bundles by their

power of the second twist:

�1 (") = 〈k3�
1 (.2),

Q2(0, 2),O(1, 2),U2(2, 2),O(2, 2),U2(0, 3),O(0, 3),O(1, 3),

U2(2, 3),Q2(1, 3),O(2, 3),U2(3, 3),O(3, 3)U2(0, 4),O(0, 4),

U2(1, 4),O(1, 4),O(2, 4),U2(3, 4),U2(1, 5),O(1, 5)〉
(9.5.27)
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where we defined

k3 = RO(1,1)k2. (9.5.28)

Note that each time we exchanged objects �1(0, 1), �2(2, 3) because
3 − 1 = −1 in order to get the collection 9.5.27, such mutations satisfy

Condition (†) by Lemma 9.5.4 because �2(2 + 1, 3 + 1) is semiorthog-

onal to �1(0, 1). This semiorthogonality can be easily checked in the

collection 9.5.26 (using the Serre functor if necessary).

Now we send the last 10 objects to the beginning and reorder again the

collection with respect to the second twist, obtaining the following:

�1 (") = 〈k4�
1 (.2),

U2(1, 1),O(1, 1),U2(−2, 2),O(−2, 2),U2(−1, 2),O(−1, 2),O(0, 2),

U2(1, 2),Q2(0, 2),O(1, 2),U2(2, 2),O(2, 2),U2(−1, 3),O(−1, 3),

U2(0, 3),O(0, 3),O(1, 3),U2(2, 3),Q2(1, 3),O(2, 3)〉,

where

k4 = L〈U2 (1,1),O(1,1),U2 (−2,2),O(−2,2),U2 (−1,2),O(−1,2),O(0,2),U2 (1,2),U2 (−1,3),O(−1,3)〉k3

(9.5.29)

Now we observe that Q2(0, 2) is orthogonal to U2(1, 2), so they can be

exchanged: this allows to mutate Q2(0, 2) to U2(0, 2) sending it one

step to the left (this mutation satisfies Condition (†) by a simple Borel–

Weil–Bott computation). After doing the same thing with O(1, 1)–
twists of these bundles, the last steps are sending the first two bundles
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to the end and twisting everything by O(−1,−1). We get:

�1 (") = 〈k5�
1 (.2),

U2(−3, 1),O(−3, 1),U2(−2, 1),O(−2, 1),U2(−1, 1),O(−1, 1),

U2(0, 1),O(0, 1),U2(1, 1),O(1, 1),U2(−2, 2),O(−2, 2),U2(−1, 2),

O(−1, 2),U2(0, 2),O(0, 2),U2(1, 2),O(1, 2),U2(2, 2),O(2, 2)〉
(9.5.30)

where we defined the functor

k5 = T (−1,−1)R〈U2 (1,1),O(1,1)〉k4 (9.5.31)

where T (−1,−1) is the twist with O(−1,−1).

Observe that, by the isomorphism U2 ' U∨2 (−1) and the fact that

l� (2,+5) ' O(−5), one has:

�1 (� (2, +5)) =〈U2(−4),O(−4),U2(−3),O(−3),U2(−2, 0),

O(−2),U2(−1),O(−1),U2(0),O(0)〉
(9.5.32)

Hence the collection 9.5.30 has the form

�1 (") = 〈k5�
1 (.2), �1 (� (2, +5)) ⊗O(1, 1), �1 (� (2, +5)) ⊗O(2, 2)〉.

(9.5.33)

The proof is completed once we compare this last decomposition with

the following one, obtained by Cayley trick:

�1 (") = 〈q1�
1 (.1), �1 (� (2, +5)) ⊗O(1, 1), �1 (� (2, +5)) ⊗O(2, 2)〉.

(9.5.34)

�
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9.6 Derived equivalence for the roof of type�2

The roof of type �2 is the complete flag � of type �2, which ad-

mits projections ℎ1 and ℎ2 to the two �2-Grassmannians �/%1 and

�/%2 of dimension five, where the former is a smooth quadric. As

usual, we denote by " the smooth zero locus of a section of O(1, 1) =
ℎ∗1O(1) ⊗ ℎ

∗
2O(1), embedded in � by a map ;, and we call (.1, .2) the

associated Calabi–Yau pair.

The main result of this section is due to Kuznetsov in the paper (Kuz18),

where by a sequence of mutations on a suitable semiorthogonal decom-

position of " , a derived equivalence for the associated Calabi–Yau

pair has been given. What we summarize here is basically the same

argument, with some minor variation to make the result compatible

with Condition (†) and the content of Chapters 10 and 11. First,

one has the following semiorthogonal decompositions for the quadric

(Kap88):

�1 (�/%1) = 〈O,S∨,O(1),O(2),O(3),O(4), 〉 (9.6.1)

where S is the spinor bundle (see (Ott88) for a detailed description of

such object). By Serre functor, once we observe that l�/%1 = O(−5),
we write:

�1 (�/%1) = 〈O(−3),O(−2),O(−1),O,S∨,O(1)〉. (9.6.2)

One has Ext•
�/%1
(O,S∨) ' C8 [0] by the Borel–Weil–Bott theorem, and

in light of the following exact sequence (Ott88, Theorem 2.8):

0 −→ S −→ O⊕8 −→ S∨ −→ 0 (9.6.3)
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we compute LOS∨ ' S, hence the following decomposition (Kuz18,

Equation 6):

�1 (�/%1) = 〈O(−3),O(−2),O(−1),S,O,O(1)〉. (9.6.4)

On the other hand, for the second �2-Grassmannian there is the full

exceptional collection (Kuz06, Section 6.4):

�1 (�/%2) = 〈O,U∨,O(1),U∨(1),O(2),U∨(2)〉 (9.6.5)

where U is the tautological bundle. By Serre functor (since l�/%2 '
O(−3)) and by the isomorphism U∨ ' U(1) we write:

�1 (�/%2) = 〈O(−1),U,O,U∨,O(1),U∨(1)〉 (9.6.6)

By Cayley trick one has the following semiorthogonal decomposi-

tions:

�1 (") = 〈q1�
1 (.1),O" (−2, 1),O" (−1, 1),O" (0, 1),

;∗S(1, 1),O" (1, 1),O" (2, 1)〉.
(9.6.7)

�1 (") = 〈q2�
1 (.2),O" (1, 0), ;∗U(1, 1),O" (1, 1),

;∗U∨(1, 1),O" (1, 2), ;∗U∨(1, 2)〉
(9.6.8)

For later convenience, let us also write the following exceptional col-

lections for �, which are an application of Theorem 3.3.1 to the two

projective bundle structures of �:

�1 (�) = 〈O(−3, 0),O(−2, 0),O(−1, 0),S(0, 0),O(0, 0),O(1, 0),

O(−2, 1),O(−1, 1),O(0, 1),S(1, 1),O(1, 1),O(2, 1)〉

= 〈O(0, 0),U∨(0, 0),O(0, 1),U∨(0, 1),O(0, 2),U∨(0, 2),

O(1, 1),U∨(1, 1),O(1, 2),U∨(1, 2),O(1, 3),U∨(1, 3)〉.
(9.6.9)
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We are now ready to formulate the following result, as a corollary to

(Kuz18, Theorem 5)

Corollary 9.6.1. In the setting above, there is a sequence of mutations

of exceptional objects of �1 (") satisfying Condition (†) and realizing a
derived equivalence

〈q2�
1 (.2),O" (1, 0), ;∗U(1, 1),O" (1, 1),

;∗U∨(1, 1),O" (1, 2), ;∗U∨(1, 2)〉

−→ 〈k�1 (.2),O" (−2, 1),O" (−1, 1),O" (0, 1),

;∗S(1, 1),O" (1, 1),O" (2, 1)〉.

(9.6.10)

hence giving �1 (.1) ' �1 (.2).

Proof. Since l" = O" (−1,−1) (Kuz18), by applying the Serre functor

to the last six objects of the collection 9.6.8 we find:

�1 (") = 〈O" (0,−1), ;∗U(0, 0),O" (0, 0),

;∗U∨(0, 0),O" (0, 1), ;∗U∨(0, 1), q2�
1 (.2)〉

(9.6.11)

which can also be derived directly by applying Orlov’s blowup formula

(Theorem 3.3.4) to the collection 9.6.6, since " is the blowup of �/%1

in .1, as it is explained in (Kuz18).

The first step is to send O" (0, 1) and ;∗U∨(0, 1) to the beginning by

Serre functor, we get:

�1 (") = 〈O" (−1, 0), ;∗U∨(−1, 0),O" (0,−1),

;∗U(0, 0),O" (0, 0), ;∗U∨(0, 0), k1�
1 (.2)〉

(9.6.12)

where we defined k1 := L〈O" (0,1),;∗U∨ (0,1)〉q2. The next step is to

move O" (0,−1) to the beginning of the collection. By the Koszul
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resolution of " and the results of (Kuz18, Lemma 1, Corollary 2)

one finds Ext•
�
(O(−1, 0),O(0,−1)) = Ext•

"
(O" (−1, 0),O" (0,−1)) =

0 and Ext•
�
(U∨(−1, 0),O(0,−1)) = Ext•

"
(;∗U∨(−1, 0),O" (0,−1)) =

0. Therefore we have L〈O" (−1,0),;∗U∨ (−1,0)〉O" (0,−1) ' O" (0,−1), and
by semiorthogonality of 9.6.9 these mutations satisfy Condition (†).
We get the following collection:

�1 (") = 〈O" (0,−1),O" (−1, 0), ;∗U∨(−1, 0),

;∗U(0, 0),O" (0, 0), ;∗U∨(0, 0), k1�
1 (.2)〉

(9.6.13)

Again by (Kuz18, Lemma 1, Corollary 2) we have Ext•
�
(U∨(0, 1),U(0, 0)) =

0 and Ext•
"
(;∗U∨(−1, 0), ;∗U(0, 0)) = C[−1], while by semiorthogo-

nality of the collections 9.6.9 also the vanishing Ext•
�
U(0, 0), (U∨(−1, 0)) =

0 holds, hence the mutation L;∗U∨ (−1,0);
∗U(0, 0) satisfies Condition (†).

The result is a rank four extension which is isomorphic to S (Kuz18,

Lemma 4). We get:

�1 (") = 〈O" (0,−1),O" (−1, 0),S(0, 0),

;∗U∨(−1, 0),O" (0, 0), ;∗U∨(0, 0), k1�
1 (.2)〉

(9.6.14)

The next operation is to move the first bundle to the end by means

of the inverse Serre functor, and then move k1�
1 (.2) one step to the

right. We find:

�1 (") = 〈O" (−1, 0),S(0, 0), ;∗U∨(−1, 0),

O" (0, 0), ;∗U∨(0, 0),O" (1, 0), k2�
1 (.2)〉

(9.6.15)

where we defined k2 = RO" (1,0)k1.

By the results of (Kuz18, Lemma 1, Corollary 2) it follows that

Ext•
�
(U∨(0, 1),O) = 0 and Ext•

"
(;∗U∨(−1, 0),O") = C[0], while one
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finds Ext•
�
(O,U∨(−1, 0), ) = 0 as a consequence of the semiorthogo-

nality of 9.6.9. Hence, we can define a mutation R;∗U∨ (−1,0)O" which

satisfies Condition (†). We can compute such mutations by means of

the following short exact sequence (Kuz18, Equation 5):

0 −→ O(−1, 1) −→ U∨ −→ O(1, 0) −→ 0. (9.6.16)

The result is R;∗U∨ (−1,0)O" ' O" (−2, 1). In the same way we find

R;∗U∨ (0,0)O" (1, 0) ' O" (−1, 1) and the semiorthogonal decomposition

becomes:

�1 (") = 〈O" (−1, 0),S(0, 0),O" (0, 0),

O" (−2, 1),O" (1, 0),O" (−1, 1), k2�
1 (.2)〉

(9.6.17)

Observe that by the vanishing of the cohomology of O" (3,−1), O(2,−2)
and O(−3, 0) we see that the mutation obtained by exchanging O" (−2, 1)
with O" (1, 0) satisfies Condition (†). After applying such operation,

let us move k2�
1 (.2) two steps to the left, then send the block

O" (−1, 0),S(0, 0),O" (0, 0),O" (1, 0) to the end. Summing all up,

we obtain:

�1 (") = 〈k3�
1 (.2),O" (−2, 1),O" (−1, 1),O" (0, 1),

S(1, 1),O" (1, 1),O" (2, 1)〉
(9.6.18)

where we introduced the functor k3 = R〈O" (−2,1),O" (−1,1)〉k2. The proof

is concluded by setting k3 = k. �
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10 Derived equivalence of Calabi–Yau fi-
brations

10.1 Setup and notation

The scope of this section is to provide a method to extend the equiv-

alences of Chapter 9 to zero loci of pushforwards of general sections

of L on a homogeneous roof bundle, where L is a basepoint-free line

bundle such that for every 1 ∈ � the restriction map �0(Z,L) −→
�0(c−1(1),L|c−1 (1)) is surjective, and ! = L|c−1 (1) restricts to O(1) on
both projective bundle structures of c−1(1) ' �/%. More precisely, let

us consider a homogeneous roof bundle Z of type �/% over a smooth

projective base �, with the locally trivial fibration c : Z −→ �. Fix

a general section Σ ∈ �0(Z,L) with smooth zero locus M and the

corresponding pair of varieties -1 = / (?1∗Σ), -2 = / (?2∗Σ) (which
are Calabi–Yau fibrations if �/% ; P= × P= by Lemma 4.4.4).

We have the following diagram:

T1 M T2

Z

-1 Z1 Z2 -2

�

`1

<1

]

<2

`2

?1 ?2

c
D1

A1

D2

A2

(10.1.1)
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where for 8 ∈ {1; 2} T8 is a PA−1-bundle over -8 defined as the preimage

of -8 under the map M −→ Z8 given by restricting ?8 to M.

Remark 10.1.1. Consider 1 ∈ / (c∗Σ). Then one has G ∈ M for every

G ∈ c−1(1), therefore c̄−1(1) ' �/%. Conversely, if 1 ∉ / (c∗Σ),
c̄−1(1) is isomorphic to a (possibly singular) zero locus of a section of

! ' L|c−1(1) . This allows us to conclude that, for general Σ, the fiber

of c̄ over the general 1 ∈ � has expected codimension.

Let us now choose a general 1 ∈ � and call " :=M ×� {1}. By the

discussion of Remark 10.1.1, one has " = / (f) where f = Σ|c−1 (1) is

a section of !. Let us choose 1 such that " is smooth. We recover

the following diagram (Diagram 9.1.1):

)1 " )2

�/%

.1 �/%1 �/%2 .2

a1

:1

;

:2

a2

ℎ1 ℎ2

C1 C2

(10.1.2)

Moreover, for 8 ∈ {1; 2} the general fiber of -8 −→ � is isomorphic to

.8 (Lemma 4.4.4). As we discussed in Section 9.1 one has the following

semiorthogonal decompositions of �1 ("):

�1 (") ' 〈\1�
1 (.1), ;∗ℎ∗1�

1 (�/%1)⊗!, . . . , ;∗ℎ∗1�
1 (�/%1)⊗!⊗(A−1)〉

(10.1.3)

' 〈\2�
1 (.2), ;∗ℎ∗2�

1 (�/%2)⊗!, . . . , ;∗ℎ∗2�
1 (�/%2)⊗!⊗(A−1)〉

(10.1.4)

where \8 := :8∗a∗8 and A is the rank of the vector bundles whose projec-

tivizations yield �/%.
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10.1.1 Semiorthogonal decompositions forM

Let us first observe that, sinceM is the zero locus of a smooth section

of L and Z is a PA−1-bundle over both Z1 and Z2, by Cayley trick we

have the following semiorthogonal decompositions:

�1 (M) '〈q1�
1 (-1), ]∗?∗1�

1 (Z1) ⊗ L, . . . , ]∗?∗1�
1 (Z1) ⊗ L⊗(A−1)〉

'〈q2�
1 (-2), ]∗?∗2�

1 (Z2) ⊗ L, . . . , ]∗?∗2�
1 (Z2) ⊗ L⊗(A−1)〉

(10.1.5)

where q8 := <8∗ ◦ `∗8 . Note that A is the same as in Equation 10.1.3.

The next step is to construct semiorthogonal decompositions for Z8.
Let us assume there exist full exceptional collections

�1 (�/%1) = 〈�1, . . . , �<〉

�1 (�/%2) = 〈 1, . . . ,  <〉.
(10.1.6)

Note that on a homogeneous variety �/% every exceptional object is

a homogeneous vector bundle if � is simply connected and semisim-

ple (Böh06, Proposition 2.1.4). Therefore each object of the collections

listed above is a homogeneous vector bundle of the form �8 = �×%1+Γ�8

for some representation Γ�8 of %1 acting on a vector space +Γ�8 . Let

us fix a principal �-bundle V −→ � such that Z = V ×� � ×% �/%.
Then, for every 8 we define the vector bundle J8 := V ×� � ×%1 +Γ�8

on Z1 = V ×� � ×%1 �/%1, and we define some bundles K8 in the
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same way on Z2. In this way, we defined two sets of vector bun-

dles {J1, . . . ,J=} ⊂ �1 (Z1) and {K1, . . . ,K=} ⊂ �1 (Z2) such that

�8 = J8 |c−1 (1) and  8 = K8 |c−1 (1) for every 1 ∈ �.

If we now apply (Sam06, Theorem 3.1) to such bundles we obtain

semiorthogonal decompositions for �1 (/1) and �1 (/2):

�1 (Z1) = 〈J1 ⊗ A∗1�
1 (�), . . . ,J< ⊗ A∗1�

1 (�)〉

�1 (Z2) = 〈K1 ⊗ A∗2�
1 (�), . . . ,K< ⊗ A∗2�

1 (�)〉.
(10.1.7)

Then, substituting these decompositions in Equation 10.1.5 we have:

�1 (M) ' 〈q1�
1 (-1),

B ⊗ ]∗?∗1J1 ⊗ L, . . . . . . . . . . . . ,B ⊗ ]∗?∗1J= ⊗ L,
..........................................................

...

B ⊗ ]∗?∗1J1 ⊗ L⊗(A−1) , . . . . . ,B ⊗ ]∗?∗1J# ⊗ L
⊗(A−1)〉

' 〈q2�
1 (-2),

B ⊗ ]∗?∗2K1 ⊗ L, . . . . . . . . . . . . ,B ⊗ ]∗?∗2K# ⊗ L,
..........................................................

...

B ⊗ ]∗?∗2K1 ⊗ L⊗(A−1) , . . . . . ,B ⊗ ]∗?∗2K= ⊗ L
⊗(A−1)〉

(10.1.8)

where we introduced the shorthand notation B := ]∗c∗�1 (�). We can

compare Equation 10.1.8 with the following semiorthogonal decompo-
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sitions for " , which can be found by substituting 10.1.6 in 10.1.3:

�1 (") ' 〈\1�
1 (.1),

;∗ℎ∗1 1 ⊗ !, . . . . . . . . . . . . , ;∗ℎ∗1 # ⊗ !,
........................................

...

;∗ℎ∗1 1 ⊗ !⊗(A−2) , . . . . . , ;∗ℎ∗1 # ⊗ !
⊗(A−1)〉

' 〈\2�
1 (.2),

;∗ℎ∗2 ̃1 ⊗ !, . . . . . . . . . . . . , ;∗ℎ∗2 ̃# ⊗ !,
........................................

...

;∗ℎ∗2 ̃1 ⊗ !⊗(A−2) , . . . . . , ;∗ℎ∗2 ̃# ⊗ !
⊗(A−1)〉

(10.1.9)

The goal of this chapter is to prove that if there is a sequence of

mutations identifying the semiorthogonal complements of �1 (.1) and
�1 (.2) in the collections 10.1.9, under some requirements we will in-

troduce below, there exists a sequence of mutations for the collections

10.1.8 providing a derived equivalence �1 (-1) ' �1 (-2). Although

this resembles a problem of base change, additional care is required:

in fact, given a smooth section Σ ∈ �0(Z,L), it is not assured that

every restriction to the fibers over � gives rise to smooth varieties, or

even varieties of the expected codimension as we discussed in Remark

10.1.1. Hence, we will need to introduce some additional hypotheses.

Note that the semiorthogonal decompositions 10.1.8 do not depend

on the choice of Σ ∈ �0(Z,L) as long as its zero locus is smooth.

Hence, finding a sequence of mutations as above would prove derived

equivalence for the pair (-1, -2) of Calabi–Yau fibrations defined as

-8 = / (?8∗Σ) for any Σ ∈ �0(Z,L) with smooth zero locus.
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Remark 10.1.2. Before stating the main results, let us remind that in

order to apply (Sam06, Theorem 3.1) to 10.1.5 it is required to have a

full exceptional collection for the fibers of the locally trivial fibrations

A1 and A2. The problem of finding full exceptional collections for

homogeneous varieties is still open, but there are many cases where a

solution has been found. Let �/% be a roof with projective bundle

structures ℎ8 : �/% −→ �/%8 for 8 ∈ {1; 2}. Let us review the cases

where a full exceptional collection is known for both �/%1 and �/%2.

◦ Type �=× �=, �"= and ��2=: here �/%8 is a (! (+)-Grassmannian

for some vector space + . Full exceptional collections for these

varieties have been constructed in (Kap88).

◦ Type �3=/2−1: in this case �/%8 is a symplectic Grassmannian.

The only case where a full exceptional collection is known for

both �/%1 and �/%2 is the roof of type �2. The collections have

been established in (Bei78; Kap88).

◦ Type �=: the only two cases where both �/%8 have known full

exceptional collections are �4 and �5. In the former, by triality,

�/%8 is a six dimensional quadric, for which a full exceptional

collection has been found in (Kap88). In the latter, the varieties

�/%8 are spinor tenfolds, a full exceptional collection for them is

given in (Kuz06).

◦ Type �2: there are known full exceptional collections for both

�/%1 and �/%2 (Kap88; Kuz06).

◦ Type �4: To the best of the author’s knowledge, no full excep-

tional collection is known for �4/%2 and �4/%3.
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10.2 Preparatory material

Before stating the main results of this sections, we need to formulate

a technical lemma. To this purpose we shall fix the notation and

review some basic material, we refer to (Bo94, Chapter 3.1) for a more

thorough introduction.

Definition 10.2.1. A functor ! : A −→ B is left adjoint to a functor

' : B −→ A if there exists a natural transformation [ : �A ⇒ '!, called

unit, such that for every � ∈ A:

◦ [� : � −→ '!(�) is a morphism of A, called unit morphism of �

◦ for every object �′ of A and for every morphism 0 : � −→ '(�′),
there exists a unique U : ! (�′) −→ �′ such that the following

diagram commutes:

'(�′)

� '! (�)[�

0 '(U) (10.2.1)

A functor ' : B −→ A is right adjoint to a functor ! : A −→ B if there

is a natural transformation n : !' ⇒ �B, called counit, such that for

every � ∈ B:

◦ n� : !'(�) −→ � is a morphism ofB, called counit morphism of

�

◦ for every object �′ of B and for every morphism 1 : ! (�′) −→ �,

there exists a unique V : ! (�′) −→ �′ such that the following
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diagram commutes:

! (�′)

!'(�) �

! (U) 6

[�

(10.2.2)

Theorem10.2.2. (Bo94, Theorem3.1.5)Consider two functors ! : A −→
B and ' : B −→ A. Then, the following statements are equivalent:

1. ! is left adjoint to '

2. ' is right adjoint to !

3. There exist natural transformations [ : �A ⇒ '! and n : !' ⇒
�B, called unit and counit, such that for every object � of A and �

of B one has the following relations, called triangle identities:

�!� : !� !'!� !�

�'� : '� '!'� '�

! ([�) n!�

['� '(n�)
(10.2.3)

4. For every pair of objects �, � respectively of A and B, there is

a bĳection \�,� : HomB(! (�), �)) −→ HomA(�, '(�)) which
is natural in both � and �, i.e. for every 0 ∈ HomA(�′, �) and
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1 ∈ HomB(�, �′) the following diagram commutes:

HomB(! (�), �) HomA(�, '(�))

HomB(! (�′), �′) HomA(�′, '(�′))

\�,�

1◦(−)◦! (0) '(1)◦(−)◦0

\�′,�′

(10.2.4)

Hereafter we will denote such adjoint pairs by the symbol ! : A� B :'.

As a consequence of the above we can prove the following lemma.

Lemma 10.2.3. Let B,M,X be categories. Consider the adjoint pairs

!1 : X�M :'1 and !2 : B � X :'2. Then, for every object G ∈ X one

has the following identity:

!1(n2,G) = n12, !1G ◦ !1!2'2([1,G). (10.2.5)

where by n12,!1G we denote the counit morphism of the adjoint pair

!1!2 : B�M :'2'1 on the object !1G ∈ M.

Proof. Let us call \1 and \2 the bĳections of Theorem 10.2.2, part

3, for the adjoint pairs !1 : X � M : '1 and !2 : B � X : '2. To

simplify the notation, we drop the subscripts denoting objects for such

morphisms. Let us fix g8 = \−1
8

for 8 ∈ {1; 2}. By Theorem 10.2.2, part
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3, we have the following diagram where each square is commutative:

HomB('2'1!1G, '2'1!1G) HomB('2G, '2'1!1G)

HomX(!2'2'1!1G, '1!1G) HomX(!2'2G, '1!1G)

HomM(!1!2'2'1!1G, !1G) HomM(!1!2'2G, !1G)

(−)◦'2 ([1,G)

g2 g2

(−)◦!2'2 ([1,G)

\1

(−)◦!1!2'2 ([1,G)

\1

(10.2.6)

On the other hand, one has the following diagram, where the upper

square commutes:

HomB('2G, '2G) HomB('2G, '2'1!1G)

HomX(!2'2G, G) HomX(!2'2G, '1!1G)

HomM(!1!2'2G, !1G)

g2

'2 ([1,G)◦(−)

g2

[1,G◦(−)

!1 (−)
\1

(10.2.7)

Let us now prove that the lower triangular diagram commutes as well,

namely we want to show that given any morphism 5 ∈ HomX(!2'2G, G)
one has \1(!1( 5 )) = [1,G ◦ 5 . Again by naturality of \1, as in Theorem
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10.2.2, we have a commutative diagram:

HomM(!1G, !1G) HomX(G, '1!1G)

HomM(!1!2'2G, !1G) HomX(!2'2G, '1!1G)

\1

(−)◦!1 ( 5 ) (−)◦ 5

\1

(10.2.8)

Let us now consider the identity morphism �!1G ∈ Hom(!1G, !1G).
Then, by composing the top and right arrows, one has \1(�!1G) ◦ 5 =
[1,G ◦ 5 . On the other hand, by composition of the bottom and left

arrows, we get \1(�!1G ◦ !1( 5 )) = \1(!1( 5 )) and by commutativity we

obtain \1(!1( 5 )) = [1,G ◦ 5 .

Now, given the identity morphisms �'2'1!1G ∈ Hom('2'1!1G, '2'1!1G)
and �'2G ∈ Hom('2G, '2G), one has �'2'1!1G ◦'2([1,G) = '2([1,G) ◦ �'2G ,

therefore g1(g2(�'2'1!1G ◦ '2([1,G)) = g1(g2('2([1,G) ◦ �'2G)). By com-

mutativity of Diagram 10.2.6 one finds

g1(g2(�'2'1!1G ◦ '2([1,G)) = g1(g2(�'2'1!1G)) ◦ !1!2'2([1,G) (10.2.9)

while by commutativity of diagram 10.2.7 it follows that

g1(g2('2([1,G) ◦ �'2G)) = !1(g2(�'2G)). (10.2.10)

The proof is concluded by equating the right-hand sides of Equa-

tions 10.2.9 and 10.2.10 once we observe that g2(�'2G) = n2,G and

g1(g2(�'2'1!1G)) = n12,!1G . �
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10.3 Roof bundles and mutations

In the following we will mostly focus on left mutations, since given

an admissible subcategory A ⊂ ℭ of a triangulated category ℭ, the

functors LA :⊥ A −→ A⊥ and RA : A⊥ −→⊥ A are mutually inverses

(see, for example, (Kuz10, Lemma 2.7) and the source therein).

Definition 10.3.1. Let c : Z −→ � be a flat proper morphism of smooth

projective varieties and let M be the smooth zero locus of a section

of a line bundle L, embedded in Z by ] : M ↩−→ Z. Consider two

relatively exceptional objects E, F ∈ �1 (Z) and suppose there exist

strong semiorthogonal decompositions

�1 (Z) = 〈C, E ⊗ c∗�1 (�), F ⊗ c∗�1 (�)〉

�1 (M) = 〈D, ]∗E ⊗ ]∗c∗�1 (�), ]∗F ⊗ ]∗c∗�1 (�)〉
(10.3.1)

for some admissible subcategories C,D. We say that the left mutation

L〈E⊗c∗�1 (�)〉 (F ⊗ c∗�1 (�)) commutes with ]∗ if the following equiva-

lence holds:

�1 (M) = 〈D,L〈]∗E⊗]∗c∗�1 (�)〉 (]∗F ⊗ ]∗c∗�1 (�)), ]∗E ⊗ ]∗c∗�1 (�)〉

' 〈D, ]∗L〈E⊗c∗�1 (�)〉 (F ⊗ c∗�1 (�)), ]∗E ⊗ ]∗c∗�1 (�)〉
(10.3.2)

Definition 10.3.2. LetZ −→ � be a flat and proper morphism of smooth

projective varieties, let L be a line bundle on Z. Consider two objects

E, F ∈ �1 (Z). We say that E is L-semiorthogonal to F if the following

condition is fulfilled:

c∗'H><Z (E, F ⊗ L∨) = 0 (10.3.3)
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Lemma 10.3.3. In the setting of Definition 10.3.2, let � be a point. Then

E is L-semiorthogonal to F if and only if Ext•Z (E, F ⊗ L
∨) = 0.

Proof. Fix � ' {?C}. One has:

c∗'H><�/% (E, F ⊗ L∨) ' �•(�/%, 'H><�/% (E, F ⊗ L∨))

' Ext•
�/% (E, F ⊗ L

∨)
(10.3.4)

where the first isomorphism is a consequence of (Mum12, Page 50,

Corollary 2). �

Lemma 10.3.4. Let c : Z −→ � be a flat and proper morphism of

smooth projective varieties, call M ⊂ Z the smooth zero locus of a

section of a line bundle L, embedded in Z by the morphism ]. Suppose

there exist admissible subcategories C ⊂ �1 (M), D ⊂ �1 (Z) and
vector bundles E, F ∈ �1 (Z) relatively exceptional over � such that

one has the following strong, �-linear semiorthogonal decompositions:

�1 (Z) = 〈D, E ⊗ c∗�1 (�), F ⊗ c∗�1 (�)〉

�1 (M) = 〈C, ]∗E ⊗ ]∗c∗�1 (�), ]∗F ⊗ ]∗c∗�1 (�)〉
(10.3.5)

Then, if E is L-semiorthogonal to F , L〈E⊗c∗�1 (�)〉F ⊗ c∗�1 (�) com-
mutes with ]∗.

Proof. In order to describe the left mutation of ]∗F ⊗ c∗G through

〈]∗E ⊗ ]∗c∗�1 (�)〉 inside �1 (M), we introduce the following functors

(and their right adjoints):

Ψ〈E⊗c∗�1 (�)〉 : �1 (�) �1 (Z)

G c∗G ⊗ E
(10.3.6)
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Ψ!
〈E⊗c∗�1 (�)〉 : �1 (Z) �1 (�)

R c∗'H><Z (E,R)
(10.3.7)

We can apply Lemma 10.2.3 to the data !1 = ]∗, '1 = ]∗, !2 =

Ψ〈E⊗c∗�1 (�)〉, '2 = Ψ!
〈E⊗c∗�1 (�)〉, X = �1 (Z), B = �1 (�), M =

�1 (M). As a result, the following diagram commutes:

!1!2'2� !1�

!1!2'2'1!1� !1�

!1 (n2,�)

!1!2'2 ([1,�)

n12,!1�

(10.3.8)

for any object � of �1 (Z). Let us now introduce the following func-

tors:

Θ〈]∗E⊗]∗c∗�1 (�)〉 : �1 (�) �1 (M)

G ]∗c∗G ⊗ ]∗E
(10.3.9)

Θ!
〈]∗E⊗]∗c∗�1 (�)〉 : �1 (M) �1 (�)

W c∗]∗'H><M (]∗E,W)
(10.3.10)

Note that, by definition, Θ〈]∗E⊗]∗c∗�1 (�)〉 = ]∗Ψ〈E⊗c∗�1 (�)〉. Then, Dia-
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gram 10.3.8 can be written in the following way:

]∗Ψ〈E⊗c∗�1 (�)〉Ψ
!
〈E⊗c∗�1 (�)〉 (F ⊗ c

∗G) ]∗(F ⊗ c∗G)

]∗Ψ〈E⊗c∗�1 (�)〉Ψ
!
〈E⊗c∗�1 (�)〉 ]∗]

∗(F ⊗ c∗G) ]∗(F ⊗ c∗G)

U

]∗nZ

nM

(10.3.11)

where U = ]∗Ψ〈E⊗c∗�1 (�)〉Ψ!
〈E⊗c∗�1 (�)〉 ([1,F⊗c∗G), nZ = n2,F⊗c∗G , nM =

n12,]∗ (F ⊗c∗G) .

Let us now prove the following claim:

Claim. The map U is an isomorphism if E is L-semiorthogonal to F .
To this purpose, let us focus on the following term:

Ψ!
〈E⊗c∗�1 (�)〉 ]∗]

∗(F ⊗ c∗G) = c∗'H><Z (E, ]∗]∗(F ⊗ c∗G))

(10.3.12)

Since E is a vector bundle we have:

c∗'H><Z (E, ]∗]∗(F ⊗ c∗G)) ' c∗(E∨ ⊗ ]∗]∗(F ⊗ c∗G)). (10.3.13)

Observe that ]∗]∗(F ⊗c∗G) has a resolution given by the tensor product

of F with the Koszul resolution of ]∗]∗O:

0 −→ F ⊗c∗G⊗L∨ −→ F ⊗c∗G −→ ]∗]
∗(F ⊗c∗G) −→ 0 (10.3.14)

By left-exactness of the derived pushforward we get the following long
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exact sequence:

0 −→ '0c∗(E∨ ⊗ F ⊗ c∗G ⊗ L∨) −→ '0c∗(E∨ ⊗ F ⊗ c∗G) −→

−→ '0c∗(E∨ ⊗ ]∗]∗(F ⊗ c∗G)) −→ '1c∗(E∨ ⊗ F ⊗ c∗G ⊗ L∨) −→

−→ '1c∗(E∨ ⊗ F ⊗ c∗G) −→ '1c∗(E∨ ⊗ ]∗]∗(F ⊗ c∗G)) −→ · · ·
(10.3.15)

Hence, proving the claim reduces to show that

':c∗(E∨ ⊗ F ⊗ c∗G ⊗ L∨) = 0 (10.3.16)

for every : . By the (derived) projection formula one has:

':c∗(E∨ ⊗ F ⊗ c∗G ⊗ L∨) ' ':c∗(E∨ ⊗ F ⊗ L∨) ⊗ G

' ':c∗'H><Z (E, F ⊗ L∨) ⊗ G = 0

(10.3.17)

where the last isomorphism follows by the fact that E is L-semiorthogonal

to F . This proves that U is an isomorphism for every G ∈ �1 (�).

In order to prove that ]∗L〈E⊗c∗�1 (�)〉 (F ⊗c∗G) and L〈]∗E⊗]∗c∗�1 (�)〉 ]∗(F ⊗
c∗G) are isomorphic for every G ∈ �1 (�), note that such objects are

defined as the cones of respectively nM and ]∗nZ, in the following

distinguished triangles:

Θ〈]∗E⊗]∗c∗�1 (�)〉Θ
!
〈]∗E⊗]∗c∗�1 (�)〉 ]

∗F ⊗ ]∗c∗G
nM−−→

−→ ]∗F ⊗ ]∗c∗G −→ L〈]∗E⊗]∗c∗�1 (�)〉 ]∗F ⊗ ]∗c∗G;

]∗Ψ〈E⊗c∗�1 (�)〉Ψ
!
〈E⊗c∗�1 (�)〉F ⊗ c

∗G
]∗nZ−−−→

−→ ]∗(F ⊗ c∗G) −→ ]∗L〈E⊗c∗�1 (�)〉F ⊗ c∗G.

(10.3.18)
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Since U is an isomorphism, the proof is concluded by (GM03, page

232, Corollary 4) applied to Diagram 10.3.11.

�

With the following lemma, in the setting of a roof bundle c : Z −→ �,

we show that L-semiorthogonality of vector bundles constructed by a

representation of % can be checked on the fibers of c.

Lemma 10.3.5. Let c : Z −→ � be a roof bundle of type�/% where � is

a smooth projective variety andV a principal �-bundle on �. Let Γ be a

representation of % acting on the vector space +Γ such that ! = � ×% +Γ.
Consider a line bundle L on Z such that L = c∗) ⊗ (V ×� � ×% +Γ)
where ) is a line bundle on �. Let E, F be vector bundles onZ such that

for every 1 ∈ � one has E|c−1 (1) ' � and F |c−1 (1) ' �, where � is !-

semiorthogonal to �. Then, for everyG ∈ �1 (�), E isL-semiorthogonal
to F ⊗ c∗G.

Proof. Since E is a vector bundle, the following holds:

c∗'H><Z (E, F ⊗ c∗G ⊗ L∨) ' c∗(E∨ ⊗ F ⊗ c∗G ⊗ L∨) (10.3.19)

thus our claim follows by proving that ':c∗(E∨ ⊗ F ⊗ c∗G ⊗ L∨) = 0

for every : . By the derived projection formula one has:

':c∗(E∨ ⊗ F ⊗ c∗G ⊗ L∨) = ':c∗(E∨ ⊗ F ⊗ L∨) ⊗ G. (10.3.20)

We will prove that the stalk ':c∗(E∨ ⊗ F ⊗ L∨)1 vanishes for every

1 ∈ �. Once we fix 1, we observe that by our assumptions the following

holds:
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◦ E∨ ⊗ F ⊗ L∨ is flat over � (Har77, Proposition III.9.2)

◦ The map 1 ↦−→ dim�: (c−1(1), E∨ ⊗ F ⊗ L∨ |c−1 (1)) =
dim�: (�/%, �∨ ⊗ � ⊗ !∨) is constant for every :

Then, we apply (Mum12, Page 50, Corollary 2) and we find:

':c∗(E∨ ⊗ F ⊗ L∨)1 ' �: (�/%, �∨ ⊗ � ⊗ !∨)

' Ext:
�/% (�, � ⊗ !

∨) = 0
(10.3.21)

where the last equality holds because � is !-semiorthogonal to � by

hypothesis. This proves that ':c∗(E∨⊗F ⊗L∨) = 0, hence concluding

the proof. �

Notation 10.3.6. We establish the following data:

◦ Consider a homogeneous roof bundle Z c−−→ � of type �/% on a

smooth projective base �, such that Z admits two different pro-

jective bundle structures ?8 : Z −→ Z8 for 8 ∈ {1; 2}. Call V a

principal �-bundle over � such thatZ = V ×� �/%.

◦ Let ! be the line bundle on �/% which restricts to O(1) on the

fibers of both the projective bundle structures of �/% (which exists

by Proposition 4.1.4). Given a representation Γ of % acting on the

vector space+Γ such that ! = �×%+Γ, consider a line bundleL on

Z such that L = c∗) ⊗ (V ×� � ×% +Γ) where ) is a line bundle

on �, and such that L restricts to O(1) on each fiber of both the

projective bundle structures ofZ.

◦ A general section Σ ∈ �0(Z,L) with smooth zero locus M, a

general section f ∈ �0(�/%, !), a point 1 ∈ � such that " :=
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/ (f) = / (Σ|c−1 (1)) is smooth, and the following diagram:

" =M ×� {1} M

{1} �

(10.3.22)

Call ] :M ↩−→ Z and ; : " ↩−→ �/% the respective embeddings.

◦ A Calabi–Yau pair (.1, .2) associated to the roof �/%, defined as

.8 = / (ℎ8∗f8) where ℎ8 : �/% −→ �/%8 are the two projective

bundle structures of �/%. Similarly, we consider a pair (-1, -2)
of Calabi–Yau fibrations defined as -8 = / (?8∗Σ).

◦ Two full exceptional collections:

�1 (�/%1) = 〈�1, . . . , �<〉, �1 (�/%2) = 〈 1, . . . ,  <〉
(10.3.23)

which by (Orl92, Corollary 2.7) induce the following semiorthogo-

nal decompositions for �1 (�/%) (recall that�/% has PA−1-bundle

structures on both �/%1 and �/%2):

�1 (�/%) = 〈�1, . . . , �#〉 = 〈�1, . . . , �#〉 (10.3.24)

where the bundles �8 have the form �8 = � 9⊗!⊗: and �8 =  9⊗!⊗:

for some integers 9 , : . Moreover, by Theorem (Orl03 Proposition

2.10), one gets the following semiorthogonal decompositions for

�1 ("):

�1 (") = 〈\1�
1 (.1), ;∗�1, . . . , ;

∗�=〉

= 〈\2�
1 (.2), ;∗�1, . . . , ;

∗�=〉
(10.3.25)
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where \1 and \2 are defined in Equation 10.1.9. Note that the

numbers of exceptional objects in Equations 10.3.24 and 10.3.25

are different, but all exceptional objects of 10.3.25 are pullbacks of

objects from 10.3.24. We introduce the following ordered lists of

exceptional objects:

K = (�1, . . . , �=)

L = (�1, . . . , �=)
(10.3.26)

Observe that K and L are subsets of the generators of �1 (�/%)
appearing in the exceptional collections 10.3.24.

◦ For every �8, which can be described as �8 = � ×%1 +Γ8 for some

vector space +Γ8 associated to a representation Γ8 of %1, consider

the vector bundle J8 := V ×� � ×%8 +Γ8 such as defined in Section
10.1.1, with the property that J8 |c−1 (1) ' �8 for every 8. Then, by

(Sam06, Theorem 3.1), the subcategory J8 ⊗A∗1�
1 (�) is admissible

in�1 (Z1). In the samewaywe can define admissible subcategories
K8 ⊗ A∗2�

1 (�) ⊂ �1 (Z2). By applying (Sam06, Theorem 3.1)

and (Orl92, Corollary 2.7) to the collections 10.3.25 we find the

following semiorthogonal decompositions:

�1 (Z) = 〈[�1], . . . , [�# ]〉

= 〈[�1], . . . , [�# ]〉
(10.3.27)

where the subcategories [�8] have the form [�8] = ?∗1J8 ⊗ L
⊗: ⊗

c∗�1 (�). From now on, given a homogeneous vector bundle� ×%

+Γ on �/%, we will use the notation [� ×% +Γ] to denote (V ×�

� ×% +Γ) ⊗ c∗�1 (�) ⊂ Z. Since ! and �8 are both homogeneous,
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and by definition of L, one has [�8] ' [ℎ∗1�8 ⊗ !
⊗: ]. Similarly,

[�8] = [ℎ∗2 9 ⊗ !
⊗: ]. Furthermore, by (Orl03 Proposition 2.10),

there are semiorthogonal decompositions:

�1 (M) = 〈q1�
1 (-1), ]∗ [�1], . . . , ]∗ [�=]〉

= 〈q2�
1 (-2), ]∗ [�1], . . . , ]∗ [�=]〉

(10.3.28)

where q1 and q2 are the same as in Equation 10.1.5.

◦ Consider a sequence of pairs (K (_) , k (_)) where, for each _, K (_) =(
�
(_)
1 , . . . , �

(_)
=

)
is an ordered list of exceptional objects of�1 (�/%)

and k (_) : �1 (.1) −→ �1 (") is a fully faithful functor, and a se-

quence of operations:

b (_) : (K (_) , k (_)) ↦−→ (K (_+1) , k (_+1)) (10.3.29)

such that each b (_) falls in one of the following classes (type O1,

O2 or O3):

O1 For 1 ≤ 8 ≤ = − 1 exchanging the order of � (_)
8+1 with � (_)

8

and substituting the latter with L�8�
(_)
8+1 , while leaving k (_)

unchanged:(
�
(_+1)
1 , . . . , �

(_+1)
=

)
=

(
�
(_)
1 , . . . , �

(_)
8−1,L� (_)

8

�
(_)
8+1 ,

�
(_)
8
, �
(_)
8+2 , . . . , �

(_)
=

)
k (_+1) = k (_)

(10.3.30)

where L
�
(_)
8

�
(_)
8+1 is defined by the following distinguished tri-

angle in �1 (�/%):

�
(_)
8
⊗ Ext•

�/% (�
(_)
8
, �
(_)
8+1) −→ �

(_)
8+1 −→ L� (_)

8

�
(_)
8+1 .

(10.3.31)
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Similarly, we define the operation of exchanging the order

of � (_)
8

with � (_)
8+1 and substituting the former with R

�
(_)
8+1
�
(_)
8

,

while leaving k (_) unchanged:(
�
(_+1)
1 , . . . , �

(_+1)
=

)
=

(
�
(_)
1 , . . . , �

(_)
8−1, �

(_)
8+1 ,R� (_)

8+1
�
(_)
8
,

�
(_)
8+2 , . . . , �

(_)
=

)
k (_+1) = k (_)

(10.3.32)

where R
�
(_)
8+1
�
(_)
8

is defined by the following distinguished tri-

angle in �1 (�/%):

R
�
(_)
8+1
�
(_)
8
−→ �

(_)
8
−→ �

(_)
8+1 ⊗ Ext•

�/% (�
(_)
8
, �
(_)
8+1)
∨.

(10.3.33)

O2 Sending � (_)1 to the end, twisting it by !⊗(A−1) and substituting

k (_) with R;∗�1k
(_):(

�
(_+1)
1 , . . . , �

(_+1)
=

)
=

(
�
(_)
2 , . . . , �

(_)
= , �

(_)
1 , ⊗!⊗(A−1)

)
k (_+1) = R;∗�1k

(_)

(10.3.34)

or sending � (_)= to the beginning, tensor it with !⊗(−A+1) and

substitute k (_) with L;∗ (�=⊗!⊗(−A+1) )k
(_):(

�
(_+1)
1 , . . . , �

(_+1)
=

)
−→

(
�
(_)
1 ⊗ !⊗(−A+1) , � (_)2 , . . . , �

(_)
=−1

)
k (_+1) −→ L;∗ (�=⊗!⊗(−A+1) )k

(_)

(10.3.35)
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O3 For any : ∈ Z, substituting � (_)
8

with � (_)
8
⊗ !⊗: for every 8,

and substituting k (_) with k (_) (−) ⊗ !⊗: :(
�
(_+1)
1 , . . . , �

(_+1)
=

)
=

(
�
(_)
1 ⊗ !⊗: , . . . , � (_)= ⊗ !⊗:

)
k (_+1) = k (_) (−) ⊗ !⊗:

(10.3.36)

◦ An autoequivalence of �1 (") given by a sequence of mutations

and twists on the semiorthogonal decompositions 10.3.25 which

acts in the following way:

〈\1�
1 (.1), ;∗�1, . . . , ;

∗�=〉 −→ 〈k�1 (.1), ;∗�1, . . . , ;
∗�=〉
(10.3.37)

Lemma 10.3.7. Let �1 (�/%) = 〈,1, . . . ,,=, 〉 be a full exceptional

collection. Then, in the setting of Notation 10.3.6, for 1 ≤ 8 ≤ # − 1 one

has:

�1 (Z) = 〈[,1], . . . , [,8−1], [L,8,8+1], [,8], [,8+2], . . . , [,# ]〉 (10.3.38)

Moreover, the following holds:

L[,8] [,8+1] ' [L,8,8+1] (10.3.39)

Proof. By Theorem 3.3.2 one has a semiorthogonal decomposition

�1 (Z) = 〈[,1], . . . , [,# ]〉, then applying (Kuz10, Corollary 2.9) one

finds:

�1 (Z) = 〈[,1], . . . , [,8−1],L[,8 ] [,8+1], [,8], [,8+2], . . . , [,# ]〉
(10.3.40)
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On the other hand, for 1 ≤ 8 ≤ # − 1 one has:

�1 (�/%) = 〈,1, . . . ,,8−1,L,8,8+1,,8,,8+2, . . . ,,<〉 (10.3.41)

and by applying again Theorem 3.3.2 to the collection 10.3.41 one

finds:

�1 (Z) = 〈[,1], . . . , [,8−1], [L,8,8+1], [,8], [,8+2], . . . , [,# ]〉 (10.3.42)

By comparison with Equation 10.3.40 we see that both [L,8,8+1] and
L[,8] [,8+1] are equivalent to the subcategory ⊥〈[,1], . . . , [,8−1]〉 ∩
〈[,8], [,8+2], . . . , [,# ]〉⊥, hence they are equivalent. �

Lemma10.3.8. In the language ofNotation 10.3.6, consider a semiorthog-
onal decomposition �1 (") = 〈q1�

1 (.1), ;∗,1, . . . , ;
∗,=〉 where, for

1 ≤ 9 ≤ =,, 9 is a homogeneous vector bundle on �/%. Assume that,8

is !-semiorthogonal to,8+1 for some positive 8 < =. Then the following

holds:

◦ L,8,8+1 commutes with ;∗

◦ L[,8] [,8+1] commutes with ]∗

◦ one has a semiorthogonal decomposition:

�1 (M) =〈q1�
1 (-1), ]∗ [,1], . . . . . . , ]∗ [,8−1],

]∗ [L,8,8+1], ]∗ [,8], ]∗ [,8+2], . . . , ]∗ [,=]〉
(10.3.43)

Proof. Let us first recall that by Theorem 3.3.2 and Theorem 3.3.5

one has �1 (M) = 〈q1(.1), ]∗ [,1], . . . , ]∗ [,=]〉. We now prove com-

mutativity. By Lemma 10.3.7, one has [L,8,8+1] = L[,8] [,8+1]. By

Lemma 10.3.5, since ,8 is !-semiorthogonal to ,8+1 it follows that
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W8 is L-semiorthogonal to W8+1. Then, by Lemma 10.3.4 applied

to �/% −→ {?C} one finds that L,8,8+1 commutes with ;∗, while

by applying the same lemma to Z −→ � it follows that L[,8] [,8+1]
commutes with ]∗. By the latter we get:

L]∗ [,8] ]
∗ [,8+1] ' ]∗L[,8] [,8+1] = ]∗ [L,8,8+1] (10.3.44)

By (Kuz10, Corollary 2.9) one has:

�1 (M) =〈q1�
1 (-1), ]∗ [,1], . . . . . . . . . , ]∗ [,8−1],

L]∗ [,8] ]
∗ [,8+1], ]∗ [,8], ]∗ [,8+2], . . . , ]∗ [,=]〉

(10.3.45)

and substituting 10.3.44 in the decomposition 10.3.43 completes the

proof.

�

Proposition 10.3.9. In the language of Notation 10.3.6, assume there is

a semiorthogonal decomposition �1 (") = 〈q1�
1 (.1), ;∗,1, . . . , ;

∗,=〉
where every, 9 is a homogeneous vector bundle on �/%. Then one has:

�1 (M) = 〈L ]∗ [,=⊗!⊗(−A+1) ]q1�
1 (-1), ]∗ [,= ⊗ !⊗(−A+1) ], ]∗ [,1], . . . , ]∗ [,=−1]〉.

(10.3.46)

Proof. Since M is a smooth projective variety, by the Serre functor,

there is the following semiorthogonal decomposition:

�1 (M) = 〈L ]∗ [,= ] ⊗lMq1�
1 (-1), ]∗ [,=] ⊗ lM , ]∗ [,1], . . . , ]∗ [,=−1]〉.

(10.3.47)

One has (Ful98, Example 3.2.11):

lZ ' ?∗8lZ8 ⊗ ?∗8 det E8 ⊗ L⊗(−A) (10.3.48)
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but since Z is a roof bundle, (Z|A−1
8
(1) , E8 |A−1

8
(1)) is a Mukai pair for

every 1 ∈ �, which implies that lZ8 ⊗ det E8 ' A∗8 ) , where ) is a

line bundle on �. Then, by plugging this into 10.3.48 we get lZ '
L⊗(−A) ⊗ c∗) . Due to the following normal bundle sequence:

0 −→ )M −→ ]∗)Z −→ L −→ 0 (10.3.49)

one has lM ' ]∗lZ ⊗ ]∗L∨ ' ]∗L⊗(−A+1) ⊗ ]∗c∗) . Then, the proof is

completed by the following computation:

]∗ [,=] ⊗ lM = ]∗ [,=] ⊗ ]∗L⊗(−A+1) = ]∗ [,= ⊗ !⊗(−A+1)] . (10.3.50)

and by plugging it in the decomposition 10.3.47. �

Let us gather here the assumptions for the main theorem of this chap-

ter.

Assumption 10.3.10. The data of Notation 10.3.6 fulfill the following

requirements:

A1 L is basepoint-free and the restriction map

�0(Z,L) −→ �0(c−1(1),L|c−1 (1)) (10.3.51)

is surjective for every 1 ∈ �

A2 The autoequivalence of �1 (") described in Notation 10.3.6 acts by
a composition of the following operations on the first collection of

Equation 10.3.25:

◦ Mutations of pairs of exceptional objects L;∗� ;∗� where � ,

� satisfy the semiorthogonality condition Ext•
�/% (�, �) = 0
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and � is !-semiorthogonal to � (in short, L;∗� ;∗� satisfies

Condition (†) as defined in Chapter 9)

◦ Overall twists by a power of !.

◦ Applying the Serre functor of S" sending the last exceptional

object to the beginning of the semiorthogonal decompositions,

or applying the inverse functor S−1
"
.

◦ Applying themutationL;∗� orR;∗� to the subcategory \8�1 (.8),
where ;∗� is an exceptional object in the right (respectively

left) semiorthogonal complement of \8�1 (.8).

A3 The sequence of operations b = b (') . . . b (1) acts on (K, \1) in the

following way:

b : (K, \1) ↦−→ (L, k) (10.3.52)

where (K (1) , k (1)) = (K, \1) and (K ('+1) , k ('+1)) = (L, k).

The condition A1 is needed to ensure smoothness of the general sections

of L, and the fact that zero loci of pushforwards of such sections

have the property of being Calabi–Yau fibrations. On the other hand,

assumption A2 is needed to construct the mutations in �1 (M). The

last assumption A3 is needed to ensure that such mutations really yield

an equivalence �1 (-1) ' �1 (-2).

Definition 10.3.11. In the language of Notation 10.3.6, we say that a pair
(Z,L) of a roof bundle Z of type �/% together with the line bundle

L satisfies Assumption 10.3.10 if L satisfies Assumption A1 and there

exist two full exceptional collections �/% = 〈�1, . . . �#〉 = 〈�1 . . . �#〉
and a section f ∈ �0(�/%, !) as required in Notation 10.3.6, which are
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compatible with Assumptions A2 and A3.

Theorem 10.3.12. Let (Z,L) satisfy Assumption 10.3.10. Then a gen-
eral section of L induces a derived equivalence of Calabi–Yau fibrations
Φ : �1 (-1) −→ �1 (-2).

Proof. Consider two full exceptional collections �/% = 〈�1, . . . �#〉 =
〈�1 . . . �#〉 and a general section f ∈ �0(�/%, !) with zero locus " ,
compatible with Assumptions A2 and A3. Then, by Assumption A2
one has a derived equivalence:

�1 (") = 〈\1�
1 (.1), ;∗�1, . . . , ;

∗�=〉 (10.3.53)

−→〈k�1 (.1), ;∗�1, . . . , ;
∗�=〉 (10.3.54)

which consists in applying a sequence of operations to the first semiorthog-
onal decomposition, which only include mutations of !-semiorthogonal
exceptional pairs, the Serre functor of " , overall twists by a line bundle
and mutations of \1�

1 (.1) through the admissible subcategory gener-
ated by an exceptional object.

Consider the sequence of operations b = b (') · · · b (1) defined in No-
tation 10.3.6. By Assumption A3 one has:

b : (K, \1) ↦−→ (L, k) (10.3.55)

These operations, by A2, are in one-to-one correspondence with the
mutations used to transform the decomposition 10.3.53 into 10.3.54
(the case of mutations of pairs is treated in Lemma 10.3.8). In fact, for
1 ≤ _ ≤ ' + 1 one has a semiorthogonal decomposition:

�1 (") = 〈k (_)�1 (.1), ;∗� (_)1 , . . . , ;∗� (_)= 〉. (10.3.56)
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Every operation b (_) commutes also with the mapping , ↦−→ [,]: for
the cases of Operations O2 and O3 this follows by the fact that the
product of homogeneous vector bundles associated to representations
Γ, Γ′ is the homogeneous vector bundle associated to the representation
Γ ⊗ Γ′, while the case of type O1 follows from Lemma 10.3.7.

Therefore, we can define [K] = {[�1], . . . , [�=]}, [L] = {[�1], . . . , [�=]}
and construct a sequence of operations [b] = [b (')] · · · [b (1)] as follows:

[b (_)] : ( [K (_)],Φ(_)) ↦−→ ([K (_+1)],Φ(_+1)) (10.3.57)

where ( [K (1)],Φ(1)) = ( [K], q1) and ( [K ('+1)],Φ('+1)) = ( [L],Φ).
The functor Φ(_) is defined by formally substituting ]∗ [�8] in place of
;∗�8 in the definition of k (_) .

Fix a general section Σ ∈ �0(Z,L) with zero locus M. Here-
after we show that we can associate to the sequence of mutations
on the collection 10.3.53 a sequence of mutations on the decompo-
sition �1 (M) = 〈q1�

1 (-1), ]∗ [�1], . . . , ]∗ [�=]〉 defined through the
operations [b (_)], thus obtaining for every _:

�1 (M) = 〈Φ(_)�1 (-1), ]∗ [� (_)1 ], . . . , ]
∗ [� (_)= ]〉. (10.3.58)

To prove our claim, let us consider each of the allowed kinds of muta-
tions on 10.3.53, and describe the associated mutation on 10.3.58.

◦ Every time a left mutation of pairs

〈. . . , ;∗� (_)
8
, ;∗� (_)

8+1 , . . . 〉 −→ 〈. . . ,L;∗� (_)
8

;∗� (_)
8+1 , ;

∗� (_)
8
, . . . 〉
(10.3.59)

189



Derived equivalence of Calabi–Yau fibrations

is performed in 10.3.56, we do the operation

〈Φ(_)�1 (-1), . . . , ]∗ [� (_)8 ], ]
∗ [� (_)

8+1], . . . 〉

−→ 〈Φ(_)�1 (-1), . . . , ]∗ [L� (_)
8

�
(_)
8+1], [�

(_)
8
], . . . 〉

=: 〈Φ(_+1)�1 (-1), ]∗ [� (_+1)1 ], . . . , ]∗ [� (_+1)= ]〉

(10.3.60)

in 10.3.58.
We obtain a semiorthogonal decomposition because of the fol-
lowing argument: by Assumption A2, � (_)

8
is !-semiorthogonal

to � (_)
8+1 , thus by Lemma 10.3.8, L

�
(_)
8

�
(_)
8+1 commutes with ;∗ and

L[� (_)
8
] [�

(_)
8+1] commutes with ]∗. Finally, since L[� (_)

8
] [�

(_)
8+1] =

[L
�
(_)
8

�
(_)
8+1] by Lemma 10.3.7, we see that the operation described

in Equation 10.3.60 is simply the left mutation of ]∗ [� (_)
8+1] through

]∗ [� (_)
8
]. An analogous argument works for right mutations.

◦ Every time the Serre functor is applied to Equation 10.3.56:

〈k (_)�1 (.1), ;∗� (_)1 , . . . , ;∗� (_)= , 〉

−→ 〈L
;∗� (_)= ⊗!−A+1

k (_)�1 (.1), ;∗� (_)= ⊗ !−A+1, ;∗� (_)1 , . . . , ;∗� (_)
=−1〉

(10.3.61)

perform the following operation on Equation 10.3.58:

〈Φ(_)�1 (-1), ]∗ [� (_)1 ], . . . , ]
∗ [� (_)= ], 〉

−→ 〈L[]∗� (_)= ⊗!−A+1]Φ
(_)�1 (-1), []∗� (_)= ⊗ !−A+1],

]∗ [� (_)1 ], . . . , ]
∗ [� (_)

=−1]〉

=: 〈Φ(_+1)�1 (-1), ]∗ [� (_+1)1 ], . . . , ]∗ [� (_+1)= ]〉

(10.3.62)

In fact, by Proposition 10.3.9 the resulting collection above is the
one obtained by applying the Serre functor ofM to ]∗ [� (_)1 ] and
sending the subcategory equivalent to �1 (-1) to the beginning
of the collection. The same holds for the inverse Serre functor.
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◦ Whenever Equation 10.3.56 is twisted by !⊗: for some : ∈ Z,
perform the following operation on Equation 10.3.58:

〈Φ(_)�1 (-1), ]∗ [� (_)1 ], . . . , ]
∗ [� (_)= ], 〉

−→ 〈Φ(_)�1 (-1) ⊗ L⊗: , ]∗ [� (_)1 ⊗ !⊗: ], . . . , ]∗ [� (_)= ⊗ !⊗: ], 〉

=: 〈Φ(_+1)�1 (-1), ]∗ [� (_+1)1 ], . . . , ]∗ [� (_+1)= ]〉
(10.3.63)

In this way, we showed that for every _ there is the following semiorthog-
onal decomposition:

�1 (M) = 〈Φ(_)�1 (-1), ]∗ [� (_)1 ], . . . , ]
∗ [� (_)= ]〉. (10.3.64)

In particular, for _ = ' + 1 we obtain:

�1 (M) = 〈Φ�1 (-1), ]∗ [�1], . . . , ]∗ [�=]〉 (10.3.65)

On the other hand, starting from the full exceptional collection �/%2 =

〈 1, . . . ,  <〉, by (Sam06, Theorem 3.1) and (Orl03, Proposition 2.10)
one has

�1 (M) = 〈q2�
1 (-2), ]∗ [�1], . . . , ]∗ [�=]〉 (10.3.66)

The proof is completed by comparing the decomposition 10.3.65 with
10.3.66. �

Remark 10.3.13. Note that Theorem 10.3.12 holds for any nonzero
Σ ∈ �0(Z,L) with smooth zero locus, if the pair (Z,L) satisfies As-
sumption 10.3.10. In fact, by (Orl03 Proposition 2.10) every nonzero
section with smooth zero locus M admits the semiorthogonal decom-
positions 10.3.28.
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As we will show in Lemma 10.3.14, Theorem 10.3.12 can be im-
mediately applied to all cases of roofs where a sequence of mutations
realizing a derived equivalence of a Calabi–Yau pair is known, provided
that L satisfies Assumption A1.

Lemma 10.3.14. Derived equivalences of Calabi–Yau pairs associated
to roofs of type �"= , �= × �=, ��4 , �2 and �2 satisfy Assumptions A2 and
A3.

Proof. Let �/% be a roof of the types listed above. Then, in the
language of Notation 10.3.6, in all these cases there is a sequence of
mutations of the semiorthogonal decomposition 10.1.3: such mutations
are either applications of the Serre functor, overall twists by a power
of !, mutations of a subcategory equivalent to �1 (.1) through an
exceptional object, or mutations of pairs of exceptional objects. Hence,
the proof reduces to ensure that every time a mutation of pairs L;∗� ;∗�
or R;∗� ;∗� is performed, such mutation satisfies Condition (†). But
this property has been checked case by case with Lemma 9.3.3 for �"= ,
Lemma 9.4.1 for �= × �=, Lemma 9.2.1 for �2 and Lemma 9.5.7 for
��4 , while the case of �2 is treated in Corollary 9.6.1. �

Even if a general proof is lacking, for all roof bundles where a proof
of derived equivalence based on mutations of the associated Calabi–
Yau pair is known, such mutations satisfy Assumptions A2 and A3.
Therefore, in light of (KR20, Conjecture 2.6), we formulate the follow-
ing:

Conjecture 10.3.15. Let �/% be a homogeneous roof, and Z a ho-
mogeneous roof bundle of type �/% with projective bundle structures
?8 : Z −→ Z8 for 8 ∈ {1; 2}. Given a general section Σ ∈ �0(Z,L), the
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Calabi–Yau fibrations -8 := / (?8∗Σ) are derived equivalent.

We summarize all the evidence we have in support of Conjecture
10.3.15 in the form of a corollary for Theorem 10.3.12 and Lemma
10.3.14.

Corollary 10.3.16. LetZ be a roof bundle of type �= × �=, �"= , ��4 , �2

or �2 and let L satisfy Assumption A1. Then, given a general section Σ
of L, the associated pair of Calabi–Yau fibrations is derived equivalent.

Proof. By Lemma 10.3.14, a Calabi–Yau pair associated to a roof of
the types listed above is derived equivalent by means of a sequence of
mutations satisfying Assumptions �2 and �3. Thus, by requiring that L
satisfies Assumption �1, the claim is proven by Theorem 10.3.12. �

10.4 Universal hyperplane sections

In this section we will present a different version of the argument
above, which allows to prove derived equivalence of the universal pair
of Calabi–Yau fibrations under the same assumptions. More precisely,
we will construct a sequence of mutations providing an equivalence
of categories for zero loci of pushforwards of the universal hyperplane
section of Z with respect to the hyperplane bundle L of Assumption
10.3.10. For the general definitions and properties of universal hyper-
plane sections we refer to Section 3.4 and the main source therein,
which is (Kuz07), while we develop here the notation which will be
used in the rest of the section.

Let Z be a homogeneous roof bundle, fix H = P(�0(Z,L)) where
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L satisfies the hypotheses of Assumption 10.3.10. The universal hy-
perplane section of Z with respect to the map qL : Z −→ H (which
exists because L is basepoint-free) is the following variety:

M̂ := {(G,Σ) ∈ Z ×H : Σ(G) = 0}. (10.4.1)

In fact, the incidence quadric in H × H∨ is exactly & = {(G, H) ∈
H × H∨ : H(G) = 0}, therefore one has M̂ = Z ×H & as in Definition
3.4.1.

As a shorthand notation, let us call Ẑ := Z×H and introduce the line
bundle L̂ := L � OH (1). A useful characterization for M̂ is given as
a zero locus M̂ = / ((), where ( ∈ �0(Ẑ, L̂) is the section defined
by ((G,Σ) = Σ(G). By the fact that L is basepoint-free we deduce that
M̂ is smooth, since / (() is isomorphic to the zero locus of a general
section of L̂. We can write the following Koszul resolution:

0 −→ L̂∨ −→ OẐ −→ 8̂∗OM̂ −→ 0 (10.4.2)

where 8̂ : M̂ −→ Ẑ. We can establish a construction like Diagram
10.1.1 replacing each variety with its “universal” counterpart. More
precisely, we see that Z̃ is the projectivization of the pullbacks Ê8 to Ẑ8
of E8, therefore, if we define ?̂8 := (?8, �3), we have ?̂8∗L̂ = Ê8.

Definition 10.4.1. LetZ be a homogeneous roof bundleWe call universal
Calabi–Yau fibrations ofZ the varieties:

-̂8 := {(G,Σ) ∈ Ẑ8 : ?8∗Σ(G) = 0}. (10.4.3)

for 8 ∈ {1; 2}.
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Again, we can characterize -̂8 as the zero locus -̂8 = / ( ?̂8∗() ⊂ Ẑ8.
We can summarize this setting with the following diagram:

T̂1 M̂ T̂2

Ẑ

-̂1 Ẑ1 Ẑ2 -̂2

̂̀1

<̂1

8̂

<̂2

̂̀2

?̂1 ?̂2

D̂1 D̂2

(10.4.4)

Note that there is a projection ĉ : Z × H −→ � defined as the com-
position of c with the projection of Z × H to the first factor. For
every 1 ∈ � one has ĉ−1(1) ' �/% × H := ��/%. Hence the same
construction as above, restricted to a single fiber of ĉ, gives rise to the
following diagram:

)̂1 "̂1 )̂2

��/%
.̂11 ��/%1 ��/%2 .̂21

â1

:̂1

;̂

:̂2

â2

ℎ̂1 ℎ̂2

Ĉ1 Ĉ2

(10.4.5)

where the variety "̂1 can be described for every 1 ∈ � by the following
fibered square:

"̂1 = M̂ ×� {1} M̂

{1} �

g

ĉ◦̂8

51

(10.4.6)
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Moreover, we have the square:

��/% ' Ẑ ×� {1} Ẑ

{1} �

d

ĉ1 ĉ

51

(10.4.7)

The analogy of these universal constructions with the ones presented in
Diagram 10.1.1 and 9.1.1 extends to derived categories as well:

Lemma 10.4.2. Let M̂ be the universal hyperplane section of a ho-
mogeneous roof bundle of type �/%. Then, there exists the following
semiorthogonal decompositions for 8 ∈ {1; 2}:

�1 (M̂) = 〈?̂8 |∗M̂�
1 (Ẑ8), · · · , ?̂8 |∗M̂�

1 (Ẑ8) ⊗ L̂⊗(A−2) , <̂8∗ ̂̀∗8 �1 ( -̂8)〉.
(10.4.8)

Moreover, given 1 ∈ � such that "̂1 is smooth, there exist the following
semiorthogonal decompositions for 8 ∈ {1; 2}

�1 ("̂1) = 〈ℎ̂8 |∗
"̂1
�1 (��/%8), · · · , ℎ̂8 |∗

"̂1
�1 (��/%8)⊗!̂⊗(A−2) , :̂8∗â

∗
8 �

1 (.̂8)〉.
(10.4.9)

Proof. We have the following diagram:

T̂8 M̂ P̂(Ê8) ' Ẑ

-̂8 Ẑ8

<̂8

̂̀8
8̂

?̂8 |M̂
?̂8

D̂8

(10.4.10)
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which on the fiber ĉ−1(1) restricts to:

)̂8 "̂1 P̂(�̂8) '��/%

-̂8 ��/%8

:̂8

â8

;̂

ℎ̂8 |M̂
ℎ̂8

Ĉ8

(10.4.11)

The proof is simply an application of Cayley trick (Orl03) to Diagrams
10.4.10 and 10.4.11. �

Theorem 10.4.3. Let the data (Z,L) satisfy Assumption 10.3.10. Then,
there exists an autoequivalenceΦ : �1 (M̂) −→ �1 (M̂) which provides
an equivalence of categories �1 ( -̂1) −→ �1 ( -̂2), where ( -̂1, -̂2) is the
pair of universal Calabi–Yau fibrations in the sense of Definition 10.4.1.

Proof. Let us observe that Ẑ is itself a roof bundle of type �/%
over the base � × H . Recall that M̂ is the zero locus of a section
of L̂ = L � OH (1). Then, if we choose (1,Σ) ∈ � × H such that
"1,Σ := M̂ ×�×H {(1,Σ)} ⊂ �/% is smooth of expected codimension,
the data of "1,Σ define a Calabi–Yau pair (.1, .2) associated to a roof of
type �/%. Thus, applying Theorem 10.3.12 proves that the equivalence
�1 (.1) ' �1 (.2) induces a derived equivalence of -̂1 and -̂2. �

10.5 An explicit computation: mutations for a
roof bundle of type ��4

Let us recall here the geometry of the roof bundle of type ��4 over
P(+6), where +6 is a vector space of dimension six. If we fix V =
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)P5 (−1), we obtain Z = F ; (2, 3,V) ' � (1, 3, 4, +6) and the associ-
ated Grassmann bundles are GA (2,V) ' � (1, 3, +6) and GA (3,V) '
� (1, 4, +6):

� (1, 3, 4, +6)

� (1, 3, +6) � (1, 4, +6)

� (3, +6) � (1, +6) � (4, +6)

?1 ?2

c

A1d A2 g

(10.5.1)

Fix L = O(1, 1, 1) where we call O(0, 1, 2) = c∗O(0) ⊗ ?∗1d
∗O(1) ⊗

?∗2gO(2), callM = / (Σ). In the notation of Diagram 10.1.1, by Cayley
trick we have:

�1 (M) '〈?1 |∗M�
1GA (2,V), ?1 |∗M�

1GA (2,V) ⊗ O(1, 1, 1), q1�
1 (-1)〉

'〈?2 |∗M�
1GA (3,V), ?2 |∗M�

1GA (3,V) ⊗ O(1, 1, 1), q2�
1 (-2)〉

(10.5.2)

where q8 = <8∗ ◦ ?̄∗8 . To construct semiorthogonal decompositions for
the Grassmann bundles we will use the following collections:

{O,P∨,O(0, 1),P∨(0, 1),O(0, 2),P∨(0, 2),O(0, 3),P∨(0, 3),O(0, 4),P∨(0, 4)}

{O,P∨,O(0, 1), P̃∨(0, 1),O(0, 2), P̃∨(0, 2),O(0, 3), P̃∨(0, 3),O(0, 4), P̃∨(0, 4)}
(10.5.3)

where P: is the tautological bundles of GA (:,V). In fact the objects of
Equation 10.5.3 on every fiber over P5, reduce to the ones of the rect-
angular Lefschetz full exceptional collections of � (2, 5) and � (3, 5)
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provided in (Kuz08).

Following Notation 10.3.6 we construct the following blocks:

[O(0, 1)] := 〈O(0, 0, 1), . . . ,O(5, 0, 1)〉

[U∨2 (0, 1)] := 〈?∗1P
∨
2 (0, 0, 1), . . . , ?

∗
1P
∨
2 (5, 0, 1)〉

[U∨3 (0, 1)] := 〈?∗2P
∨
3 (0, 0, 1), . . . , ?

∗
2P
∨
3 (5, 0, 1)〉

(10.5.4)

from which, by the procedure described in Notation 10.3.6, we get:

�1 (Z) = 〈[O(0, 0)], [U∨1 (0, 0)], . . . , [O(4, 0)], [U
∨
1 (4, 0)],

[O(1, 1)], [U∨1 (1, 1)], . . . , [O(5, 1)], [U
∨
1 (5, 1)],

[O(2, 2)], [U∨1 (2, 2)], . . . , [O(6, 2)], [U
∨
1 (6, 2)]〉

= 〈[O(0, 0)], [U∨2 (0, 0)], . . . , [O(0, 4)], [U
∨
2 (0, 4)],

[O(1, 1)], [U∨2 (1, 1)], . . . , [O(1, 5)], [U
∨
2 (1, 5)],

[O(2, 2)], [U∨2 (2, 2)], . . . , [O(2, 6)], [U
∨
2 (2, 6)]〉

(10.5.5)

�1 (M) = 〈q1�
1 (-1),

]∗ [O(1, 1)], ]∗ [U∨1 (1, 1)], . . . , ]
∗ [O(5, 1)], ]∗ [U∨1 (5, 1)],

]∗ [O(2, 2)], ]∗ [U∨1 (2, 2)], . . . , ]
∗ [O(6, 2)], ]∗ [U∨1 (6, 2)]〉

= 〈q2�
1 (-2),

]∗ [O(1, 1)], ]∗ [U∨2 (1, 1)], . . . , ]
∗ [O(1, 5)], ]∗ [U∨2 (1, 5)],

]∗ [O(2, 2)], ]∗ [U∨2 (2, 2)], . . . , ]
∗ [O(2, 6)], ]∗ [U∨2 (2, 6)]〉

(10.5.6)

The derived equivalence �1 (-1) ' �1 (-2) follows from Corollary
10.3.16, but let us compute some of the key mutations explicitly
in this simple example. First, let us consider the mutations of the
kind L]∗ [(0,0)] ]∗ [U∨2 (0, 0)] ' ]∗ [Q2(0, 0)]. By Equation 10.5.4, the
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pair 〈]∗ [(0, 0)], ]∗ [U∨2 (0, 0)]〉 can be written explicitly in the following
way:

〈OM (0, 0, 0), . . . ,OM (5, 0, 0), ]∗?∗1P
∨
2 (0, 0, 0), . . . , ]

∗?∗1P
∨
2 (5, 0, 0)〉.

(10.5.7)
One can compute Ext•M (OM (:, 0, 0), ]

∗?∗1P
∨
2 (0, 0, 0)) by means of the

following exact sequence:

0 −→ ?∗1P
∨
2 (−1−:,−1,−1) −→ ?∗1P

∨
2 (−:, 0, 0) −→ ]∗?∗1P

∨
2 (−:, 0, 0) −→ 0.

(10.5.8)
Once we observe that ?∗1P

∨
2 (0, 0, 0) has weight −l1 + l2, by a simple

application of the Borel–Weil–Bott theorem we find

Ext•M (OM (:, 0, 0), ]
∗?∗1P

∨
2 (0, 0, 0)) = 0 for 0 ≤ : ≤ 5. (10.5.9)

Let us now mutate the second bundle of the collection 10.5.7 one step
to the left. By the Euler sequence of P5 we find:

〈]∗c∗)P5 (1, 0, 0),OM (0, 0, 0),OM (2, 0, 0), . . . ,OM (5, 0, 0),

]∗?∗1P
∨
2 (0, 0, 0), . . . , ]

∗?∗1P
∨
2 (5, 0, 0)〉.

(10.5.10)

By the vanishing 10.5.8 we can move ]∗?∗1P
∨
2 (0, 0, 0) to the right

of ]∗c∗)P5 (1, 0, 0). Then we consider the following short exact se-
quence:

0 −→ ]∗?∗1R
∨
2 (0, 0, 0) −→ ]∗c∗)P5 (1, 0, 0) −→ ]∗?∗1P

∨
2 (0, 0, 0) −→ 0

(10.5.11)
which is a consequence of the fact that V = )P5 (−1). We called R2 the
quotient bundle of GA (2,V). By the sequence above we can mutate
]∗?∗1P

∨
2 (0, 0, 0) one step to the left and find:

〈]∗?∗1R
∨
2 (0, 0, 0), ]

∗c∗)P5 (1, 0, 0),OM (0, 0, 0),OM (2, 0, 0), . . . ,OM (5, 0, 0),

]∗?∗1P
∨
2 (1, 0, 0), . . . , ]

∗?∗1P
∨
2 (5, 0, 0)〉.

(10.5.12)
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Then, we can mutate ]∗c∗)P5 (1, 0, 0) again one step to the right, find-
ing:

〈]∗?∗1R
∨
2 (0, 0, 0),OM (0, 0, 0),OM (1, 0, 0), . . . ,OM (5, 0, 0),

]∗?∗1P
∨
2 (1, 0, 0), . . . , ]

∗?∗1P
∨
2 (5, 0, 0)〉.

(10.5.13)

Note that all this procedure can be applied to all the remaining twists
of ]∗?∗1P

∨
2 . Hence, we are left with the following collection:

〈]∗?∗1R
∨
2 (0, 0, 0), . . . , ]

∗?∗1R
∨
2 (5, 0, 0),OM (0, 0, 0), . . . ,OM (5, 0, 0)〉.

(10.5.14)
which is 〈]∗ [Q2(0, 0)], ]∗ [O(0, 0)]〉. The same argument holds for mu-
tating ]∗ [U∨3 (0, 0)] through ]

∗ [O(0, 0)].

Similarly, one can compute the mutation R]∗ [O(−1,1)] ]
∗ [U∨2 (0, 0)]. Again

by 10.5.4 one can write the block 〈]∗ [U∨2 (0, 0)], ]
∗ [O(−1, 1)]〉 as:

〈]∗?∗1P
∨
2 (0, 0, 0), . . . , ]

∗?∗1P
∨
2 (5, 0, 0),OM (0,−1, 1), . . . ,OM (5,−1, 1)〉.

(10.5.15)
By the fact that ]∗?∗1P2(−:,−1, 1) ' ]∗?∗1P

∨
2 (−:+1,−2, 1) and a Borel–

Weil–Bott computation, we see that Ext•M (]
∗?∗1P

∨
2 (:, 0, 0),OM (:,−1, 1))

vanishes for 1 ≤ : ≤ 5, and has cohomology C[−1] for : = 0. Hence,
the mutation ROM (:,−1,1) ]

∗?∗1P
∨
2 (0, 0, 0) can be computed by means of

the (dual of the) rightmost vertical sequence of the following diagram,
which can be found by applying the Snake lemma to the sequences
given by the embeddings of O(−1, 0, 0) in the rank three and rank
four tautological bundles of Z = � (1, 3, 4, 6) (here denoted by U3 and
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U4:

0 0 0

0 O(−1, 0, 0) ?∗1d
∗U3 ?∗1P2 0

0 O(−1, 0, 0) ?∗2g
∗U4 ?∗2P3 0

0 O(0, 1,−1) O(0, 1,−1)

0 0
(10.5.16)

We find:

〈OM (0,−1, 1), ]∗?∗2P
∨
3 (0, 0, 0), ]

∗?∗1P
∨
2 (0, 0, 0), . . . , ]

∗?∗1P
∨
2 (5, 0, 0),

OM (1,−1, 1), . . . ,OM (5,−1, 1)〉.
(10.5.17)

This procedure can be iterated untill all twists of ]∗?∗1P
∨
2 are mutated

to twists of ]∗?∗2P
∨
3 , obtaining:

〈OM (0,−1, 1), . . . ,OM (5,−1, 1), ]∗?∗2P
∨
3 (0, 0, 0), . . . , ]

∗?∗2P
∨
3 (5, 0, 0), 〉
(10.5.18)

and in this last decomposition we recognize 〈]∗ [O(−1, 1)], ]∗ [U∨3 (0, 0)]〉.
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11 Simple  -equivalence and roof bundles

11.1 Setup and notation

Let us recall here the notion of simple  -equivalence introduced in

Chapter 3. Let X1, X2 be smooth projective varieties. We call  -

equivalence a birational morphism

` : X1 X2 (11.1.1)

such that there is the following diagram:

X0

X1 X2

61 62

`

(11.1.2)

where X0 is a smooth projective variety and 61 and 62 are birational

maps fulfilling 6∗1 X1 ' 6∗2 X2 . By the � -conjecture (BO02; Kaw02),

two  -equivalent varieties are expected to be derived equivalent. We

can provide some evidence to this conjecture, and establish a method

to verify it for the class of simple  -equivalent maps, under some as-

sumption on the resolution X0.

A simple  -equivalence, following the notation of Diagram 11.1.2,

is a  -equivalence ` such that 61 and 62 are smooth blowups, which

by (Li19, Lemma 2.1) have the same exceptional divisor. Then, by

the structure theorem for simple  -equivalence (Kan18, Thm. 0.2),

such divisor is a family of roofs of projective bundles over a smooth
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projective variety �. In short, we will say that ` has codimension A

and exceptional divisor Z when A = codX1Z1 = codX2Z2 and Z is the

exceptional divisor of 61 and 62 (cfr. (Kan18, Definition 1.2)). Let us

now focus our attention on the following setting:

Definition 11.1.1. We say that a simple  -equivalence ` is homogeneous

of type �/% if its exceptional divisor is a homogeneous roof bundle of

type �/% over a smooth projective variety �.

For every homogeneous simple  -equivalence ` of type �/% there

exists the following diagram:

Z

X0

Z1 X1 X2 Z2

����

�

5

?1 ?2

61 62

A1

`

A2

(11.1.3)

which is a simple adaptation of (Kan18, Diagram 0.2.1) to our set-

ting.
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11.2 Simple  -equivalence and mutations

A relation between a pair of Calabi–Yau fibrations, a homogeneous roof

bundle of type �/% and a simple  -equivalence is established in the

following way. Given a homogeneous simple  -equivalence of type

�/% as in Diagram 11.1.3, by (Kan18, Theorem 0.2), the exceptional

divisor admits two projective bundle structures Z = P(E1) = P(E2)
where E8 is the conormal bundle of Z8 ⊂ X8. By (Kan18, Proposition

1.4), one has L := O(−Z)|Z where ?1∗L = E1 and ?2∗L = E2.

Moreover, Z is a homogeneous roof bundle of type �/%. Assume L
is basepoint-free and call M a smooth zero locus of a section Σ of

L. Then, by Lemma 4.4.5, Σ defines a pair of Calabi–Yau fibrations

(-1, -2) over �. We will call T8 the preimage of -8 under the restriction
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?̄8 of ?8 to M. All this is summarized in the following diagram:

T1 M T2

Z

X0

-1 Z1 X1 X2 Z2 -2

����

�

<1

?̄1

]

<2

?̄2
5

?1 ?2

61 62

A1

`

A2

(11.2.1)

In the remainder of this chapter we will extensively use the language es-

tablished in Notation 10.3.6. Let us perform the following computation

for later convenience.

Lemma 11.2.1. In the notation of Diagram 11.2.1 and Notation 10.3.6,

one has lX0 |Z ' L⊗(−A+1) ⊗ c∗) for some line bundle ) ∈ �1 (�).

Proof. We recall that by (Ful98, Example 3.2.11) one has lZ '
?∗
8
lZ8 ⊗ ?∗8 det E8 ⊗ L⊗(−A) , and since (A−1

8
(1), E8 |A−1

8
(1)) is a Mukai

pair for every 1 ∈ �, we get lZ ' L⊗(−A) up to twists by pullbacks of

line bundles from �. By the normal bundle sequence:

0 −→ )Z −→ 5 ∗)X0 −→ NZ|X0 −→ 0 (11.2.2)
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one finds 5 ∗lX0 = lZ ⊗ detN∨Z|X0
= L⊗(−A) ⊗ detN∨Z|X0

. The proof

is completed by the fact that, since Z is the exceptional divisor of the

blowup 68 : X0 −→ X8, by (Kan18, Proposition 1.4) one has NZ|X0 '
5 ∗O(Z) ' L∨. �

Lemma 11.2.2. In the language of Notation 10.3.6, assume that for

either 8 = 1 or 8 = 2 there is a semiorthogonal decomposition �1 (X0) =
〈f�1 (X8), 5∗ [,1], . . . , 5∗ [,=]〉where every, 9 is a homogeneous vector

bundle on �/% and f is a fully faithful functor. Then one has:

�1 (X0) = 〈f�1 (X8) ⊗ O(−CZ), 5∗ [,1 ⊗ !⊗C], . . . , 5∗ [,= ⊗ !⊗C]〉
(11.2.3)

for every C ∈ Z.

Proof. Let us start from the decomposition

�1 (X0) = 〈f�1 (X8), 5∗ [,1], . . . , 5∗ [,=]〉. (11.2.4)

Note that, since Z is the exceptional divisor of the blowup X0 −→ X8
and L is the Grothendieck line bundle of Z as a projective bundle over

Z8, by (Kan18, Proposition 1.4) one has 5 ∗O(−Z) ' L. Hence, for

any integer C, let us twist the collection above by O(−CZ), obtaining:

�1 (X0) = 〈f�1 (X8) ⊗ O(−CZ),

5∗ [,1] ⊗ O(−CZ), . . . , 5∗ [,=] ⊗ O(−CZ)〉.
(11.2.5)

We conclude the proof by showing that for every 9 one has 5∗ [, 9 ] ⊗
O(−CZ) ' 5∗ [, 9 ⊗ !⊗C]. This assertion follows simply by projection

207



Simple  -equivalence and roof bundles

formula. In fact, for every G ∈ �1 (�) we have

5∗(W9 ⊗ c∗G) ⊗ O(−CZ) ' 5∗(W9 ⊗ c∗G ⊗ 5 ∗O(−CZ))

' 5∗(W9 ⊗ c∗G ⊗ L⊗C).
(11.2.6)

�

Lemma 11.2.3. In the language of Notation 10.3.6 there are the following
semiorthogonal decompositions:

�1 (X0) = 〈6̃∗1�
1 (X1), 5∗ [�1], . . . , 5∗ [�=]〉

= 〈6̃∗2�
1 (X2), 5∗ [�1], . . . , 5∗ [�=]〉.

(11.2.7)

where 6̃∗
8

:= 6∗
8
(−) ⊗ O(−Z).

Proof. Let us start by applying Orlov’s blowup decomposition. For

−A + 1 ≤ : ≤ −1 one has the following fully faithful functors:

�: : �1 (Z1) �1 (X0)

F 5∗(?∗1F ⊗ L
⊗: )

(11.2.8)

and the semiorthogonal decomposition:

�1 (X0) = 〈�−A+1�1 (Z1), . . . , �−1�
1 (Z1), 6∗1�

1 (X1)〉. (11.2.9)

By applying (Sam06, Theorem 3.1) to each copy of �1 (Z1) with

respect to the collection �1 (Z1) = 〈�1, . . . , �<〉 we find:

�1 (X0) = 〈 5∗(J1 ⊗ L⊗(−A+1) ⊗ c∗�1 (�)), . . . , 5∗(J< ⊗ L⊗(−A+1) ⊗ c∗�1 (�)),
...

...

5∗(J1 ⊗ L⊗(−1) ⊗ c∗�1 (�)), . . . , 5∗(J< ⊗ L⊗(−1) ⊗ c∗�1 (�)),

6∗1�
1 (X1)〉.

(11.2.10)
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Let us now apply the inverse Serre functor to the whole semiorthogonal

complement of 6∗1�
1 (X1). Then, for 1 ≤ 8 ≤ < and 1 ≤ 9 ≤ A − 1

the block 5∗(J8 ⊗ L⊗(− 9) ⊗ c∗�1 (�)) will become 5∗(J8 ⊗ L⊗(− 9) ⊗
c∗�1 (�)) ⊗ l∨X0

. By the projection formula we compute:

5∗(J8 ⊗ L⊗(− 9) ⊗ c∗�1 (�)) ⊗ l∨X0

= 5∗(J8 ⊗ L⊗(− 9) ⊗ c∗�1 (�)) ⊗ 5 ∗l∨X0
)

= 5∗(J8 ⊗ ⊗c∗�1 (�)) ⊗ L⊗(A− 9−1))

(11.2.11)

where the second equality follows from Lemma 11.2.1. Substituting

this in the decomposition 11.2.10 we get:

�1 (X0) = 〈6∗1�
1 (X1),

5∗(J1 ⊗ c∗�1 (�)), . . . . . . . . . . . . . . . . . . . . . , 5∗(J< ⊗ c∗�1 (�)),
...

...

5∗(J1 ⊗ L⊗(A−2) ⊗ c∗�1 (�)), . . . , 5∗(J< ⊗ L⊗(A−2) ⊗ c∗�1 (�))〉.
(11.2.12)

Finally, we twist the whole collection by O(−Z). By Lemma 11.2.2,

what we obtain is:

�1 (X0) = 〈6̃∗1�
1 (X1),

5∗(J1 ⊗ c∗�1 (�) ⊗ L), . . . . . . . . . . . . . . . . . . . . . , 5∗(J< ⊗ c∗�1 (�) ⊗ L),
...

...

5∗(J1 ⊗ L⊗(A−1) ⊗ c∗�1 (�)), . . . , 5∗(J< ⊗ L⊗(A−1) ⊗ c∗�1 (�))〉.
(11.2.13)

The result follows by comparing this decomposition with Equation

10.3.28. �
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The following lemma and its relevance in the further computations

are analogous to Lemma 10.3.4 and the role it played in the previous

chapter.

Lemma 11.2.4. Let c : Z −→ � be a flat and proper morphism of

smooth projective varieties, consider a closed immersion 5 : Z −→ X
of codimension one, where X is smooth and projective. Suppose there

exist admissible subcategories C ⊂ �1 (X), D ⊂ �1 (Z) and vector

bundles E, F ∈ �1 (Z) relatively exceptional over � such that one has

the following strong, �-linear semiorthogonal decompositions:

�1 (Z) = 〈D, E ⊗ c∗�1 (�), F ⊗ c∗�1 (�)〉

�1 (X) = 〈C, 5∗(E ⊗ c∗�1 (�)), 5∗(F ⊗ c∗�1 (�))〉.
(11.2.14)

Then, if E is L-semiorthogonal to F , L〈E⊗c∗�1 (�)〉F ⊗ c∗�1 (�) com-
mutes with 5∗.

Proof. Let us recall the functors Ψ〈E⊗c∗�1 (�)〉 and Ψ!
〈E⊗c∗�1 (�)〉 defined

by Equations 10.3.6 and 10.3.7. Given the notation !1 := 5∗, '1 := 5 !,

!2 := Ψ〈E⊗c∗�1 (�)〉, '2 := Ψ!
〈E⊗c∗�1 (�)〉 we have two adjoint pairs:

!1 : �1 (Z) � �1 (X) :'1, !2 : �1 (�) � �1 (Z) :'2. (11.2.15)

Applying Lemma 10.2.3 to the setting above yields:

n12,!1� ◦ !1!2'2([1,�) = !1(n2,�) (11.2.16)

where � is any object of �1 (Z). Thus, the following diagram com-
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mutes:

!1!2'2� !1�

!1!2'2'1!1� !1�

!1 (n2,�)

!1!2'2 ([1,�)

n12,!1�

(11.2.17)

If we now define the functors:

Ξ〈 5∗ (E⊗c∗�1 (�))〉 := 5∗Ψ〈E⊗c∗�1 (�)〉

Ξ!
〈 5∗ (E⊗c∗�1 (�))〉 := Ψ!

〈E⊗c∗�1 (�)〉 5
!

(11.2.18)

we can rewrite Diagram 11.2.17 as

5∗Ψ〈E⊗c∗�1 (�)〉Ψ
!
〈E⊗c∗�1 (�)〉F ⊗ c

∗G 5∗(F ⊗ c∗G)

Ξ〈 5∗ (E⊗c∗�1 (�))〉Ξ
!
〈 5∗ (E⊗c∗�1 (�))〉

5∗(F ⊗ c∗G) 5∗(F ⊗ c∗G)

5∗nZ

V

nX

(11.2.19)

where V := 5∗Ψ〈E⊗c∗�1 (�)〉Ψ
!
〈E⊗c∗�1 (�)〉 ([1,F⊗c∗G), nZ := n2,F⊗c∗G ,

nX := n12, 5∗ (F ⊗c∗G) . Let us now prove the following:

Claim. The map V is an isomorphism if E is L-semiorthogonal to F .
Proving the claim is equivalent to show that under the requirement of

L-semiorthogonality the following holds:

5∗Ψ〈c∗�1 (�)⊗E〉Ψ
!
〈c∗�1 (�)⊗E〉 5

! 5∗(F ⊗ c∗G)

= 5∗Ψ〈c∗�1 (�)⊗E〉Ψ
!
〈c∗�1 (�)⊗E〉 (F ⊗ c

∗G).
(11.2.20)
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Since E is a vector bundle, one has:

5∗Ψ〈c∗�1 (�)⊗E〉Ψ
!
〈c∗�1 (�)⊗E〉 5

! 5∗(F ⊗ c∗G)

= 5∗(E ⊗ c∗c∗EGCZ (E, 5 ! 5∗(F ⊗ c∗G)))

= 5∗(E ⊗ c∗c∗(E∨ ⊗ 5 ! 5∗(F ⊗ c∗G)))

= 5∗(E ⊗ c∗c∗(E∨ ⊗ 5 ∗ 5∗(F ⊗ c∗G) ⊗ L∨ [−1]))

(11.2.21)

where we used (Huy06, Corollary 3.35). By (Huy06, Corollary 11.4)

and Lemma 11.2.1 one has a distinguished triangle

F ⊗ c∗G ⊗ L[1] −→ 5 ∗ 5∗(F ⊗ c∗G) −→

F ⊗ c∗G −→ F ⊗ c∗G ⊗ L[2]
(11.2.22)

Taking the tensor product by E∨ ⊗ L∨ [−1] one has:

E∨ ⊗ F ⊗ c∗G −→ E∨ ⊗ 5 ∗ 5∗(F ⊗ c∗G) ⊗ L∨ [−1] −→

E∨ ⊗ F ⊗ c∗G ⊗ L∨ [−1] −→ E∨ ⊗ F ⊗ c∗G[1]
(11.2.23)

By applying the derived c∗ we find:

. . . −→ '<c∗(E∨ ⊗ F ⊗ c∗G) −→ '<−1c∗(E∨ ⊗ 5 ∗ 5∗(F ⊗ c∗G) ⊗ L∨) −→

'<−1c∗(E∨ ⊗ F ⊗ c∗G ⊗ L∨) −→ '<+1(c∗E∨ ⊗ F ⊗ c∗G) −→ · · ·
(11.2.24)

By L -semiorthogonality of E and F one has '<c∗(E∨ ⊗ F ⊗ c∗G ⊗
L∨) = 0 for every <, hence we get an isomorphism:

c∗(E∨ ⊗ 5 ∗ 5∗(F ⊗ c∗G) ⊗ L∨ [−1]) ' c∗(E∨ ⊗ F ⊗ c∗G) (11.2.25)

If we substituting this in Equation 11.2.21 we find:

5∗Ψ〈c∗�1 (�)⊗E〉Ψ
!
〈c∗�1 (�)⊗E〉 5

! 5∗(F ⊗ c∗G)

= 5∗(E ⊗ c∗c∗(E∨ ⊗ F ⊗ c∗G))

= 5∗Ψ〈c∗�1 (�)⊗E〉Ψ
!
〈c∗�1 (�)⊗E〉 (F ⊗ c

∗G).

(11.2.26)
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thus proving the claim.

We are now ready to prove the isomorphism:

5∗L〈E⊗c∗�1 (�)〉F ⊗ c∗G ' L〈 5∗ (E⊗c∗�1 (�))〉 5∗(F ⊗ c
∗G). (11.2.27)

Let us recall the distinguished triangle in �1 (Z):

Ψ〈E⊗c∗�1 (�)〉Ψ
!
〈E⊗c∗�1 (�)〉F ⊗ c

∗G
nZ−−→

−→ F ⊗ c∗G −→ L〈E⊗c∗�1 (�)〉F ⊗ c∗G.
(11.2.28)

If we apply the derived pushforward 5∗ we find (Huy06, proof of

Corollary 2.50):

'0 5∗Ψ〈E⊗c∗�1 (�)〉Ψ
!
〈E⊗c∗�1 (�)〉F ⊗ c

∗G
5∗nZ−−−→

−→ '0 5∗(F ⊗ c∗G) −→ '0 5∗L〈E⊗c∗�1 (�)〉F ⊗ c∗G

'1 5∗Ψ〈E⊗c∗�1 (�)〉Ψ
!
〈E⊗c∗�1 (�)〉F ⊗ c

∗G −→ · · ·

(11.2.29)

On the other hand, one has the distinguished triangle:

Ξ〈 5∗ (E⊗c∗�1 (�))〉Ξ
!
〈 5∗ (E⊗c∗�1 (�))〉 5∗(F ⊗ c

∗G) nX−−→

5∗(F ⊗ c∗G) −→ L〈 5∗ (E⊗c∗�1 (�))〉 5∗(F ⊗ c
∗G) −→ · · ·

(11.2.30)

and the proof is concluded by commutativity of Diagram 11.2.19 and

(GM03, page 232, Corollary 4). �

Lemma 11.2.5. In the language of Notation 10.3.6, consider a fully

faithful functor f and a set {,1, . . . ,,=} of exceptional, semiorthogonal
objects of �1 (�/%) such that for either 8 = 1 or 8 = 2 one has a

semiorthogonal decomposition:

�1 (X0) = 〈f�1 (X8), 5∗ [,1], . . . , 5∗ [,=]〉. (11.2.31)
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Then, if,8 is !-semiorthogonal to,8+1 one also has:

�1 (X0) = 〈f�1 (X8), 5∗ [,1], . . . , 5∗ [,8−1],

5∗ [L,8,8+1], 5∗ [,8+1], 5∗ [,8+2], . . . , 5∗ [,=]〉

�1 (X0) = 〈f�1 (X8), 5∗ [,1], . . . , 5∗ [,8−1],

5∗ [,8+1], 5∗ [R,8+1,8], 5∗ [,8+2], . . . , 5∗ [,=]〉.

(11.2.32)

Proof. We will only prove the statement about left mutations, the other

being nearly identical. Starting from the decomposition 11.2.31 and

applying (Kuz10, Corollary 2.9), one finds:

�1 (X0) = 〈f�1 (X1), 5∗ [,1], . . . , 5∗ [,8−1],

L 5∗ [,8] 5∗ [,8+1], 5∗ [,8], 5∗ [,8+2], . . . , 5∗ [,=]〉.
(11.2.33)

By Lemma 10.3.5, since ,8 is !-semiorthogonal to ,8+1 it follows that

W8 is L-semiorthogonal to W8+1 (the terminology is from Notation

10.3.6), hence we can apply Lemma 11.2.4 to replace L 5∗ [,8] 5∗ [,8+1]
with 5∗L[,8] [,8+1] in the decomposition 11.2.33. By Lemma 10.3.7

we have L[,8] [,8+1] ' [L,8,8+1] and this concludes the proof. �

Proposition 11.2.6. In the language of Notation 10.3.6, assume that for

either 8 = 1 or 8 = 2 there is a semiorthogonal decomposition �1 (X0) =
〈f�1 (X8), 5∗ [,1], . . . , 5∗ [,=]〉where every, 9 is a homogeneous vector

bundle on �/% and f is a fully faithful functor. Then one has:

�1 (X0) = 〈R 5∗ [,1]f�
1 (X8), 5∗ [,2], . . . , 5∗ [,=], 5∗ [,1 ⊗ !⊗(A−1)]〉

(11.2.34)

Proof. Let us start by mutating f�1 (X8) one step to the right. We
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obtain:

�1 (X0) = 〈 5∗ [,1],R 5∗ [,1]f�
1 (X8), 5∗ [,2], . . . , 5∗ [,=]〉. (11.2.35)

By the inverse Serre functor we find:

�1 (X0) = 〈R 5∗ [,1]f�
1 (X8), 5∗ [,2], . . . , 5∗ [,=], 5∗ [,1] ⊗ l∨X0

〉.
(11.2.36)

For every G ∈ �1 (�) one has:

5∗(W1 ⊗ c∗G) ⊗ l∨X0
= 5∗(W1 ⊗ c∗G ⊗ 5 ∗l∨X0

)

= 5∗(W1 ⊗ c∗G ⊗ L⊗(A−1) ⊗ c∗)).
(11.2.37)

where ) is a line bundle on �. The first isomorphism is by projection

formula and the second by Lemma 11.2.1. This shows that we can

substitute 5∗ [,1] ⊗ l∨X0
with 5∗ [,1 ⊗ !⊗(A−1)] in the decomposition

11.2.36, hence proving our claim. �

We are now ready to prove the main theorem of this chapter:

Theorem 11.2.7. Let ` : X1 d X2 be a homogeneous simple  -

equivalence of type�/%, with exceptional divisorZ andL := OZ (−Z),
where the pair (Z,L) satisfies Assumption 10.3.10 in the sense of Def-

inition 10.3.11. Then ` satisfies the DK conjecture, i.e. there is an

equivalence of categories d : �1 (X1) −→ �1 (X2).

Proof. Consider the data of Diagram 11.1.3 defining a homogeneous

simpke  -equivalence ` of type �/%. Let us give a modification

of the sequence of pairs (K (_) , k (_)) introduced in Notation 10.3.6:

we consider the same ordered sequence K (_) = (� (_)1 , . . . , �
(_)
= ), and
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redefine the functor d(_) to be compatible with the present setting. In

analogy with the operations O1, O2, O3 of Notation 10.3.6, we define

(K (_+1) , d(_+1)) to be obtained by one of the following operations:

O4 exchange � (_)
8

with �
(_)
8+1 and replace either � (_)

8+1 with L
�
(_)
8

�
(_)
8+1

or � (_)
8

with R
�
(_)
8+1
�
(_)
8

, where � (_)
8

is !-semiorthogonal to � (_)
8+1 ,

leave d(_) unchanged

O5 move � (_)1 right after � (_)= and twist it by !⊗(A−1) , replace d(_) with

R
5∗ [� (_)1 ]

d(_) , or, conversely, move � (_)= right before � (_)1 , twist it

by !⊗(−A+1) and replace d(_) with L
5∗ [� (_)= ]

d(_)

O6 for any C ∈ Z, replace � (_)
8

with � (_)
8
⊗ !⊗C for all 8 and replace

d(_) with )−Cd(_) , where )−C is the twist functor by O(−CZ)

Moreover, we recall that � (1)
8

= �8, � ('+1) = �8 for 1 ≤ 8 ≤ = and we

impose d(1) = 6̃∗1. In light of Lemma 11.2.3, we can prove our claim by

showing that for 1 ≤ _ ≤ ' + 1 there is the following semiorthogonal

decomposition:

�1 (X0) = 〈d(_)�1 (X1), 5∗ [� (_)1 ], . . . , 5∗ [�
(_)
= ]〉 (11.2.38)

In fact, if this claim is true, for _ = ' + 1 we obtain a semiorthogonal

decomposition

�1 (X0) = 〈d('+1)�1 (X1), 5∗ [�1], . . . , 5∗ [�=]〉 (11.2.39)

and, once we compare it with the semiorthogonal decompositions found

by Lemma 11.2.3, we conclude setting d = d('+1) .

The existence of 11.2.38 for every _ can be proved by induction.
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For _ = 1 the decomposition 11.2.38 exists by Lemma 11.2.3. Let

us now suppose that 11.2.38 exists for _ = _0 as well, we will show

the existence of such decomposition for _ = _0 + 1 by mutating the

former accordingly. In fact, the pair (d(_0+1) , K (_0+1)) is obtained by

(d(_0) , K (_0)) by one of the three operations O4, O5 and O6 and all

of them induce a mutation on the decomposition 11.2.38 for _ = _0,

hence they define a new semiorthogonal decomposition

�1 (X0) = 〈d(_0+1)�1 (X1), 5∗ [� (_0+1)
1 ], . . . , 5∗ [� (_0+1)

= ]〉 (11.2.40)

as we proved by previous results. More precisely, Operation O4 gives

rise to a semiorthogonal decomposition by Lemma 11.2.4, Operation

O5 has been treated in Proposition 11.2.6 and Operation O6 follows by

Lemma 11.2.2. Therefore the semiorthogonal decomposition 11.2.40

exists and this concludes the proof. �

The following corollary provides an extension to the results of (BO95;

Kaw02; Nam03) on derived equivalence for varieties related by  -

equivalence of type �= × �= and �"= which are respectively standard

flops and Mukai flops.

Corollary 11.2.8. Let ` : X1 d X2 be a homogeneous simple  -

equivalence of type �/%, where �/% is a roof of type �"= , �= × �=,
��4 , �2 or �2. Suppose that L satisfies Assumption A1. Then X1 and X2

are derived equivalent.

Proof. We observe that by Lemma 10.3.14, if we specialize the data of

Notation 10.3.6 to roof bundles of types �"= , �= × �=, ��4 , �2 or �2,
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Assumptions A2 and A3 are satisfied. Then, the proof follows directly

from Theorem 11.2.7. �
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12 The middle orbit of the �! (6) action
on ∧3C6

12.1 A projectively self-dual singular variety

In the present chapter, we will introduce some constructions related to

the fourteen-dimensional subvariety , of P19 described as the space

of three-forms on a six-dimensional vector space which are partially

decomposable, i.e. they can be written as the wedge product of a

vector with a two-form. There are several properties of , which make

it peculiar:

◦ , is a singular variety in codimension five, and the singular locus

is the subvariety � (3, 6) of simple three-forms (Don77).

◦ There exist three desingularizations of , , of which two are

crepant. All three of them are projective bundles over homo-

geneous varieties (BFMT17, Section 3). The non-crepant resolu-

tion can be related to a roof bundle construction, and this gives

a non-trivial example of derived equivalent Calabi–Yau varieties

of dimension nine as we will illustrate later in this chapter.

◦ , is a self-projective dual variety. This self-duality could pos-

sibly extend to homological projective duality. This last feature

is extremely useful for our interests: for instance, � (2, 5) and
$� (5, 10)+ are homological projective self-duals and this allows

to construct derived equivalent pairs of Calabi–Yau varieties of

dimension respectively three (OR17; BCP20) and five (Man17)
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as intersections of general translates of such varieties.

The property of being homological projective self-dual would make

, a promising candidate to extend the Calabi–Yau duality described

in (OR17; BCP20; Man17) of intersections of general translates to

new examples. However, a major obstruction comes from the fact

that , is singular. Two approaches can be adopted to overcome the

problem:

◦ Consider the intersection of , with the image 6, under 6 ∈
Aut(P19), then find a resolution of the intersection. The advantage
of this approach is that the self-HPD property of, allows to use a

powerful argument to prove derived equivalence of intersections.

However, finding a crepant resolution of , ∩6, is a challenging

problem.

◦ Choose a desingularization of ,0 and find an embedding in an

ambient variety X0, then consider the intersection of two trans-

lates of ,0 with respect to some automorphism group of X0.

The main pros of this latter approach are the fact that all vari-

eties are smooth and that a good candidate for X0 can be found

rather easily. However, there is the nontrivial disadvantage that

the desingularization ,0 is not self-homological projective dual.

In the remainder of this chapter, after giving a more precise description

of, and its properties, we will construct a pair of Calabi–Yau ninefolds

described as zero loci of sections of vector bundles on ,1 and ,2,

which can be described as an example of pair of derived equivalent

Calabi–Yau fibrations related to a homogeneous roof bundle.
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12.2 Desingularizations

Let +6 be a vector space of dimension six. There exist three desingu-

larizations of , , appearing in the following diagram (BFMT17):

,0 ' P(∧2P(−1, 0))

,1 ' P(∧3Q) � (1, 5, +6) ,2 ' P(∧3U∨)

� (1, +6) � (5, +6)

?

@ A

(12.2.1)

where ,1 and ,2 are crepant resolutions and have Picard number two.

However, we shall focus on ,0, of Picard number three. We call

U the tautological bundle of � (5, +6) and Q the quotient bundle of

� (1, +6). Moreover, we define O(0, 1) := @∗O(0) ⊗ A∗O(1) for every
integers 0, 1. P is defined as the cokernel of the inclusion between the

pullbacks of the tautological bundles of the two Grassmannians, as in

the following exact sequence on � (1, 5, +6):

0 −→ O(−1, 0) −→ A∗U −→ P −→ 0 (12.2.2)

On ,0, we will use the notation O(0, 1, 0) = ?∗O(0, 1), while we will

call O(0, 0, 1) the Grothendieck line bundle associated to the projective

bundle structure ,0 = P(∧2P(−1, 0)).

Remark 12.2.1. The two crepant desingularizations give us the possi-

bility to compute the canonical class of , by computing the canon-
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ical class of one of them, say ,1. In fact, by the relative tangent

bundle sequence of the surjection P(∧3Q)) −→ � (1, +6) one has

det(),1) = det(')) ⊗ OP5 (6), where ') is the relative tangent bun-

dle. On the other hand, one has the relative Euler sequence asso-

ciated to the projective bundle structure ,1 = P(∧3Q) which gives

det ') = OP5 (6) ⊗ O,1 (10), and this allows us to conclude that ,1

(and then ,) have index 10.

12.3 Tangent bundles of Grassmannians

In the next section, for later use, we are going to give an explicit

description of the normal sheaf of , . Since , is singular, the outcome

will not be a locally trivial fibration: however, we can get a vector

bundle by pulling it back to the resolution ,0. As we will see, smooth

Calabi–Yau ninefolds can be constructed as zero loci of sections of

such bundle. This construction has been explained to the author by

Laurent Manivel, to whom the author is greatly indebted.

Hereafter, let us remind a very explicit description of the tangent bun-

dles of Grassmannians. Although all the material in this section is well-

known, it will be useful to review it in order to fix the notation, since we

will describe the tangent bundle of, as a generalization of such object.

Let us fix a vector space += of dimension =. Explicitly, � (:,+=) can be

described as the space of totally decomposable :-forms on +=, where

we say that a form l ∈ ∧:+= is totally decomposable if there exist :

vectors E1, . . . , E: such that l = E1 ∧ · · · ∧ E: . Call ? ∈ � (:,+=) the
point associated to the vector space / (?) = Span({E1, . . . , E: }). Such
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vector space can be also associated to a totally decomposable :-form

l(?) = E1 ∧ · · · ∧ E: up to rescaling by a nonzero constant. Consider a

linear map � : / (?) −→ +=// (?) . We can define a curve in � (:,+=)
as follows:

H? : � � (:,+=)

C (E1 + C�E1) ∧ · · · ∧ (E: + C�E: )
(12.3.1)

Observe that H? (0) = ?. We get a tangent vector to ? if we consider

the differentiation of the curve evaluated in C = 0:

3

3C
H? (C)

����
C=0
= �E1∧E2∧· · ·∧E:+· · ·+E1∧· · ·∧E:−1∧�E: ∈ )?� (:,+=).

(12.3.2)

Since we obtain a linearly independent tangent vector for each linearly

independent choice of a maximal rank �, we conclude that rk)� (:,+=) =

dim Hom(/ (?) , +=// (?)) = : (= − :).

Remark 12.3.1. Let us fix : = 2: we can find an especially nice de-

scription of the normal bundle of � (2, +=), which is the one we used

in Chapter 7 to discuss Calabi–Yau threefolds in � (2, +5). In fact,

for every ? ∈ � (2, +=), the orthogonal complement of )?� (2, +=) is
isomorphic to ∧2(+=// (?)). Taking into account the right action of

�! (+=// (?)), which encodes change of basis, we get N� (2,+=) |P(∧2+=) '
∧2Q(1).

12.4 A special vector bundle on,0

Let us come back to the variety , of partially decomposable three-

forms in P(∧3+6), fix a point ? associated to the form E (?) ∧ l(?) up
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to rescaling, where E (?) is a vector and l(?) is a two form. Extending

the discussion of the previous section, we can associate curves on ,

to pairs (�1, �2) in the space

Hom(Span(E (?)), +6/Span(E (?))) × Hom(Span(l(?)), +6/Span(l(?)))

in the following way:

A? : � ,

C (E (?) + C�1E
(?)) ∧ (l(?) + C�2l

(?))
(12.4.1)

This allows us to construct the following object:

)̂?, :=
{
3

3C
A? (C)

����
C=0

}
' +6 ∧ l(?) + E (?) ∧ ∧2+6. (12.4.2)

Note that this is not the fiber of a vector bundle, but rather of a piecewise

locally trivial fibration over , . In fact, the dimension of )̂?, jumps

exactly when l(?) becomes totally decomposable, i.e. on the singular

locus Sing(,) ' � (3, +6). Let us now consider a regular point ?, i.e.

a point such that the associated two-form l(?) is not decomposable.

Then, choosing an appropriate basis {41, . . . 46} of +6, without loss of

generality we can fix E (?) ∧ l(?) = 41 ∧ (423 + 445) where we use the

shorthand notation 481,...,8< := 481∧· · ·∧48< . The associated vector space

is:

)̂?, = Span({4245, 4345, 4234, 4235 + 4456, 4123, 4124,

4125, 4126, 4134, 4135, 4136, 4145, 4146, 4156}).
(12.4.3)

Let us now describe the orthogonal complment of )̂?, in ∧3+6:

#̂?, = Span({4246, 4256, 4346, 4356, 4236 − 4456}). (12.4.4)
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There exists a natural embedding of vector spaces #̂?, ⊂  ? where:

 ? = Span({4236, 4246, 4256, 4346, 4356, 4456}). (12.4.5)

We can see that  ? = ∧2 Span(l(?)) ∧ (Span(l(?)) ⊕ Span(E (?)))⊥.
Every regular point ? defines a point in the projective bundle

P(∧2P(−1, 0)) −→ � (1, 5, +6).

In fact, the pair Span(E (?)), Span(l(?)) ⊕ Span(E (?)) defines a point

in � (1, 5, +6) and the coordinate on the fiber is given by the nonzero

l(?) ∈ ∧2P(−1, 0). This allows us to identify  ? with the fiber of

∧2P ⊗ O(1, 1, 1) ⊗ O(0, 1, 0) = ∧2P(1, 2, 1). In this language, for

every regular ? ∈ , , one can describe #̂?, as the quotient of  ? by a

projection onto the orthogonal complement of a one-dimensional vector

space spanned by one specific three-form. Therefore, we can describe

#̂?, as the fiber of a vector bundle E over ,0, with the following

presentation:

0 −→ O(1, 1, 0) −→ ∧2P(1, 2, 1) −→ E −→ 0 (12.4.6)

Note that, while the vector space #?, is defined for regular ? ∈ , , E
is a well-defined vector bundle on all ,0.

Lemma 12.4.1. A general section of the bundle E defined by Equation

12.4.6 is a smooth Calabi–Yau variety of dimension nine.

Proof. The canonical bundle of ,0 is computed in terms of the relative

tangent bundle sequence with respect to ?:

0 −→ ') −→ ),0 −→ ?∗)� (1,5,+6) −→ 0 (12.4.7)
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where det)� (1,5,+6) = O(5, 5) and the determinant of the relative tangent

bundle is computed to be O(3, 3, 6) via the relative Euler sequence

coming from the projective bundle ?:

0 −→ ')∨(0, 0, 1) −→ ∧2P(−1, 0, 0) −→ O(0, 0, 1) −→ 0 (12.4.8)

so we conclude that l,0 ' O(−8,−8,−6). On the other hand, the

determinant of E is given by O(6, 12, 6) ⊗ O(3,−3, 0) ⊗ O(−1,−1, 0) =
O(8, 8, 6). Note that ∧2P(1, 2, 1) is globally generated, hence E is

globally generated as well. Finally, since ,0 has dimension fourteen

and E has rank five, we conclude by Lemma 2.5.3. �

12.5 Some Hodge numbers computations

With the following we show that d(. ) = 3.

Lemma 12.5.1. Let . be as above. Then the tangent bundle of . has the

following cohomology:

�•(.,). ) = C329 [−1] ⊕ C3 [−8]

Proof. The normal bundle sequence for Y is the following:

0 −→ ). −→ ),0 |. −→ E|. −→ 0 (12.5.1)

where the restrictions can be computed by means of the Koszul resolu-

tion of . in terms of wedge powers of E∨. All the relevant cohomology

can be obtained by Bott’s theorem, since E is resolved by pullbacks of

homogeneous bundles.
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We start from the restriction of E, which is resolved by the following

sequence:

0 −→ ∧5E∨ ⊗ E −→ ∧4E∨ ⊗ E −→ ∧3E∨ ⊗ E −→ ∧2E∨ ⊗ E −→

−→ E∨ ⊗ E −→ E −→ E|. −→ 0

(12.5.2)

Let us fix some notation: we call l1, . . . l5 the fundamental weights of

the semisimple Lie algebra �5, and +∑
8 28l8

will be the space of repre-

sentation associated to a weight expressed in the basis of fundamental

weights.

Then the cohomology of each bundle in the resolution Equation 12.5.2

can be computed by means of tensor products of wedge powers of the

sequence of Equation 12.4.6. All bundles in the sequence 12.5.2 are

acyclic except for the last two, which have cohomology:

�•(,0, E∨ ⊗ E) = C[0]; �•(,0, E) =
(
+2l3 ⊕ +l2+l4

)
[0] . (12.5.3)

which gives us the result

�•(., E|. ) =
(
+2l3 ⊕ +l2+l4

)
/C[0] ' C363 [0] . (12.5.4)

Now, let us consider the tangent bundle of ,0: the cohomology of its

restriction to . can be written in terms of the Koszul resolution of .

and the sequence 12.4.7. In this last sequence the tangent bundle of

� (1, 5, +6) appears: its cohomology can be found using the following

short exact sequences:

0 −→ ?∗'̃) −→ ?∗)� (1,5,6) −→ ?∗@∗)� (1,+6) −→ 0 (12.5.5)
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0 −→ ?∗'̃)
∨(1, 1) −→ ?∗@∗Q(1, 0) −→ ?∗O(1, 1) −→ 0 (12.5.6)

where we used the fact that the flag � (1, 5, +6) is isomorphic to the

projectivization of Q(1) over � (1, 6).
The cohomology of the relative tangent ') of ,0 −→ � (1, 5, +6)
restricted to . can be computed by a restriction of a twist of the dual

of the sequence 12.4.8, which is:

0 −→ O|. −→ ∧2P∨(1, 0, 1) |. −→ ') |. −→ 0 (12.5.7)

Hence we conclude that �•(., ') |. ) ' C[−8]. The cohomology of

'̃) |. , in a similar fashion, can be computed restricting the sequence

12.5.6 to . , which gives �•(., '̃) |. ) = C[0]⊕C2 [−1]⊕C[−8]. Finally,
one can compute the cohomology of the restriction of )� (1,+6) ' U∨ ⊗
Q via the Borel–Weil–Bott theorem. We get �•(., ?∗@∗)� (1,+6)) '
+l1+l5 [0] ⊕ C[−8].
All those cohomologies arrange to

�•(.,),0 |. ) = +l1+l5/C[0] ⊕ C3 [−8]

and this result, combined with 12.5.4, give the desired result, once we

observe that dim(+2l3 ⊕ +l2+l4/+l1+l5) = 175 + 189 − 35 = 329. �

Remark 12.5.2. Observe that the space of sections of E, by Bott’s the-

orem and Equation 12.4.6, is isomorphic to +2l3 ⊕+l2+l4 . Quotienting

out by the automorphisms of ,0 we get that . moves in a space of

dimension 328. On the other hand, the computation of �1(.,) |. )
yields a deformation space of dimension 329. This suggests that we are

describing a divisor in a bigger family of varieties. This phenomenon

gets particularly interesting if we observe that a similar computation
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for zero loci of sections of Q∨(2) on � (2, 5) yields the same result:

in that case, it is clear that the subfamily describes intersections of in-

finitesimal translates of � (2, 5), i.e. zero loci of sections of the normal

bundle. However, in the context of subvarieties of the desingularized

middle orbit ,0, there is no obvious candidate for a general family.

Since E has been explicitly constructed as the pullback to ,0 of the

“normal bundle” of ,A46D;0A , it is reasonable to expect that the general

element of the complete family is somehow described as the intersec-

tion of two general translates of desingularized middle orbits in some

ambient space of dimension nineteen. In the following section, we will

describe the smooth Calabi–Yau ninefolds inside ,0 as zero loci of

pushforwards of a hyperplane section in a suitable roof bundle. This

allows us to generate pairs of derived equivalent Calabi–Yau sextuple

covers of � (1, 5, +6).

12.6 A family of Mukai flops

One can see that PE admits a second projective bundle structure. In

fact we observe that:

◦ c : ,0 −→ � (1, 5, +6) is a smooth extremal contraction. In

particular it is a P5-bundle.

◦ The vector bundle E on ,0 is such that for every G ∈ � (1, 5, +6)
there exists a Mukai pair (c−1(G), E|c−1 (G)). To clarify this, let us

fix G ∈ � (1, 5, +6). If we restrict Equation 12.4.6 to c−1(G) ' P5
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we get:

0 −→ O −→ + ⊗ O(1) −→ E|c−1 (G) −→ 0 (12.6.1)

where + is a six dimensional vector space. This is the sequence

defining the tangent bundle of P5. Such vector bundle is ample

and globally generated, and det)P5 ⊗ lP5 ' O, which proves our

claim.

This construction can be dualized by identifying the fiber of c with

� (5, +), and taking the Mukai pair defined by the dual tautological

bundle of � (5, +). The outcome is the following, which is a special-

ization to our setting of 4.4.2:

F ; (1, 5,∧2P(1, 2, 1))

.1 ⊂ GA (1,∧2P(1, 2, 1)) GA (5,∧2P(1, 2, 1)) ⊃ .2

� (1, 5, +6)

?1 ?2

c c̃

(12.6.2)

where we called .1 the zero locus of a general section of E. By

construction, ?1 is the projective bundle morphism associated to the

projectivization of E, we define Ẽ := ?2∗L where L is the line bundle

such that c1∗L = E. We call .2 the zero locus of the section of Ẽ
such that .1 and .2 are defined by pushforwards of the same section of

L.

Theorem 12.6.1. In Diagram 12.6.2, .1 and .2 are a pair of derived
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equivalent Calabi–Yau covers of � (1, 5, +6) of degree six.

Proof. Observe that, by construction, F ; (1, 5,∧2P(1, 2, 1)) is a roof

bundle of type �"5 on � (1, 5, +6). Hence, derived equivalence follows

from Corollary 10.3.16. The Calabi–Yau varieties .1 and .2 are fi-

brations over � (1, 5, +6) whose general fiber is isomorphic to the zero

locus of a general section of )P5 on P5, which is a collection of six

points. Hence, we conclude that .1 and .2 are sextuple covers of

� (1, 5, +6). �
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13 Gauged linear sigma models

13.1 GLSM and phase transitions

The idea of gauged linear sigma models originates from the physics of

string theory: in the early 90s, a lot of interest has been raised by two

different classes of theories which exhibited similar features:

◦ the nonlinear sigma model on a Calabi–Yau variety, whose man-

ifold of supersymmetric vacua is a Calabi–Yau variety.

◦ the Landau–Ginzburg model of a superpotential , , whose man-

ifold of symmetric vacua is a point.

Such apparently independent constructions have been proved by Witten

(Wit93) to be related by a phenomenon called phase transition: they

are described by a single theory whose behaviour exhibits a dramatic

change while a parameter moves between two different regions. This

idea, which was already common and well established in the field of

solid state physics and statistical field theory, in the setting of nonlinear

sigma models and Landau–Ginzburg models took the name of gauged

linear sigma model (GLSM).

From a merely physical perspective, a GLSM is a supersymmetric field

theory whose Lagrangian contains a parameter, called Fayet–Iliopoulos

parameter g such that in the limit in which g can be neglected some

of the interactions can be integrated out, while in the limit for g >> 1

some other interactions can be disregarded, giving rise to two different
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theories. For a rigorous, physical introduction to GLSM we refer to

(MS) and (Wit93). In the following we will focus on a mathematical

exposition of GLSM.

13.1.1 GLSM and variation of GIT

Definition 13.1.1. We call gauged linear sigma model (+, �,C∗
'
,,) the

following data:

1. A finite dimensional vector space +

2. A linear reductive group � with an action on +

3. A '-symmetry, which is an action ofC∗ on+ , traditionally denoted

by C∗
'

4. A polynomial, : + −→ C called superpotential.

Moreover, we require the following conditions to hold:

1. The �-action and the C∗
'
-action commute on +

2. , is �-invariant and C∗
'
-homogeneous with positive weight

Before defining critical loci, let us first recall the notion of semistability,

which is standard in geometric invariant theory ((King94, Section 2)

for the affine case, in particular Lemma 2.2):

Definition 13.1.2. Let (+, �) satisfy the requirements ofDefinition 13.1.1.
Let dg ∈ Hom(�,C∗) be a character. We call �-semistable locus of +

with respect to dg the following set:

+ BBg = {E ∈ + : {0} ×+ ∩ {(dg (6)−1, 6E) |6 ∈ �} = ∅} (13.1.1)
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We call unstable locus the set +Dg := + \+ BBg .

Furthermore, we call GIT quotient of + by � with respect to dg the

following quotient:

+//g� := + BBg /�. (13.1.2)

A very useful characterization of the semistable locus is given by the

Hilbert–Mumford criterion. Among several versions of this result, with

different degrees of strength (see, for example, (MFK94, Chapter 2.1)

for a classical source in the context of GIT for projective varieties), the

following is the most suitable for our setting:

Lemma 13.1.3. (King94, Lemma 2.4) Let + be a vector space endowed

with an action of a linear reductive group �, let dg be a character. Then,

E ∈ + BBg if and only if there exists a one-parameter subgroup� : C∗ −→ �

such that E is unstable with respect to the �-action restricted to �.

Lemma 13.1.3 is very useful in practice, because computing semista-

bility with respect to a one-parameter subgroup is particularly simple:

given a one-parameter subgroup {ℎ_} ⊂ Hom(+,C∗), one has that

E ∈ + is unstable with respect to dg if the following conditions are

satisfied:

1. the expression dg (ℎ_)−1 converges to zero for _ −→ 0

2. the expression ℎ_E has a limit in + for _ −→ 0

It has been shown that for GIT quotients of normal affine variety by lin-

ear reductive groups, varying the character defines a wall-and-chamber

structure:
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Theorem 13.1.4. (Hal04, Theorem 3.3) Let - be a normal, affine �-

variety. The GIT-equivalence classes in Hom(�,C∗) corresponding to

the �-action on - are the relative interiors of the cones of a rational,

polyhedral fan Δ� (-). Such regions will be denoted chambers.

Definition 13.1.5. Let (+, �,C∗
'
,,) be a GLSM. We call phase of the

GLSM a chamber of the associated polyhedral fan.

Definition 13.1.6. Let (+, �,C∗
'
,,, �) be a GLSM phase, where � is the

associated chamber. We call critical locus of the superpotential:

Crit(,) := / (3,) (13.1.3)

where 3, is the gradient of, . Moreover, we call vacuum manifold the

GIT quotient:

.� = Crit(,)//g�. (13.1.4)

for any dg ∈ �.

Following the physical nomenclature, we call geometric phase a GLSM

phase � such that .� is an algebraic variety of positive dimension.

Wall-crossing can drastically change the geometry of the vacuum man-

ifold, this phenomenon is called phase transition. Let us discuss a

simple case in the following example.

13.1.2 Example: hypersurface of degree 3 in P=

A standard example of this construction is a GLSM geometric phase

yielding a hypersurface in P= (Wit93) as the vacuum manifold. Namely,

let us consider a GLSM given by the following data. First, we define a
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superpotential:

+ = C=+1 ⊕ C C

(G, ?) ? 5 (G)

,

(13.1.5)

where 5 ∈ �0(P=,O(3)) is a regular section. Let us fix � = C∗, and

the following action on + :

C∗ ×+ +

_, (G, ?) _G, _−3 ?.
(13.1.6)

One can easily verify that , is C∗-invariant. We also fix a '-symmetry

C∗
'
acting trivially on G and with weight two on ?, hence the data above

defines a GLSM.

For every g ∈ R let us now consider a character dg : C∗ −→ C defined

as:
C∗ C

_ _g .

dg

(13.1.7)

Let us consider a one-parameter subgroup 6C : C∗ −→ C∗. For g > 0

one has d−1
g (6C) −→ 0 for g −→ 0 if and only if 6C (_) is a negative

power of _, hence + BBd = + \ / where / is given by:

/ = {(G, ?) ∈ + : G = 0}. (13.1.8)

Therefore .d = {(G, ?) ∈ + : G ≠ 0, 5 (G) = 0, ?35 (G) = 0}. Since 5 is

regular, 35 has trivial kernel, hence we get:

.d ' / ( 5 ). (13.1.9)

This GIT quotient is independent from the choice of g > 0, hence

� = {g ∈ R : g > 0} is a phase of the GLSM.
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Let us now consider characters dg for g < 0. The semistable locus is

now the following:

+ BBd = {(G, ?) ∈ + : ? ≠ 0} (13.1.10)

Note that every (G, ?) can be mapped to (_?G, 1) by acting with _?
such that _3? = ?. We are thus left with a stabilizer isomorphic to Z3 ,

the group of 3-th roots of unity. Therefore, we conclude that:

+//d� =
[
C=+1/Z3

]
. (13.1.11)

In order to find the critical locus, we observe that 5 is regular on P=,

hence the only zero of ( 5 , 35 ) on C=+1 is 0, which means:

.d = {0}. (13.1.12)

The above discussion, for = = 4 and 3 = 5 yields the GLSM describing

two phases: a quintic Calabi–Yau threefold in P4 and a second phase

where the critical locus is a point. This construction can be easily

generalized to gauged linear sigma model descriptions of Calabi–Yau

complete intersections in a toric variety. In fact, toric varieties do

always possess a description as GIT quotients of vector spaces by

� = (C∗)< for some < (MS, Chapter 7).

13.1.3 Non-abelian GLSM

A generalization of the discussion above is given by choosing � to

be non-abelian. This provides new interesting scenarios, at the price

of increased complexity. Namely, one can obtain examples of GLSM
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featuring multiple geometric phases, sometimes even non birationally

equivalent. The physics of GLSM predicts that such geometric phases

should be derived equivalent, and this provided candidates for derived

equivalent, non birational Calabi–Yau pairs. The first of such exam-

ples, which is the so-called Pfaffian–Grassmannian pair, appeared first

in (Rød98), where the varieties have been conjectured to have the same

mirror: this, according to the homological mirror symmetry conjec-

tures, would imply that they are derived equivalent. Later, derived

equivalence has been proved in (BC08), and a GLSM construction fea-

turing the Pfaffian–Grassmannian pair has been proposed in (ADS15)

alongside with a new proof of derived equivalence, closer to the phys-

ical construction.

In the following, the gauged linear sigma model we are going to de-

scribe are specifically constructed such that the critical locus on one

of the two phases is isomorphic to the zero locus of a regular section

of a homogeneous vector bundle over a smooth homogeneous variety.

Let + be a vector space endowed with the action of a reductive linear

group � such that - = (+ \/)/� is a smooth homogeneous variety and

let Γ : � −→ End(,) be a representation, where , is a vector space.

Then, the action of � on (+ \ /) ×, allows to define a �-equivariant
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vector bundle E in the following way:

E := (+ \ /) ×� ,

- =
+ \ //

�

c (13.1.13)

A section of such bundle is a map of the following kind:

- E

[G] [G, B̂(G)]

B

(13.1.14)

where B̂ is a �-equivariant function compatible with the �-action on

E. Let us now consider the following function:

E∨ C

[G, F] F · B̂(G)

B̌

(13.1.15)

Clearly, B̌ is an invariant function. If we assume / has codimension

at least two, B̌ extends smoothly to + ⊕ ,∨. Therefore, adding an

'-symmetry of weight two on , and trivial on + , we obtain a GLSM

data if there exists a character d of � such that the d-unstable locus

of + ⊕, is / . In this case, the vacuuum manifold has a particularly

simple description by the following lemma, due to Okonek:

Lemma 13.1.7 (Okonek’s lemma). In the setting above, let B̌ be the

superpotential defined by a regular section B ∈ �0(-, E). Then the

following isomorphism holds:

Crit( B̌) � / ( B̂). (13.1.16)
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Proof. By definition, we have

/ (3B̌) = {(D, _) : [D, _] ∈ E∨, B̂(D) = 0, _ · 3B̂(D) = 0}. (13.1.17)

Since B is a regular section, then B̂ is regular. Then, since its Jacobian

3B̂ has maximal rank, _ · 3B̂(D) = 0 if and only if _ = 0. �

13.2 GLSMfor theCalabi–Yaupair of type ��2:
In the following, we present an example of a GLSM with two geometric

phases given by a pair of Calabi–Yau varieties associated to a roof of

type �2: Choosing : = 2, this discussion specializes to the GLSM

appearing in (KR17, Section 6), and the associated Calabi–Yau pair

case is the one studied in Chapter 7.

13.2.1 The universal bundle of � (: + 1, +2:+1)

In order to introduce all the necessary information, let us begin by

choosing the following explicit description for the twisted tautological

bundle U:+1(2) over � (: + 1, +2:+1) and its global sections. One

has:

U:+1(2) = Hom(C:+1, +2:+1)\�: ×,
/
�! (: + 1) 3 (�, E) ∼ (�6

−1, det 6−26E)

� (: + 1, +2:+1) = Hom(C:+1, +2:+1)\�:
/
�! (: + 1) 3 � ∼ �6

−1.

B

(13.2.1)

241



Gauged linear sigma models

where �: := {� ∈ Hom(C:+1, +2:+1) : rk � ≤ :} and , ' C:+1.

For every � ∈ Hom(C:+1, +2:+1) \ {rk < : + 1}, one can define a global

section B ∈ �0(� (:+1, +2:+1),U:+1(2)) as a map which acts as follows

on equivalence classes:

B : [�] ↦−→ [�, B̂(�)] (13.2.2)

where B̂ : � ∈ Hom(C:+1, +2:+1) \ {rk < : + 1} −→ , is a �! (: + 1)-
equivariant function satisfying the condition B̂(�6−1) = det 6−26B̂(�).
Clearly, the choice of a B̂ with the right �-equivariancy condition fixes

uniquely a section on � (: + 1, +2:+1).

We can find more information on B̂ by understanding its image un-

der the injective morphism

U:+1(2) +2:+1 ⊗ O(2).] (13.2.3)

In fact, let us choose an equivalence class [�] ∈ � (: + 1, +2:+1) in
the sense of the quotient description of Diagram 13.2.1. Then the

restriction ][�] of ] to the fiber of [�] sends a vector E ∈ C:+1 to

its image �E in a : + 1-dimensional subspace of +:+1 spanned by the

columns of � ∈ [�]. More precisely:

] : [�, E] ↦−→ [�, �E] . (13.2.4)

If we now call ]B̂ the function acting as ]B̂(�) = �B̂(�) we see that

]B̂(�6−1) = det 6−2]B̂(�) as expected. By this last equation we see that

]B̂(�) is a vector of 2: + 1 homogeneous polynomials of degree two in
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the minors of � of order : + 1, hence, if we view such polynomials as

functions of the variables {�8 9 }, they have degree 2(: + 1). Therefore

B̂(�) is a vector of : + 1 homogeneous polynomials in the variables

{�8 9 } of degree 2: + 1.

13.2.2 GLSM data and variation of GIT

Let us begin this section by defining the GLSM data in the spirit of

Definition 13.1.1. We choose the vector space to be Hom(C:+1, +2:+1)⊕
,∨, equipped with the �! (: + 1)-action:

� × Hom(C:+1, +2:+1) ⊕,∨ Hom(C:+1, +2:+1) ⊕,∨

(�, l) (�6−1, det 62l6−1)

where l ∈ ,∨ is intended as a row-vector. We choose C∗
'
to act

trivially Hom(C:+1, +2:+1) and with weight two on ,∨. Observe that

B can be smoothly extended by zero to a map

Hom(C:+1, +2:+1) Hom(C:+1, +2:+1) ×,

� (�, B̂(�)).

B

(13.2.5)

From this data we can construct the following superpotential, which is

�! (: + 1)-invariant and C∗
'
-homogeneous with weight two:

Hom(C:+1, +2:+1) ⊕,∨ C

�, l l · B̂(�)

B̌

(13.2.6)

Remark 13.2.1. This formulation of a GLSM fits into the physical de-

scription of (HT07). In particular, the choice of a superpotential of the
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form given by (HT07, Equation 2.6) can be written, in physical terms,

as

, =

∫
32\ tr(%�B̂(�)), (13.2.7)

where l = %� and %1, . . . %2:+1 are superfields transforming as % ↦→
det 62% under the gauge group, which is * (: + 1), and the integration

is on two fermionic coordinates of the superspace.

The chamber g > 0

Let dg be the character defined by dg (6) = det 6−g and, for the mo-

ment, let g be strictly positive. Then, in light of Lemma 13.1.3, we

can characterize the unstable locus /+ as the set of pairs (�, l) ∈
Hom(C:+1, +2:+1) ⊕,∨ such that there exists a one-parameter subgroup

{6C} ⊂ �! (: + 1) fulfilling the following conditions:

1. The expression det(6C) converges to zero for C −→ 0 (so that

d−1
g (6C) converges to zero)

2. The expression 6C .(�, l) has a limit in + for C −→ 0

The action of �! (:+1) on Hom(C:+1, +2:+1) preserves the rank, hence,
for every matrix � ∈ Hom(C:+1, +2:+1) of corank ; there exists an

element 6 ∈ �! (: +1) such that �6−1 has the first ; columns composed

entirely of zeros. The general one-parameter subgroup of �! (: + 1)
has the form:

6C =

©­­­­­­«
CU1

CU2

. . .

CU:+1

ª®®®®®®¬
(13.2.8)
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Let us consider the action of 6C on a pair (�, l) where � has no

nonzero element on the first ; columns. The conditions 1 and 2 on

such (�, l) are satisfied if and only if U1, . . . , U:+1 are a solution of

the following set of inequalities:
∑
9 U 9 > 0

U8 ≤ 0 ; < 8 ≤ : + 1

2
∑
9 U 9 − U8 ≥ 0 ∀8

(13.2.9)

This system has solutions if and only if ; ≥ 1 (such condition allows

to choose U1 sufficiently positive to satisfy the first inequality and the

last block of : + 1 inequalities). Hence we conclude that the unstable

locus for the chamber g > 0 is:

/+ = {(�, l) ∈ Hom(C:+1, +2:+1) ⊕,∨ : rk � < : + 1}. (13.2.10)

Thus the GIT quotient relative to the chamber g > 0 defines the bundle

U∨3 (−2) over � (3, +5) and the vacuum manifold, due to Lemma 13.1.7,

is isomorphic to the Calabi–Yau threefold . = / (B). Moreover, the

superpotential being �-invariant, the map B̌+ in Diagram 13.2.11 is

well defined:

U∨3 (−2) C U3(2)

/ (B) ⊂ � (3, +5) � (3, +5).

B̌+

B (13.2.11)

The chamber g < 0

Here, the unstable locus is given by pairs (�, l) such that there exists

a one-parameter subgroup 6C fulfilling the following conditions:
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1. det(6C)−1 converges to zero for C −→ 0

2. 6C .(�, l) has a limit in + for C −→ 0

If we impose such conditions on a one-parameter subgroup as the one of

Equation 13.2.8 acting on a general pair (�, l) we obtain the following

set of inequalities, which have no solution:
∑
9 U 9 < 0

U8 ≤ 0 ∀8
2
∑
9 U 9 − U8 ≥ 0 ∀8

(13.2.12)

which tells us that the general pair (�, l) is semistable. In order

to characterize the unstable locus, we observe that the �! (: + 1)-
action not only preserves the rank in Hom(C:+1, +2:+1), but also in

Hom(C:+1, +2:+1)⊕,∨ ' Hom(C:+1,C⊕+2:+1) where the isomorphism

is given by writing a pair (�, l) as a (2: + 2) × (: + 1)-matrix given

by adding l on top of � as a new row. Hence, for every pair (�, l)
there exists an element 6 ∈ �! (: + 1) such that �6−1 has the first ;

rows composed entirely of zeros and det(6)2l6−1 has the first ; entries

equal to zero. Imposing Conditions 1 and 2 to such pair gives rise to

the following subset of the inequalities 13.2.12:
∑
9 U 9 < 0

U8 ≤ 0 ; < 8 ≤ : + 1

2
∑
9 U 9 − U8 ≥ 0 ; < 8 ≤ : + 1

(13.2.13)

This set of inequalities has solution if and only if ; ≥ 0, which translates

to the condition {(�, l) : rk � ≤ :, ker �∩kerl ≠ {0}}. On the other

hand, we observe that if we impose l = 0, a pair (�, 0) is unstable if
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and only if the following system has a solution:


∑
9 U 9 < 0

U8 ≤ 0 ; < 8 ≤ : + 1
(13.2.14)

which is always the case, regardless of ; (hence the rank of �). Sum-

ming all up, we obtain the following unstable locus:

/− = {(�, l) : kerl ∩ ker � ≠ {0}} ∪ {(�, l) : l = 0}. (13.2.15)

Therefore, we have:

+ BB− = {(�, l) ∈ Hom(C:+1, +2:+1) ⊕,∨ : kerl ∩ ker � = {0};l ≠ 0}.
(13.2.16)

We observe that, since kerl is :-dimensional, the condition kerl ∩
ker � = 0 implies rk � ≥ : , otherwise the kernels would intersect in a

non-trivial vector space.

The critical locus of our superpotential, in the phase g < 0, is de-

scribed by the following equations in + BB− :

/ (3B̌) =
l · 3B̂ = 0

B̂ = 0
(13.2.17)

The request of having l ≠ 0 in the kernel of the transpose of 3B̂ can

be rephrased saying that the Jacobian of B̂ has a non-trivial kernel and

this is not possible if � is maximal rank. This fact, combined with

the condition rk � ≥ : , yields rk � = : , which automatically satisfies

B̂ = 0.
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13.2.3 The critical locus for g < 0

Hereafter we will give explicit expression for the functions B̂(�) via the
pushforward of the general expression of a hyperplane section of the

flag. This determines uniquely a section of U:+1(2) on � (: +1, , +2:+1)
and it permits to get a better description for Equation 13.2.17.

We will adopt the convention of the summation of repeated indices in

order to lighten the notation. Furthermore the square brackets encasing

a set of indices will mean that a tensor is made antisymmetric with

respect to permutation of those indices, namely

)[81,...8: ] =
1
:!

∑
f∈(:

nf)f(81)...f(8: )

where nf is the sign of the permutation f.

Let us call % = � (:,+2:+1) × � (: + 1, +2:+1). In the spirit of Equa-

tion 13.2.2, a section ( ∈ �0(%,O(1, 1)) is determined by a �! (:) ×
�! (: + 1)-equivariant map (̂ in the following way:

% C

( [�], [�]) ( [�], [�], (̂(�, �))

(

(13.2.18)

where (̂ is defined as the map

Hom(C: , +2:+1) ⊕ Hom(C:+1, +2:+1) C
(̂ (13.2.19)

which act on (�, �) as

(̂(�, �) = ( 91... 9:+181...8:k 91... 9:+1 (�)k81...8: (�)
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Here we introduced the notation k81...8: (�) for the : × : minor of � ob-

tained choosing the rows 81, . . . , 8: and k 91... 9:+1 (�) for the : + 1× : + 1

minor of � defined by choosing the rows 91, . . . , 9:+1. In this way,

we construct the isomprphsim �0(%,O(1, 1)) ' ∧:+2:+1 ⊗ ∧:+1+2:+1,

which identifies �0(� (:, : + 1, +2:+1),O(1, 1)) with a subspace of

∧:+2:+1 ⊗ ∧:+1+2:+1. Note that the functions k are, by definition,

completely antisymmetric, thus ( will be antisymmetric with respect to

permutations of pairs respectively in (81, . . . , 8: ) and ( 91, . . . , 9:+1).
Let us consider ( ∈ �0(� (:, : + 1, +2:+1),O(1, 1)). For every point in

� (:, : + 1, +2:+1) we can choose a representative (�, �) such that � is

the matrix obtained by erasing the first column of �. Thus we can use

linearity of k 91,..., 9:+1 (�) with respect to the variables �A1 and write (̂

in the two following ways, up to an overall constant:

(̂(�, �) = ( 91... 9:+181...8:k[ 91... 9: (�)� 9:+1]1k81...8: (�); (13.2.20)

(̂(�, �) = ( 91... 9:+181...8:k 91... 9:+1 (�)
m

m�?1
k?81...8: (�) (13.2.21)

From (13.2.20) we can define a section % of +∨2:+1⊗O(2) on � (:,+2:+1),
such that its contraction with the vector (�11, . . . , �2:+1 1) yields (̂(�, �):

%̂A (�) = ( 91... 9:+181...8:k[ 91... 9: (�)X:]Ak81...8: (�) (13.2.22)

where X is the Kronecker delta. In a similar way we can obtain from

(13.2.21) a section & of +2:+1⊗O(2), if we note that {m�11; . . . ; m�2:+1 1}
define a basis of linear functionals on U:+1[�] . We get:

&̂A (�) = ( 91... 9:+181...8:k 91... 9:+1 (�)kA81...8: (�). (13.2.23)
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Lemma 13.2.2. Let ( ∈ �0(� (:, : + 1, +2:+1),O(1, 1)) be a general

section, consider the surjections ? : � (:, : + 1, 2: + 1) −→ � (:,+2:+1)
and @ : � (:, : + 1, +2:+1) −→ � (: + 1, +2:+1). Then the sections of

Equation 13.2.20 and 13.2.21 satisfy respectively / (%) ' / (?∗() and
/ (&) ' / (@∗().

Proof. Let us begin with &. By Equation 13.2.4 and the relative

discussion, we described the image in �0(� (:+1, +2:+1), +2:+1⊗O(2))
of (the equivariant map defining) a section B of U:+1(2) with the

following expression:

]̂B(�) = B̂1(�)

©­­­­­­­­­«

�11

.

.

.

�2:+1 1

ª®®®®®®®®®¬
+ B̂2(�)

©­­­­­­­­­«

�12

.

.

.

�2:+1 2

ª®®®®®®®®®¬
+ · · · + B̂:+1(�)

©­­­­­­­­­«

�1 :+1

.

.

.

�2:+1 :+1

ª®®®®®®®®®¬
.

(13.2.24)

Comparing the Equation 13.2.24 with 13.2.21 leads us to write the

following expression for B̂(�):

B̂C (�) = ( 91... 9:+181...8:k 91... 9:+1 (�)
m

m� C
A

kA 81...8: (�). (13.2.25)

This is, indeed, the equivariant function defining a section of U:+1(2)
such that &A (�) = � C

A B̂C (�). Since � has maximal rank it has trivial

kernel, hence we identify the zero locus of & with the one of B̂.

Let us now focus our attention on %. First, in the spirit of Equations

13.2.3 and 13.2.4, let us consider the injective morphism g : U: (2) ↩−→
+2:+1 ⊗ O(2) on � (:,+2:+1) which acts on an equivalence class as

g( [�, E]) = [�, �E]. This map defines an injection of global section
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spaces explicitly described as

B̂(�) �B̂(�). (13.2.26)

Hence, by dualizing the associated tautological sequence, we see that

a section % ∈ �0(� (:,+2:+1), +∨2:+1 ⊗ O(2)) is image of a section

of the subbundle Q∨
:
(2) if &(�) ∈ ker(�) ) for every maximal rank

� ∈ Hom(C: , +2:+1). But this is satisfied because every polynomial

�) AC %̂A is a linear combination of determinants of a matrix with a

repeated column. Therefore we conclude that & is the image of a

section B of Q∨
:
(2) in �0(� (:,+2:+1), +∨2:+1 ⊗ O(2)). By the same

reasoning as above, B is embedded in �0(� (:,+2:+1), +∨2:+1 ⊗O(2)) by
a map such that on each fiber it reduces to an injective morphism of

vector spaces. Therefore, the zero locus of & is isomorphic to the one

of B. �

In the above, we wrote B̂ as a function defined on Hom(C:+1, +2:+1)\�:

with values in C:+1, but we note that, as expected, it extends by zeros

to a function on all Hom(C:+1, +2:+1). Namely, if the rank of � is

smaller than : + 1, all the : + 1 × : + 1 minors vanish, so B̂(�) = 0 and

smoothness follows again from Hartogs’ extension theorem. Then, by

inspection, we see that B̂8 is linear in the entries of the 8-th column of

� and quadratic in the entries of the other two columns.

Now let us apply what we found to Equation 13.2.17. Since on + BB−
one has rk � = : , let us choose a basis where the first column of �

vanishes. This reduces the system of : + 1× 2: + 1 equations l · 3B̂ = 0

to : + 1 homogeneous polynomials of degree 2: in the variables �8 9
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for 9 ≠ 1. The overall factor l1 appearing in each of them can be

discarded since the choice of having �81 = 0 for every 9 , together with

the condition ker � ∩ kerl = 0 imply l1 ≠ 0. Summing all up, the

critical locus for the phase g < 0 is given by

Crit( B̌) = {(�, l) : ker � ∩ kerl = 0; rk � = :, m�18 B̂1 = 0}. (13.2.27)

Moreover, since the 2: + 1 polynomial are independent on the entries

of 11, they can be regarded as polynomials whose variables are the

: × : minors of the matrix � obtained discarding the first column from

�.

Finally, computing the derivatives of (13.2.25) with respect to the en-

tries of the first column of �, we get

m

m�?1
B̂1(�) = ( 91... 9:+181...8:k[ 91... 9: (�)X 9:+1]?k81...8: (�) (13.2.28)

which are exactly the 2: +1 polynomials described in Equation 13.2.22,

and their zero locus is isomorphic to .1 by Lemma 13.2.2.

So far, we got no conditions on l except for l1 ≠ 0: the critical

locus of the superpotential in the chamber g < 0 is a bundle E over

.1. However, we still have a �! (: + 1)-action on this bundle: a matrix

� with zeros in the first column is fixed by a stabilizer of �! (: + 1)
given by matrices of the form

6−1
= =

©­­­­­­«
01 02 . . . 0:+1

0 1 0 0

0 0 . . . 0

0 0 0 1

ª®®®®®®¬
(13.2.29)
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with 0A ≠ 0 for every A and all the tuples (l1, . . . , l:+1) with nonva-

nishing l1 lie in the same orbit with respect to this stabilizer, which

acts freely on them. So the action is transitive and free. Taking

the quotient of E with respect to the �! (: + 1)-action yields exactly

.1 ⊂ � (:,+2:+1). This proves compatibility of our GLSM construction

with the description of diagram (7.1.1).

13.3 GLSM and Calabi–Yau fibrations: the roof
bundle of type �2:

Let us fix a roof bundle Z of type �/% = � (2, 3, +5). Herefter we

present a GLSM describing the zero loci -1 and -2 as critical loci of

a superpotential F related by a phase transition. We will mainly focus

our attention to the Calabi–Yau pair of Section 4.5.3, but we will keep

the discussion slightly more general: hereafter we fix � = P2:+1 and

consequently Z = � (1, : + 1, : + 2, 2: + 2).

13.3.1 Notation

The geometry for � = P5 has been established in Section 4.5.2. Let us

briefly adapt some aspects to the case � = P2:+1. First, let us recall

the bundle P defined by the embedding of pullbacks of tautological

bundles on � (1, : + 2, +2:+2):

0 −→ D∗U1 −→ C∗U:+2 −→ P −→ 0 (13.3.1)

where D : � (1, :+2, 2:+2) −→ � (1, 2:+2) and C : � (1, :+2, 2:+2) −→
� (: + 2, 2: + 2). The tautological bundle of � (1, +2:+2) ' P2:+1 is
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U1 = O(−1) one has D∗U1 = O(−1, 0) and U:+2 is the tautological

bundle of � (: + 2, +2:+2). It follows that P has rank : + 1 and deter-

minant det(P) = O(1,−1).
Let us now consider the following GIT description of � (1, :+2, +2:+2):

� (1, : + 2, +2:+2) ' Hom(C:+2, +2:+2) \ �:+1
/
�

(13.3.2)

where

� =

©­«
_ ×
0 ℎ

ª®¬
 ⊂ �! (: + 2), _ ∈ C∗, ℎ ∈ �! (: + 1). (13.3.3)

with × denoting the entries which correspond to a nilpotent subgroup,

on which we have no conditions imposed.

The quotient is taken with respect to the right �-action defines as

� ∼ �6−1. Given a :+1 dimensional vector space +:+1, we can describe

P(1, 2) as a �-equivariant vector bundle over � (1, : + 2, +2:+2) in the

following way:

P(1, 2) = Hom(C:+2, +2:+2) \ �:+1 ⊕ +:+1
/
�

� (1, : + 2, +2:+2)

(13.3.4)

where the equivalence relation on Hom(C:+2, +2:+2) \ �:+1 ⊕ +:+1 is

(�, G) ∼ (�6−1, _−3 det ℎ−2ℎG). In fact, since O(1, 0) = C∗U∨ and

O(0, 1) = D∗ detU∨, the weight of O(0, 1) under its associated one-

dimensional representation is det 6−1 = _−1 det ℎ−1.
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Following the same approach we adopted for the GLSM of a Calabi–

Yau pair of type ��2: , a section B of P(1, 2) is defined by an equivariant

map B̂ : Hom(C:+2, +2:+2) −→ C:+1 fulfilling the equivariancy condi-

tion B( [�]) = [�, B̂(�)]. Therefore it must satisfy

B̂(�6−1) = _−1 det 6−2ℎB̂(�). (13.3.5)

In order to characterize B̂, given a point [�] ∈ � (1, : + 2, +2:+2) with
respect to the quotient description of Equation 13.3.2, let us pick a

representative �, rename E the first column of � and call � the rest

of the matrix. We use the notation � = (E |�) for juxtaposition. Then,
observe that the function (E |�) −→ �B̂((E |�)) transforms like the fiber

of +2:+2 ⊗ O(1, 2) under the �-action. Moreover, since its image lies

in the image of �, by the maximal rank condition on (E |�) it must lie

in +2:+2/Span(E), which is the fiber of C∗Q over E, where we identify

E with C (E, �) ∈ � (1, +2:+2). Note that, fixing E, we recover exactly

the description of the section of U:+1(2) of Equation 13.2.2 and the

discussion thereafter.

13.3.2 The model

Let us call + the vector space

+ = Hom(C, +2:+2) ⊕ Hom(C:+1, +2:+2) ⊕ +∨:+1 (13.3.6)

endowed with the following �-action:

� ×+ +

6, (E, �, G) (E_−1, �ℎ−1, _3 det ℎ2Gℎ−1)
(13.3.7)
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where 6 decomposes as in Equation 13.3.4. Given a smooth section

B ∈ �0(�, 1, : + 2, +2:+2),P(1, 2)) we fix our superpotential as the

following �-invariant function:

+ C

(E, �, G) G · B̂(E, �)

F

(13.3.8)

where the dot is the usual contraction +∨
:+1 ×+:+1 −→ C.

We define a family of characters

dg : � −→ C∗

6 ↦−→ _−g det ℎ−g
(13.3.9)

which describes a line inside the character group. We consider the

variation of GIT related to the crossing of the vertex between the loci

g > 0 and g < 0. More precisely, fixed one of the two chambers, we

investigate the locus /± ∈ + of triples (E, �, G) such that there exists a

one-parameter subgroup {6C} ⊂ � with d−1
± (6C) −→ 0 and 6C (E, �, G)

has a limit in + for C −→ 0. Then, the corresponding semistable locus

is + BB± = + \ /±.
Let us fix a one-parameter subgroup in � depending on :+2 parameters

U0, . . . , U:+1 whose elements are

6C =

©­­­­«
CU0

. . .

CU:+1

ª®®®®¬
(13.3.10)

The chamber g > 0

Here the condition d−1
+ (6C) −→ 0 translates to

∑:+1
8=0 U8 > 0. Then

(E, �, G) ∈ /+ if and only if there exist a tuple U0, . . . U:+1 satisfying a
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set of inequalities which for the general (E, �, G) are:
∑:+1
8=0 U8 > 0

−U 9 ≥ 0

3U0 + 2
∑:+1
8=1 U8 − U 9 ≥ 0

(13.3.11)

Then, the semistable locus can be determined following the same kind

of analysis we performed in Section 13.2. We find:

+ BB+ = {(E, �, G) ∈ + | rk E = 1, rk � = : + 1}. (13.3.12)

Therefore, since

+//+� = + BB+ /� = P∨(−1,−2). (13.3.13)

we conclude that (F)//+� ' - by Lemma 13.1.7.

The chamber g < 0

Here the condition d−1
− (6=) −→ 0 gives the inequality to

∑:+1
8=0 U8 <

0. The other inequalities are unchanged, but the solution is radically

different:

+ BB− = {(E, �, G) ∈ + | rk E = 1, rk G = 1, ker � ∩ ker G = {0}}. (13.3.14)

Acting with � we can reduce to the situation where G = (1, 0, . . . , 0).
Then the stabilizer has the form

�( =


6 ∈ � : 6 =

©­­­­­­­­­«

_ I:+1 I:+2 . . . I2:+1

0 X 0 . . . 0

0 I1 <11 <1:
...

...
...

...

0 I: <:1 . . . <::

ª®®®®®®®®®¬


(13.3.15)
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We observe that the action of the stabilizer on � preserves linear com-

binations of the last : columns, while the first one transforms like the

image of the fiber of C∗Q(−1,−2). Hence, the GIT quotient is

+//−� = + BB+ /� = A∗Q∨(−1,−2). (13.3.16)

13.3.3 The phase transition

In order to prove that the critical locus in the second phase is isomorphic

to -2, we need to describe the section B more explicitly. First let us

describe ( ∈ �0(� (1, : + 1, : + 2, +2:+2),O(1, 1, 1)). In analogy with

Equation 13.3.2, the flag variety � (1, : + 1, : + 2, +2:+2) is given by the

following GIT description:

� (1, : + 1, : + 2, +2:+2) '
Hom(C:+2, +2:+2) \ /

�
(13.3.17)

where

� =


©­­­«
_ × ×
0 ℎ ×
0 0 X

ª®®®¬
 ⊂ �! (:+2), _, X ∈ C∗, ℎ ∈ �! (:). (13.3.18)

and the action is � ' �6−1 for every 6 ∈ �. Let us write � =

(E |�|D) ∈ Hom(C:+2, +2:+2) where E, D ∈ Hom(C, +2:+2) and � ∈
Hom(C2, +2:+2). Then, a section ( of O(1, 1, 1) acts in the following

way:

(((E |�|D)) = (8 91... 9:+1;1...;:+2 E8k 91... 9:+1 (E |�)k;1...;:+2 (E |�|D) (13.3.19)

where k:1,...:A is the minor obtained choosing the lines :1, . . . :A , hence

the coordinates k:1,...:A defines a Plücker map to ∧A+2:+2. As we did
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in the previous section, to unclutter the notation, we use Einstein’s

summation convention which omits sums over repeated high and low

indices. We observe that

((6.(E |�|D)) = _−3 det ℎ−2X−1(((E |�|D)) (13.3.20)

which is the correct equivariancy condition since O(1, 1, 1) ' O(1) �
O(1)�O(1). Then, the pushforwards of this section to � (1, :+1, +2:+2)
and � (1, : + 2, +2:+2) are described by the following equivariant func-

tions:

f̂A ((E |�)) = (8 91... 9:+1;1...;:+2 E8k 91... 9:+1 (E |�)XA[ 9:+2k 91... 9:+1] (E |�)
(13.3.21)

B̂A ((E |�)) = (8 91... 9:+1;1...;:+2 E8
(
m

m� C
A

k 91... 9:+1C (E |�)
)
k;1...;:+2 (E |�)

(13.3.22)

where square brackets around a set of indices means totally skew-

symmetric. What is left to prove is that the quotient of the critical locus

of F restricted to + BB− by � is isomorphic to -1. Let us write the su-

perpotential explicitly: by Equations 13.3.8 and 13.3.22 we have

(E, �, G) −−−−−−→ GA(8 91... 9:+1;1...;:+2 E8
m

m� C
A

[
k 91... 9:+1C (E |�)

]
k;1...;:+2 (E |�)

(13.3.23)

As we showed before, for every �(-orbit in + BB− there exist a unique

point such that G = G0 := (1, 0, . . . , 0). Let us work on such points.

Define:

+̃ = {(E, �) : rk E = 1, � 1
A = 0 ∀A ≤ 2: + 2}. (13.3.24)

We are interested in the locus

3F∩+̃ = {(E, �, G) : G = G0, (E, �) ∈ +̃ , B̂(E, �, G) = 0, G·3B(E, �, G) = 0}.
(13.3.25)

259



Gauged linear sigma models

If (E, �) ∈ +̃ the first equation is automatically satisfied, since k(E |�)
is identically zero for lower rank matrices, and the first column of �

is zero. Let us now focus on the second equation defining the critical

locus. By Equation 13.3.23, restricted to (+̃ , G0) it becomes (up to

sign):

G · 3B(E, �, G0)I | (E,�)∈+̃

= (8 91... 9:+1;1...;:+2E8
m

m� C
1

[
k 91... 9:+1C (E |�)

] m

m� I
1

[
k;1...;:+2 (E |�)

] ����
(E,�)∈+̃

= (8 91... 9:+1;1...;:+2E8k 91... 9:+1 (E | �̃)XI[;:+2k;1...;:+1] (E | �̃) := 'I (�).

(13.3.26)

where �̃ ∈ Hom(C: , +2:+2) is the matrix resulting by removing the first

(vanishing) column from �. This last equation coincides with 13.3.21,

hence it describes the image in �0(� (1, : + 1, +2:+2), +2:+2 ⊗ O(1, 2))
of a section of A∗Q∨(1, 2) on � (1, : + 1, +2:+2). Summing all up, the

critical locus of F on + BB− is a bundle over the zero locus of the 2: + 2

equations G · 3F. Exactly as in the previous section, we observe that

the 2: + 2 equations vanish exactly where the associated section of

A∗Q∨(1, 2) vanish, hence the critical locus is a bundle over the Calabi–

Yau variety -1. More precisely, we apply the same reasoning as in

Lemma 13.2.2: the contraction of the vector '(�) with any column of

� is identically zero, hence '(�) ∈ ker(�) ), which allows us to con-

clude that ' is the image of a section B of A∗Q∨(1, 2) by an injective

morphism of vector bundles, hence / (') ' / (B).

The last step is to observe that the action of the stabilizer �( de-

scribed by Equation 13.3.7 is transitive and free on {G = (G1, . . . , G:+1)}.
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Hence, taking the quotient by �(, we obtain the Calabi–Yau variety -1.

If we choose : = 2 we obtain a GLSM description of a pair of Calabi–

Yau fibrations associated to the roof bundle of type ��4 . Hence, we can

state the following theorem summarizing the dualities appearing in this

picture.

Theorem 13.3.1. The general pair (-1, -2) of Calabi–Yau fibrations

associated to the roof bundle of type ��4 over P5 is a pair of derived

equivalent Calabi–Yau eightfolds of Picard number two, and given the

maps 51 : -1 −→ P5 and 52 : -1 −→ P5, for general 1 ∈ P5 the pair

(.1 := 5 −1
1 (1), .2 := 5 −1

1 (1)) is a pair of non birational, derived equiva-

lent Calabi–Yau threefolds associated to the roof of type ��4 . Moreover,

-1 and -2 are isomorphic to the critical loci of two phases of a non

abelian gauged linear sigma model.

Proof. Let us consider the roof bundle of type ��4 over P5. By the

discussion of Section 4.5.3, -1 and -2 are Calabi–Yau eightfolds. In

particular, by Lemma 4.5.1, they have Picard number two. Derived

equivalence follows from Corollary 10.3.16. By the above, -1 and -2

are isomorphic to the critical loci of F in the two stability chambers

g < 0 and g > 0. Finally, the fibers .1 := 5 −1
1 (1) and .2 := 5 −1

1 (1)
are a Calabi–Yau pair of type �"4 , hence, for a general " , they are

non birational by Theorem 7.2.6, and derived equivalent by Proposition

9.5.7. �
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14 Matrix factorization categories and Knör-
rer periodicity

In this chapter we review the concept of matrix factorization category

and how this object relates to the derived category of coherent sheaves

of some varieties via the so-called Knörrer periodicity. The content

of this chapter consists in part of the material covered in a series of

talks given by the author at the Université Paul Sabatier in the spring

2019.

14.1 dg-categories

Definition 14.1.1. (dg-category, (Toen11, Section 2.3)) A dg category C
over : is given by the following data:

◦ A set of objects

◦ For every pair G, H of objects in C, a complex ) (G, H)

◦ For every triple of objects G, H, I a composition morphism:

`GHI : ) (G, H) ⊗ ) (H, I) −→ ) (G, I) (14.1.1)

◦ For every object G a morphism

4G : : −→ ) (G, G) (14.1.2)

Moreover, we require the fulfillment of the following conditions:
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◦ Associativity: for every quadruple G, H, I, C the following diagram

commutes:

) (G, H) ⊗ ) (H, I) ⊗ ) (I, C) ) (G, H) ⊗ ) (H, C)

) (G, I) ⊗ ) (I, C) ) (G, C)

Id ⊗`HIC

`GHI⊗Id `GHC

`GIC

(14.1.3)

◦ For every pair G, H the following compositions are equal to the

identity:

) (G, H) ' : ⊗ ) (G, H) ) (G, G) ⊗ ) (G, H) ) (G, H)

) (G, H) ' ) (G, H) ⊗ : ) (G, H) ⊗ ) (H, H) ) (G, H)

4G ⊗Id `GGH

Id ⊗4H `GHH

(14.1.4)

Example 14.1.2. A typical example of this construction is given by the

dg category of complexes, with morphism given by total complexes

(see for example (Toen11, Section 2.3, Example 2)). More precisely,

given two complexes of :-modules G•, H•, we can define

) (G•, H•) = Hom•(G•, H•) (14.1.5)

where the Hom total complex is defined in degree : as

Hom: (G•, H•) :=
∏
?∈Z

Hom(G?, H?+: ) (14.1.6)

with the boundary map given by

D : Hom: (G•, H•) Hom:+1(G•, H•){
5 : : G• −→ H•+:

} {
3 (H) ◦ 5 : − (−1): 5 :+1 ◦ 3 (G)

}
(14.1.7)
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Then, if we define the compositions ` simply as chain map compo-

sitions and for every object G• we call 4G the (degreewise) :-module

identity map, one can verify that these data fulfill the requirements of

Definition 14.1.1.

We also recall the standard notion of the homotopy category of a given

dsg-category:

Definition 14.1.3. Let C be a dg-category. We call homotopy category

of C the category [C] defined by the following data:

◦ Objects: the objects of C

◦ Morphisms: Hom[C] (G•, H•) := �0() (G, H))

◦ Compositions of morphisms:

�0() (G, H)) ⊗ �0() (H, I)) �0() (G, H) ⊗ ) (H, I))

�0() (G, I))

q

`GHI

(14.1.8)

Remark 14.1.4. The name “homotopy category” is justified by the fol-

lowing standard example: let C be the dg-category of :-modules de-

fined in Example 14.1.2. Then, for every pair G•, H• of objects of C,
Hom[C] (G•, H•) describes precisely chain maps up to homotopies.

14.2 �-brane categories

While the theory of curved dg-sheaves (and the related categories)

adapts perfectly to the setting of a gauged linear sigma model, it is
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sufficient to estblish a more general framework, which is known in lit-

erature as Landau–Ginzburg model. Such term is used, both in physics

and mathematics, to denote several kinds of constructions related to the

pair (-,,) of a variety and a superpotential. We follow the definition

introduced in (Shi12, Definition 2.1):

Definition 14.2.1 (Landau–Ginzburg model). Let - = [Σ/�] be a stack,
where Σ is a variety and � is an Abelian group. Let Γ be a C∗-action over

- called '-symmetry. We call Landau–Ginzburg model a pair (-,,)
where, : - −→ C is an equivariant function of weight two with respect

to the '-symmetry.

Remark 14.2.2. Despite the generality of the definition above, through-

out this chapter we will only deal with examples where - is the total

space of a vector bundle over a smooth projective variety and � is

trivial.

Definition 14.2.3 (curved dg-sheaf). Let (-,,) be a Landau–Ginzburg
model. We call curved dg-sheaf a pair (E, 3E) such that:

◦ E is a sheaf of O--modules

◦ 3E is an endomorphism of E of C∗
'
-weight 1, such that 3E ◦ 3E is

the multiplication by, .

Definition 14.2.4 (curved dg-sheaf, alternative definition). Let (-,,)
be a Landau–Ginzburg model. We call curved dg-sheaf a pair (E, 3E)
such that:

◦ A pair E0, E1 of �∗'-equivariant sheaves of O--modules
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◦ A pair of morphisms %E : E0 −→ E1 and &E : E1 −→ E0 C
∗
'
-

weight 1 such that %E ◦&E = IdE1 , , &E ◦ %E = IdE0 ,

Definition 14.2.3 and Definition 14.2.4 are equivalent. To see this, let

us begin by considering the data of the former definition: since E is

C∗
'
-equivariant, −1 ∈ C∗

'
splits E in two “eigensheaves” described by

the following rules:

E0 = {* ↦→ E(*) : E((−1) ·*) = E(*)}

E1 = {* ↦→ E(*) : E((−1) ·*) = −E(*)}
(14.2.1)

Therefore, we recover the data of Definition 14.2.4 if we set %E := 3E |E0

and &E := 3E |E1 .

Remark 14.2.5. Let the C∗
'
-action be trivial on - and fix , = 0. Then

(E, 3E) breaks down to a Z-graded complex. In fact, since 3E has

C∗
'
-weight 1 and 3E ◦ 3E = 0, the Z-grading is given by the C∗

'
-weight.

Definition 14.2.6. We callmatrix factorization a curved dg-sheaf (E, 3E)
such that E is a vector bundle.

Definition 14.2.7. LetX: : C∗
'
−→ C∗

'
be the character such thatX: (_) =

_: for every _ ∈ C∗
'
and : ∈ Z. Let L: be the C∗'-equivariant line bundle

associated to X: . Then, we define shift by : the following operation, for

every curved dg-sheaf (E, 3E):

(E, 3E) ↦−→ (E[:], 3E[:]) := (E ⊗ L: , 3E) (14.2.2)

Remark 14.2.8. The shift by : acts on a curved dg-sheaf (E, 3E) by
adding : to the C∗

'
-weight of E. If , = 0 and the C∗

'
-action is trivial,

then [:] reduces to the usual homological shift, hence the notation.
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Definition 14.2.9. Let (E, 3E) and (F , 3F ) be curved dg-sheaves. Then
a morphism of curved dg-sheaves is a pair of morphisms of sheaves

( 50, 51):
E0 F0

E1 F1

%E

50

%F&E

51

&F (14.2.3)

such that 51 ◦ %E = %F ◦ 50 and 50 ◦&E = &F ◦ 51.

Definition 14.2.10. Let 5 , 6 : (E, 3E) −→ (F , 3F ) be morphisms of

curved dg-sheaves. We say 5 and 6 are homotopy equivalent if there

exist morphisms of sheaves B : E0 −→ F1 and C : E1 −→ F0 such that:

50 − 60 = &F ◦ B + C ◦ %E

51 − 61 = %F ◦ C + B ◦&E .
(14.2.4)

Remark 14.2.11. Definition 14.2.10 is made clearer by the following

diagram:

E0 F0

E1 F1

E0 F0

%E

50

60

B
%F&E

&E

51

61

C

&F

%Q%E

50

60

%F

(14.2.5)

If we view a curved dg-sheaf as a Z2-graded complex, we recover the

usual notion of homotopy equivalence of complexes. The same happens
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in the case of , = 0 and trivial C∗
'
-action, where curved dg-sheaves

reduce to usual Z-grade complexes.

Definition 14.2.12. We call graded �-brane a curved dg-sheaf (E, 3E)
such that E is a C∗

'
-equivariant vector bundle.

Definition 14.2.13. Let 5 : (E, 3E) −→ (F , 3F ) be a morphism of

curved dg-sheaves. We call cone over f the following curved dg-sheaf:

Cone( 5 ) :=

F0 ⊕ E1

F1 ⊕ E0

% 5 & 5
(14.2.6)

where % 5 and & 5 are defined by:

% 5 =
©­«
% 5 51

0 −&E
ª®¬ & 5 =

©­«
& 5 50

0 −%E
ª®¬ (14.2.7)

Remark 14.2.14. In a similar way, one can construct an iterated cone

Cone( 5 , 6) over a pair of morphisms 5 : (E, 3E) −→ (F , 3F ), 6 :

(F , 3F ) −→ (G, 3G) by simply taking

Cone( 5 , 6) := Cone((6, 0)) (14.2.8)

where (6, 0) : Cone( 5 ) −→ G.

14.2.1 Categories of curved dg-sheaves

Let us fix a Landau–Ginbzburg model (-,,). To every pair (E, 3E),
(E, 3E) of curved dg-sheaves on (-,,) we can associate a curved dg-

sheaf (H><(E, F ), 3H><(E,F )) where H><(E, F ) is the usual sheaf
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hom (which is equivariant) and the boundary map is given by

3H><(E,F ) := 3E∨ ⊗ IdF − IdE∨ ⊗3F (14.2.9)

which has square zero as one can easily check. Therefore, we can

construct a dg-category of curved dg-sheaves:

Definition 14.2.15. Let (-,,) be a Landau–Ginzburg model. Then we

call naïve category of quasi-coherent curved dg-sheaves&�>ℎ=E
36
(-,,)

the category described by the following:

◦ Objects: curved dg-sheaves (E, 3E)

◦ Morphism: for every pair (E, 3E), (F , 3F ) of curved dg-sheaves

a curved dg-sheaf

(H><(E, F ), 3H><(E,F )). (14.2.10)

One can show that these data define indeed a dg-category. In order to

construct a derived category out of &�>ℎ=E
36
(-,,), we need to define

a notion of quasi-isomorphism of curved dg-sheaves. From now on,

where this does not impact clarity, let us drop the boundary operator

and refer to a curved dg-sheav (E, 3E) simply as E.

Definition 14.2.16. Let E• = . . . −→ E:−1 X:−1−−−→ E: X:−−→ E:+1 . . . be a
[0, #]-bounded complex of curved dg-sheaves. We say that E• is acyclic
if it is homotopy equivalent to the iterated cone Cone(X0, . . . , X# ).

Definition 14.2.17. Let (X, W) be a Landau–Ginzburg model. We call

derived category of quasi-coherent curved dg-sheaves of (-,,) the
Verdier quotient

�&�>ℎ36 (-,,) := [&�>ℎ
=E
36 (-,,)]

/
[A] (14.2.11)
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where A is the full subcategory of acyclic objects in &�>ℎ=E
36
(-,,),

and we call ��>ℎ36 (-,,) ⊂ �&�>ℎ36 (-,,) the full subcategory of
coherent curved dg-sheaves. Moreover, we call derived category of ma-

trix factorizations the full subcategory �"� (-,,) ⊂ ��>ℎ36 (-,,)
whose objects are matrix factorizations.

14.3 Knörrer periodicity

Hereafter we are going to review a result which allows to bridge be-

tween the derived category of coherent sheaves of a zero locus of a

regular section of a vector bundle and the derived category of matrix

factorizations of the associated Landau–Ginzburg model. Such result,

called Knörrer periodicity (Shi12, Theorem 3.4), has an immediate ap-

plication in the context of roofs. This allows us to lift the derived

equivalence of a Calabi–Yau pair associated to a roof to an equivalence

of matrix factorization categories.

Let us consider a smooth projective variety � and a vector bundle

E over �. Take a regular section ( ∈ �0(�, E) and call . its zero

locus. Call ? the restriction of c to c−1(. ) and 8 the embedding of

c−1(. ) inside the total space - = E∨. Let us collect this information

in the following diagram:

c−1(. ) -

. �

8

? c (14.3.1)
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Then, one can construct a Landau–Ginzburg model out of this data in

the following way:

◦ The section ( ∈ �0(�, E) gives rise to a morphism O� −→ E.
Taking the pullback to - of the dual, we get a map ( : c∗E∨ −→
O- .

◦ Consider the section (� of c∗E∨ which vanishes exactly on �.

As a superpotential, we choose the composition , := ( ◦ (� :

- −→ C.

◦ On - we choose the C∗
'
-action which acts with weight two on the

coordinate of the fiber, and trivially on the coordinate of the base

(on every local trivialization). Hence c is C∗
'
-invariant, while (�

has weight zero and ( has weight two. Hence, , has weight two

as required.

Theorem14.3.1 (Knörrer periodicity). Let (-,,) be the Landau–Ginzburg
model described above. Then the functor:

8∗?
∗ : �1 (. ) −→ DMF(X, F)

is an equivalence of categories.

14.4 �-branes and roofs: an application of Knör-
rer periodicity

Let us now consider a roof - ' P(E) ' P(Ẽ), where E and Ẽ are

respectively �- and �̃-homogeneous vector bundles (note that this is

different from requiring - to be a homogeneous roof). Then, if we
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call X := E∨, X̃ := Ẽ∨, fixing a section Σ ∈ �0(-,O(1, 1)) we can

construct two Landau–Ginzburg models (X,,) and (X̃, ,̃) where the

superpotentials are defined as , = ( ◦ (� and ,̃ = (̃
�̃
◦ (̃ once we call

( and (̃ the pushforwards of Σ to � and �̃. Then, if (., .̃ ) is a derived
equivalent Calabi–Yau pair defined by Σ, we establish the following

diagram, where all arrows are equivalences:

DMF(X,,) DMF(X̃, ,̃)

�1 (. ) �1 (.̃ )

(14.4.1)

Here the vertical arrows are given by Knörrer periodicity.

For the roof of type ��2: , for every smooth hyperplane section the two

Landau–Ginzburg models as above have been constructed by an explicit

GLSM phase transitions described in in terms of variation of GIT with

respect to the action of a non abelian group (see Chapter 13.2), and for

: = 2 the vacuum manifolds are derived equivalent (Proposition 9.5.7).

In this context, the fact that the derived equivalence �1 (. ) ' �1 (.̃ )
lifts to an equivalence of matrix factorization categories is physically

motivated by the fact that �-brane categories of different phases of the

same gauged linear sigma model are expected to be equivalent, and

such categories of branes are mathematically described with the lan-

guage of matrix factorizations. It would be an interesting problem to

establish a similar picture for other derived equivalent Calabi–Yau pairs

arising from roofs.
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