

Reggie Davidrajuh

GPenSIM
Reference Manual

2024

Publisher University of Stavanger

ISBN 978-82-8439-311-7

DOI https://doi.org/10.31265/USPS.293

 Licence: CC BY 4.0

Cover photo uis.fotoware.cloud

https://creativecommons.org/licenses/by/4.0/
https://uis.fotoware.cloud/fotoweb/archives/5026-Offentlig-arkiv/Folder%2079/2079_24_05_17.jpg.info

Contents

Dedication vii

Preface ix

1 Check Valid Functions 1
1.1 check_valid_fle . 1
1.2 check_valid_place . 2
1.3 check_valid_resource . 2
1.4 check_valid_transition . 3
1.5 Example-14: Check valid functions 3
Bibliography . 5

2 Cotree 7
2.1 cotree . 7
2.2 cotreei . 9
2.3 Example-15: cotree . 9
2.4 Example-16: cotreei . 12
Bibliography . 13

3 Firing Sequence 15
3.1 fringseq . 15
3.2 Example-17: Firing Sequence 16
Bibliography . 20

4 Get Functions 21
4.1 get_all_tokens . 22
4.2 get_color . 22
4.3 get_cost . 23
4.4 get_current_colors . 23
4.5 get_fringtime . 24
4.6 get_inputplace . 24
4.7 get_inputtrans . 24
4.8 get_outputplace . 25
4.9 get_outputtrans . 25

i

ii CONTENTS

4.10 get_place . 26
4.11 get_priority . 26
4.12 get_tokCT . 26
4.13 get_token . 27
4.14 get_tokens . 27
4.15 get_trans . 28
4.16 nplaces . 28
4.17 nresources . 28
4.18 ntokens . 29
4.19 ntrans . 29
4.20 pname . 29
4.21 rname . 30
4.22 timesfred . 30
4.23 tname . 31
4.24 Example-18: get_cost . 31
Bibliography . 34

5 gpensim 35
5.1 gpensim . 35
5.2 gpensim_ver . 36
Bibliography . 36

6 Graphs and Cycles 37
6.1 convert_PN_V . 37
6.2 cycles . 38
6.3 prncycles . 39
6.4 stronglyconn . 39
6.5 prnscc . 40
6.6 Example-20: convert_PN_V 41
6.7 Example-21: cycles . 44
Bibliography . 46

7 Initial Dynamics 47
7.1 initialdynamics . 47
Bibliography . 48

8 Is Functions 49
8.1 is_enabled . 49
8.2 is_eventgraph . 50
8.3 is_fring . 50
8.4 is_place . 51
8.5 is_stronglyconn . 51
8.6 is_trans . 52
8.7 Example-22: Is Functions . 52

iii CONTENTS

8.8 Example-23: is_fring . 54
Bibliography . 55

9 Performance Metrics 57
9.1 extractt . 57
9.2 mincyctime . 58
9.3 occupancy . 58
9.4 Example-24: mincyctime . 59
Bibliography . 61

10 Petri Net Structure 63
10.1 createPDF . 63
10.2 matrixD . 64
10.3 pnstruct . 65
10.4 postset (new in version 11) 66
10.5 preset (new in version 11) . 66
10.6 Example-25: createPDF . 67
10.7 Example-26: matrixD . 68
10.8 Example-27: preset and postset 70
Bibliography . 71

11 Plotp 73
11.1 plotp . 73
11.2 Example-28: plotp . 73
Bibliography . 76

12 PNCT Functions 77
12.1 gpensim_2_PNCT . 77
12.2 Example-29: gpensim_2_PNCT 78
Bibliography . 79

13 PNML-GPenSIM 81
13.1 gpensim2pnml . 82
13.2 pnml2gpensim . 82
13.3 Example-30: pnml2gpensim 83
Bibliography . 86

14 Print Colors 87
14.1 print_colormap_for_place 87
14.2 prncolormap . 88
14.3 prnfnalcolors . 88
14.4 prnfnalcolorsSummary . 89
14.5 Example-31: Print token colors 89
Bibliography . 95

iv CONTENTS

15 Print State 97
15.1 current_marking (new in version 11) 97
15.2 initial_marking (new in version 11) 98
15.3 fnal_marking (new in version 11) 99
15.4 markings_string . 100
15.5 print_real_time_state_info 100
15.6 prnstate . 100
15.7 prnTransStatus (new in version 11) 101
15.8 prnVirtualState . 102
15.9 Example-32: Print Markings 102
15.10 Example-33: Print State . 104
Bibliography . 106

16 Print State Space 107
16.1 prnss . 107
16.2 Example-34: prnss . 108
Bibliography . 111

17 Priority 113
17.1 priorcomp . 113
17.2 priordec . 114
17.3 priorinc . 115
17.4 priorset . 115
17.5 Example-35: priorset and priorinc 116
17.6 Example-36: priordec . 118
Bibliography . 120

18 Reachability Tree with Time and Cost 121
18.1 cotreeCT (new in version 11) 121
18.2 retree . 122
18.3 Example-37: cotreeTC . 122
Bibliography . 126

19 Resource Management 127
19.1 availableInst . 128
19.2 availableRes . 129
19.3 release . 129
19.4 requestAR . 130
19.5 requestGR . 131
19.6 requestSR . 131
19.7 requestWA . 132
19.8 plotGC . 132
19.9 prnschedule . 133
19.10Example-38: Resource Management 134

v CONTENTS

Bibliography . 138

20 Structural-Invariants 139
20.1 pinvariant . 139
20.2 siphons . 140
20.3 siphons_minimal . 141
20.4 tinvariant . 141
20.5 traps . 142
20.6 traps_minimal . 142
20.7 Example-39: siphons and traps 143
20.8 Example-40: pinvariant and tinvariant 144
Bibliography . 146

21 Timer 147
21.1 compare_time . 147
21.2 current_clock . 148
21.3 current_time . 148
21.4 rt_clock_string . 148
Bibliography . 149

22 Token-Selection 151
22.1 tokenAllColor . 152
22.2 tokenAny . 153
22.3 tokenAnyColor . 153
22.4 tokenColorless . 154
22.5 tokenEXColor . 154
22.6 tokenWOAllColor . 155
22.7 tokenWOAnyColor . 155
22.8 tokenWOEXColor . 156
22.9 tokIDs . 156
22.10 tokenArrivedBetween . 157
22.11 tokenArrivedEarly . 158
22.12 tokenArrivedLate . 158
22.13 tokenCheap . 159
22.14 tokenCostBetween . 159
22.15 tokenExpensive . 160
22.16Example-41: Color-based Token Selection 160
22.17Example-42: Time-based Token Selection 164
22.18Example-43: Cost-based Token Selection 167
Bibliography . 169

vi CONTENTS

23 Utility-Functions 171
23.1 arcweight (new in version 11) 171
23.2 arcweightPT . 172
23.3 arcweightTP . 172
23.4 combinatorics . 173
23.5 dispMultipleCR . 173
23.6 dispSetOfPlaces . 174
23.7 dispSetOfTrans . 174
23.8 goodname . 175
23.9 pnclass . 176
23.10randomgen . 176
23.11prnerrormsg . 177
23.12 search_names . 177
23.13 string_HH_MM_SS . 178
23.14 util_wakeup . 178
23.15 wakeup . 178
23.16Example-44: arcweight . 179
23.17Example-45: pnclass . 180
Bibliography . 181

Appendix A GPenSIM Compiler OPTIONS 185
Bibliography . 185

Appendix B Reserved Words in GPenSIM 187
Bibliography . 188

Appendix C GPenSIM Webpage 189
Bibliography . 190

List of Figures 193

List of Tables 195

Index 197

Dedication:

This book is dedicated to my dear friends

Koneswaran Tharmalingam
(Trondheim, Norway)

and

Tharmalingam Sivakumar
(Oslo, Norway)

for helping me during the difcult times.

Thank you, my friends!

viii CONTENTS

Preface

General-purpose Petri net Simulator (GPenSIM) is a toolbox (set of
functions) that runs on MATLAB. Some universities use GPenSIM as the
tool for modeling, simulation, and performance analysis of discrete systems.
Academics in these universities chose GPenSIM as it is easy to learn, use,
and extend.

In this book:
There are around 150 GPenSIM built-in functions. This book exclusively
presents these GPenSIM built-in functions. GPenSIM version 11 systems
fles (MATLAB fles) are grouped into 26 folders (from ‘Check - Valid -
Functions’ to ‘Utility - Functions’) based on their use. This reference
manual allocates one chapter for each folder, and the functions in the folder
are described in the corresponding chapter. Each chapter also starts with
a summary of the functions described in that chapter. (some of the folders
in the system fles are for the GPenSIM compiler’s internal use only (e.g.,
‘PDF - maker’ and ‘Token - Gaming’); hence, these folders do not have
corresponding chapters in this book).

Suppose the reader wants to study the details of a specifc function. In
that case, it is advisable to check the index pages (the last pages of this
reference manual) frst, as all the functions are listed alphabetically on the
index pages.

This reference manual and the newer GPenSIM Version 11 are
released simultaneously. GPenSIM Version 11 is almost the same as
Version 10 (upward compatible), but there are a few new functions. Also,
some of the reported bugs are fxed.

What is not given in this reference manual
The author of this reference manual (and developer of GPenSIM) has pub-
lished three books on GPenSIM before (for more details, see Appendix-C):

˝ Book I: “Modeling Discrete-Event Systems with GPenSIM: An
Introduction,” Springer, 2018. This book is a simple introduction
(a “user manual”) to GPenSIM. (this book covers only the fundamen-

ix

x CONTENTS

tals; topics such as coloured Petri nets and resources are excluded and
discussed in Book III).

˝ Book II: “Petri Nets for Modeling of Large Discrete Systems,”
Springer, 2021. This book discusses modeling large discrete systems
by introducing a new modular Petri net theory.

˝ Book III: “Colored Petri Nets for Modeling of Discrete Sys-
tems: A Practical Approach With GPenSIM,” Springer, 2023.
This book discusses modeling real-life discrete systems in which the
coloring of tokens, resources, and cost calculations is inevitable. Also,
data structures of elements in a Petri Net model are presented in this
book.

This reference manual neither introduces GPenSIM nor Petri nets. For a
detailed study of GPenSIM, the readers are encouraged to look at the three
books mentioned above.

GPenSIM website
GPenSIM Website: http://www.davidrajuh.net/gpensim/
Users can download source code for the examples in this reference manual
and GPenSIM source fles from the GPenSIM website.

Acknowledgement
The book is a result of my teaching and research at the Department of
Electrical Engineering and Computer Science (IDE), University of Stavanger.
I am indebted to the department IDE and the University of Stavanger for
ofering ample time and research facilities to complete this book.

My sincere thanks also go to the UiS Scholarly Publishing Services
(USPS) at the University of Stavanger for publishing this book as an open-
access book. John David Didriksen at the university library patiently
replied to all my emails regarding the publication of this book. A big
thank you to John David Didriksen as well.

I am also thankful to my wife, Ruglin, and my daughter, Ada, for toler-
ating my frequent absence in their daily lives.

Reggie Davidrajuh
October 2024.

http://www.davidrajuh.net/gpensim/

Chapter 1

Check Valid Functions

This chapter lists four useful functions for coding the processor fles. For
example, when we enter the name of an entity (fle, place, transitions, or
resource) into the program code, we need to check whether this entity exists
during runtime. The functions listed in this chapter are for checking whether
the input name represents a valid element (e.g., is ‘t1’ a valid transition?).
Table-1.1 presents a summary of these functions.

Function Description

check_valid_file Is the flename valid?
check_valid_place Is the place name(s) valid?
check_valid_resource Is the resource name valid?
check_valid_transition Is the transition name(s) valid?

Table 1.1: Check-Valid functions.

CAUTION!!!:
These functions throw an error if the input name
is not valid and terminates the program (returns
control to the MATLAB Command Prompt).

If a ‘soft’ checking is needed (without
terminating the program), use “Is” functions
(e.g., “is_place”, “is_trans”) instead!

1.1 check_valid_fle

Function name: check_valid_file
Purpose: checks whether the named fle exists.
Note: This function throws an error if the input name is not a valid fle name

1

2 CHAPTER 1. CHECK VALID FUNCTIONS

and terminates the program (returns control to the MATLAB Command
Prompt).
Input Parameter: Name of the fle (text string)
Output Parameter: Natural number; 0 = fle does not exists; > 0 : fle
exists
This functions uses: search_names()
This function is used by: [processor fles, MSF]
Sample use:

% in the main simulation file or processor files
file_exists = check_valid_file('t1_pre.m'); % does t1_pre exists?

1.2 check_valid_place

Function name: check_valid_place
Purpose: checks whether one or more place names are valid and returns
their indices.
Note: This function throws an error if the input name is not a valid place
name(s) and terminates the program (returns control to the MATLAB Com-
mand Prompt). If a ‘soft’ checking is needed (without terminating the pro-
gram), use the function “is_place” instead!
Input Parameter: One or more names of places (set of text strings)
Output Parameter: Set of place indices, if valid
This functions uses: search_names()
This function is used by: [processor fles, MSF]
Sample use:

% in the main simulation file or processor files
set_of_place_indices = check_valid_places({'p1','p2','pE'});

Application example: A simple example (“Example-14: Check valid func-
tions” in Section 1.5) is given at the end of this chapter.
Related functions: is_place, check_valid_transition

1.3 check_valid_resource

Function name: check_valid_resource
Purpose: checks whether a named resource exists and returns its resource
index.
Note: This function throws an error if the input name is not a valid re-
source name and terminates the program (returns control to the MATLAB
Command Prompt).

3 1.4. CHECK_VALID_TRANSITION

Input Parameter: Name of the resource (text string)
Output Parameter: Resource index, if valid.
This functions uses: search_names()
This function is used by: [processor fles, MSF]
Further info: Chapter 8, “GPenSIM Resources: The Basics,” in Davidrajuh
(2023).
Sample use:

% in the main simulation file or processor files
[r_index] = check_valid_resource('CNC-1'); % does "CNC-1" exists?

1.4 check_valid_transition

Function name: check_valid_transition
Purpose: checks whether one or more named transitions exist and returns
their indices.
Note: This function throws an error if the input name is not a valid transi-
tion name(s) and terminates the program (returns control to the MATLAB
Command Prompt). If a ‘soft’ checking is needed (without terminating the
program), use the function “is_trans” instead!
Input Parameter: One or more names of transitions (set of text strings)
Output Parameters: Indices, if valid.
This functions uses: search_names()
This function is used by: [processor fles, MSF]
Sample use:

% in the main simulation file or processor files
% do "t1", "t2", "tE" exist? If yes, what are their indices?
[set_of_trans_indices] = check_valid_transition({'t1','t2','tE'});

Application example: A simple example (“Example-14: Check valid func-
tions” in Section 1.5) is given at the end of this chapter.
Related functions: is_trans, check_valid_place

1.5 Example-14: Check valid functions

Let us imagine that a main simulation fle has just completed a simulation.
We may want to check the number of leftover tokens in various places or how
many times the individual transitions have fred. Listing-1.1 shows that the
simulation is complete in a main simulation fle followed by two subroutines
(‘check_place’ and ‘check_trans’).

4 CHAPTER 1. CHECK VALID FUNCTIONS

Listing 1.1: Part of the Main Simulation File (Example-14)

%
% any main simulation file is fine!
%
...
...

sim = gpensim(pni);

% simulation if complete
check_place(); % number of tokens in a place
check_trans(); % number of times a trans has fired

Subroutine ‘check_place’ (Listing-1.2) repeatedly ask a user to input a
valid place name and then checks how many tokens are left in that place.
Similarly, subroutine ‘check_trans’ (Listing-1.3) repeatedly ask a user to
input a valid transition name and then checks how many times this transition
has fred. Both of these functions use the “check valid functions.”

Listing 1.2: check_place (Example-14)
function [] = check_place()
prompt = ['\nEnter a valid *place* name without using single ...

quotation marks \n', ...
'(note that wrong place name can crash the program)\n',...
'press return key to quit: '];

reply = 'pSomething';

while not(isempty(reply))
reply = input(prompt, 's');
if isempty(reply), return; end

% is this a valid place name?
if check_valid_place(reply)

% find the number of tokens
ntok = ntokens(reply);
disp(' ');
disp(['"',reply, '" has ', int2str(ntok),...

' tokens now.']);
end

end

Listing 1.3: check_trans (Example-14)
function [] = check_trans()

prompt = ['\nEnter a valid !transition! name without using ...
single quotation marks \n', ...

'(note that wrong transition name can crash the program)\n',...

5 BIBLIOGRAPHY

'press return key to quit: '];

reply = 'tSomething';

while not(isempty(reply))
reply = input(prompt, 's');
if isempty(reply), return; end

% is this a trans name?
if check_valid_transition(reply)

% find the number of times fired
nfired = timesfired(reply);
disp(' ');
disp(['"',reply, '" has fired ', int2str(nfired),...

' times.']);
end

end

Note: This example is almost identical to example 22 (Section 8.7). In
example 14, we use “Check Valid Functions,” which throws an error and ter-
minates the program (returns control to the MATLAB Command Prompt)
if the input name is not valid. In example 22, we use ‘softer’ (invalid names
will not cause termination) “Is functions” instead!

Bibliography

Davidrajuh, R. (2023). Colored Petri Nets for Modeling of Discrete Systems:
A Practical Approach With GPenSIM, Springer Nature.

6 BIBLIOGRAPHY

Chapter 2

Cotree

This chapter presents two functions, namely cotree and cotreei. These
two functions are for plotting the reachability tree (coverability tree).

The frst function cotree works for P/T Petri Nets and produces
output in the form of a graphical plot and ASCII text. Note that function
cotree uses a fle from the “Petri Net Control Toolbox” from the University
of Cagliari.

The second function cotreei works only for a specifc Petri Net exten-
sion known as Petri Nets with Inhibitor Arcs. The function cotreei
only outputs ASCII text as a result.

Table-2.1 presents a summary of these two functions.

Function Description

cotree plot and print the reachability tree (cover-
ability tree).

cotreei print the coverability tree of a Petri Net
with inhibitor arcs. Note that the graphic
plot is not possible.

Table 2.1: Functions for Reachability (Coverability) Tree.

2.1 cotree

Function name: cotree
Full name: Reachability tree and Coverability tree.
Purpose: Creates the reachability tree of a Petri net and then plots it and
prints it (ASCII listing).
Input Parameter - mandatory: Petri Net structure with initial dynamics
(pni - the output of the function initialdynamics).
Input Parameter - optional: second input: whether the graphical plot is

7

8 CHAPTER 2. COTREE

needed; third input: whether ASCII (text) output is needed.
Output Parameter: COTREE matrix - a structure containing all the states
and the fring transitions; COTREE matrix consists of several rows equal to
the number of states. In each row:

1. The frst element (a vector of natural numbers) is the state (marking),
and the length will equal the number of places.

2. The second element (a natural number) is the index of the fred tran-
sition.

3. The third element (a natural number) is the state number of the parent
state.

4. Finally, the fourth element (a natural number) is an indicator of the
state:

˝ 82 is the ASCII value of the character “R,” meaning this is a Root
(initial) state.

˝ 84 is the ASCII value of the character “D,” meaning this is a
Duplicate state.

˝ 68 is the ASCII value of the character “T,” meaning this is a
Terminal (dead) state.

Output to screen: printout and a plot of reachability tree.
This functions uses:
print_cotree : prints reachability tree as a text printout;
plot_cotree : this is a modifed code of the function PNCT_graph from
the University of Cagliari; this function outputs a graphical tree;
gpensim_2_PNCT: converts a Petri Net from GPenSIM format to PNCT
format.
This function is used by: [in main simulation fle (MSF)]
Further info: Chapter 4 “Analysis of Petri nets” in Davidrajuh (2018).
Sample use:

spng = pnstruct('cotree_example_pdf');
dyn.m0 = {'p1',2, 'p4', 1}; % initial markings
pni = initialdynamics(spng, dyn);
% two inputs: graphic plot only;
% output is the COTREE matrix
COTREE = cotree(pni, 1);

% three inputs: graphic plot & ASCII display
cotree(pni, 1, 1);

% NOTE: function "cotree" is for Petri net without
% INHIBITOR arcs; For Petri net with INHIBITOR arcs,
% use the function "cotreei"

9 2.2. COTREEI

Application example: A simple example (“Example-15: cotree” in Sec-
tion 2.3) is given at the end of this chapter.
Related functions: cotreei

2.2 cotreei

Function name: cotreei
Full name: Reachability tree and Coverability tree for Petri Net with
Inhibitor Arcs.
Purpose: Creates the reachability tree of a Petri net with Inhibitor Arcs
and then displays it (ASCII listing).
Input Parameter - mandatory: Petri Net structure with initial dynamics
(pni - the output of the function initialdynamics.
Input Parameter - optional: second input: the maximum size of the
reachability tree.
Output Parameter: COTREE matrix - a structure containing all the states
and the fring transitions; see Section 2.1.
Output to screen: printout of reachability tree.
This functions uses:
build_cotree_i : creates the reachability tree;
print_cotree : prints (displays) the reachability tree on screen.
This function is used by: [in main simulation fle (MSF)]
Further info: Chapter 6.3 “Inhibitor Arcs” and 6.4 “Coverability Tree for
Petri Nets with in Inhibitor Arcs” in Davidrajuh (2018).
Sample use:

% in Main Simulation File
spng = pnstruct('cotree_i_pdf'); % contains inhibitor arcs
dyn.m0 = {'p1',2, 'p4', 1}; % initial markings
pni = initialdynamics(spng, dyn);

% find the cotree, max size 10 states
cotreei(pni, 10);

Application example: A simple example (“Example-16: cotreei” in Sec-
tion 2.4) is given at the end of this chapter.
Related functions: cotreei Related functions: cotree

2.3 Example-15: cotree

Fig.2.1 shows a simple Petri net for which we are going to generate the reach-
ability graph. Listings 2.1 and 2.2 show the PDF and the main simulation
fle. The resulting reachability tree is shown in Fig.2.2.

10 CHAPTER 2. COTREE

Figure 2.1: Petri net for generating reachability tree.

Listing 2.1: PDF (Example-15)

function [png] = ex_15_pdf()

png.PN_name = 'Example-15: cotree example';
png.set_of_Ps = {'p1', 'p2', 'p3'};
png.set_of_Ts = {'t1','t2'};
png.set_of_As = ...

{'p1','t1',1, 't1','p2',1, ... % t1
'p1','t2',1, 'p2','t2',1, 't2','p3',1}; % t2

Listing 2.2: Main Simulation File (Example-15)

clear all; clc; close all;

spng = pnstruct('ex_15_pdf');
dyn.m0 = {'p1',2, 'p2',1};

pni = initialdynamics(spng, dyn);
cotree(pni, 1, 1); % plot and text print

The function cotree also prints out the reachability tree in ASCII text
format, which is given below. Note that the plot (Fig.2.2) and the text
printout possess the same info. However, the printout shown below also
provides the boundness (maximum tokens) of each place. Also, the acronyms
for the states, ‘ ’, ‘D’, and ‘T’, stand for Normal (or Tree), Duplicate, and
Terminal.

Terminal States: [4 5]

11 2.3. EXAMPLE-15: COTREE

Figure 2.2: Generated reachability tree.

Firing times of transitions: NOT given ...

======= Coverability Tree =======
State no.: 1 ROOT node
2p1 + p2

State no.: 2 Firing event: t1
State: p1 + 2p2
Node type: ’ ’ Parent state: 1

State no.: 3 Firing event: t2
State: p1 + p3
Node type: ’ ’ Parent state: 1

State no.: 4 Firing event: t1
State: 3p2
Node type: ’T’ Parent state: 2

State no.: 5 Firing event: t2
State: p2 + p3
Node type: ’T’ Parent state: 2

State no.: 6 Firing event: t1
State: p2 + p3
Node type: ’D’ Parent state: 3

Boundedness:
p1 : 2
p2 : 3
p3 : 1

Liveness:

12 CHAPTER 2. COTREE

2.4 Example-16: cotreei

Figure 2.3: Petri net with Inhibitor Arc for generating reachability tree.

Fig.2.3 shows a simple Petri net with an inhibitor arc for which we are
going to generate the reachability graph. Listings 2.3 and 2.4 show the
PDF and the main simulation fle. Note that the PDF fle (Listing-2.3) also
includes the declaration of the set of inhibiting arcs (set_of_Is).

Listing 2.3: PDF (Example-16)
function [png] = ex_16_pdf()

png.PN_name = 'Example-16: cotreei example';
png.set_of_Ps = {'p1', 'p2', 'p3'};
png.set_of_Ts = {'t1','t2'};
png.set_of_As = ...

{'p1','t1',1, 't1','p2',1, ... % t1
'p1','t2',1, 't2','p3',1}; % t2

%%%%%%%% Inhibiting Arcs %%%%%%%%
png.set_of_Is = {'p2','t2',1};

Listing 2.4: Main Simulation File (Example-16)
clear all; clc; close all;

spng = pnstruct('ex_16_pdf');
dyn.m0 = {'p1',2, 'p2',1};

pni = initialdynamics(spng, dyn);

% printout max 10 states of reachablity tree

13 BIBLIOGRAPHY

cotreei(pni, 10);

The function cotreei only prints out the reachability tree in text format
(and no graphical plot), which is given below.

Firing times of transitions: NOT given ...

======= Coverability Tree =======
State no.: 1 ROOT node
2p1 + p2

State no.: 2 Firing event: t1
State: p1 + 2p2
Node type: ’ ’ Parent state: 1

State no.: 3 Firing event: t1
State: 3p2
Node type: ’T’ Parent state: 2

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

14 BIBLIOGRAPHY

Chapter 3

Firing Sequence

The function firingseq is for executing (fring) a sequence of a pre-
defned set of transitions in the strict order of the sequence. The function
firingseq forces the simulator to allow only the enabled transitions in
the pre-defned fring sequence to fre, and the other enabled transitions will
be blocked from fring; for more info, see Chapter 4.2 “Firing Sequence” in
Davidrajuh (2018).

Using ‘fringseq’: In the MSF, we assign the fring sequence (e.g., {‘t1’,
‘t2’, ‘t3’}) to the OPTION “FIRING_SEQ”; Also, two other OPTIONs
(such as “FS_REPEAT” and “FS_ALLOW_PARALLEL”) are related to
this function. Finally, the function firingseq is called by assigning this
function as the only input for ‘fre’ in COMMON_PRE.

3.1 fringseq

Function name: firingseq
Full name: Firing Sequence.
Purpose: To fre only the transitions declared in the OPTION
“global_info.FIRING_SEQ”. Also, the transitions declared in this sequence
will be allowed to fre in the strict sequence order.
Input Parameter - mandatory: (none)
Outputs: (none)
This functions uses:
is_firing : to check whether any other transitions are currently fring.
This function is used by: [in COMMON_PRE]
Further info: Chapter 4.2 “Firing Sequence” in Davidrajuh (2018).
Sample use: See the following example (Example-17: “Firing Sequence”).

15

16 CHAPTER 3. FIRING SEQUENCE

Figure 3.1: Petri net for checking the function ‘fring sequence’.

3.2 Example-17: Firing Sequence

Fig.3.1 shows a Petri net with an initial marking of two tokens in p1 and
one in p4, as shown in the Listing-3.1. The coverability tree (Fig.3.2) for
this initial marking includes two dead states if the fring sequence from the
initial state is either {t1, t3} or {t1, t1, t2, t2}. Let us check whether it is
true using the fring sequence.

Listings 3.1, 3.2, and 3.3 show the main simulation fle, PDF, and COM-
MON_PRE, respectively.

Listing 3.1: Main Simulation File (example-17)
clear all; close all; clc;
global global_info
global_info.STOP_AT = 80;
global_info.FIRING_SEQ = {'t1','t1','t2','t2'};

spng = pnstruct('ex_17_pdf');
dyn.m0 = {'p1',2, 'p4',1};
dyn.ft = {'allothers',1};
pni = initialdynamics(spng, dyn);

results = gpensim(pni);
cotree(pni, 1, 0); % plot graphically; no ASCII text
prnss(results);

Listing 3.2: PDF (Example-17)
function [png] = ex_17_pdf()

17 3.2. EXAMPLE-17: FIRING SEQUENCE

Figure 3.2: Coverability tree for the Petri net shown in Fig.3.1.

18 CHAPTER 3. FIRING SEQUENCE

png.PN_name = 'Example-17: Firing sequence';
png.set_of_Ps = {'p1', 'p2', 'p3', 'p4'};
png.set_of_Ts = {'t1','t2', 't3'};
png.set_of_As = {...

'p1','t1',1, 't1','p2',1, 't1','p3',1,... % t1
'p2','t2',1, 'p3','t2',1,... % t2
't2','p2',1, 't2','p4',1,... % t2
'p1','t3',1, 'p3','t3',1, 'p4','t3',1}; % t3

Listing 3.3: COMMON_PRE (example-17)

function [fire, trans] = COMMON_PRE(trans)
% assign firingseq directly to 'fire'
% otherwise program malfunctions
fire = firingseq();

The screen dump given below verifes that one of the fring sequences,
{t1, t1, t2, t2}, indeed leads to a dead state.

19 3.2. EXAMPLE-17: FIRING SEQUENCE

** Time: 0 **
State:0 (Initial State): 2p1 + p4
At time: 0, Enabled transitions are:
At time: 0, Firing transitions are:

t1
t1

** Time: 1 **
State: 1
Fired Transition: t1
Current State: p1 + p2 + p3
Virtual tokens: (no tokens)

+ p4

Right after new state-1
At time: 1, Enabled transitions are:
At time: 1, Firing transitions are:

t1
t1

t2 t3

** Time: 2 **
State: 2
Fired Transition: t1
Current State: 2p2 + 2p3 + p4
Virtual tokens: (no tokens)

Right after new state-2
At time: 2, Enabled transitions are:
At time: 2, Firing transitions are:

t2
t2

** Time: 3 **
State: 3
Fired Transition: t2
Current State: 2p2 + p3 + 2p4
Virtual tokens: (no tokens)

Right after new state-3
At time: 3, Enabled transitions are:
At time: 3, Firing transitions are:

t2
t2

** Time: 4 **
State: 4
Fired Transition: t2
Current State: 2p2 + 3p4
Virtual tokens: (no tokens)

Right after new state-4
At time: 4, Enabled transitions are:
At time: 4, Firing transitions are:

20 BIBLIOGRAPHY

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Chapter 4

Get Functions

This chapter describes a set of utility functions for extracting diverse infor-
mation from the GPenSIM environment; for example, information such as
token color or a place’s output transitions can be extracted.

Tables 4.1 and 4.2 summarize these “get” functions. Some of these func-
tions extract the colors of tokens. For a complete study on token colors in
GPenSIM, Chapter 2, “Colored Petri net: The Basics,” in Davidrajuh (2023)
is suggested.

Function Description

get_all_tokens returns all the tokens in all the places.
get_color returns a token’s colors.
get_cost returns token’s cost.
get_current_colors returns a summation of all the colors of all

the tokens anywhere.
get_firingtime return the fring time of a transition.
get_inputplace returns a transition’s input places.
get_inputtrans returns a place’s input transitions.
get_outputplace returns a transition’s output places.
get_outputtrans returns a place’s output transitions.
get_place returns a place’s the complete data struc-

ture.
get_priority returns a transition’s the current priority.
get_tokCT returns a token’s creation time.
get_token returns a token’s complete information.
get_tokens returns complete information about a set

of tokens in a place.
get_trans returns a transition’s complete data struc-

ture.

Table 4.1: Get-functions (part I).

21

22 CHAPTER 4. GET FUNCTIONS

Function Description

nplaces returns the number of places in the Petri
net (same as PN.No_of_places, where
PN is the Petri net run-time structure).

nresources returns the number of resources
in the Petri net (same as
PN.No_of_system_resources).

ntokens returns the current number of tokens in a
place.

ntrans returns the number of transi-
tions in the Petri net (same as
PN.No_of_transitions).

pname returns a place’s name.
rname returns a resource’s name.
timesfired returns the number of times a transition

has fred already.
tname returns a transition’s name.

Table 4.2: Get-functions (part II).

4.1 get_all_tokens

Function name: get_all_tokens
Full name: Get all the token info in all the places.
Purpose: Collect token info (tokID, creation_time, color, cost) of all the
tokens in all the places.
Inputs: (none)
Output Parameter: A structure of token info (tokID, creation_time,
color, cost) of all the tokens in all the places.
This function uses: get_tokens: to get the token info of a single place.
Sample use:

global_token_bank = get_all_tokens();

4.2 get_color

Function name: get_color
Purpose: Get the colors of a specifc token in a specifc place.
Input Parmeters: 1) a place’s name or index; 2) tokID, the ID of the
token.
Output Parmeter: A set of colors of the token.

23 4.3. GET_COST

This function uses: check_valid_place: to check whether the given
name of the place or the pi is valid.
Sample use:

colors = get_color('p3', tokIDi);
disp_str = ['colors of token (', int2str(tokIDi), '): '];
for i = 1:numel(colors)

disp_str = [disp_str, colors{i}, ' '];
end
disp(disp_str);

4.3 get_cost

Function name: get_cost
Purpose: Get the cost of a specifc token in a specifc place.
Input Parameters: 1) a place’s name or index; 2) tokID, the ID of the
token.
Output Parameter: The token’s cost (a real number).
This function uses: check_valid_place: to check whether the given
name of the place or the pi is valid.
Sample use:

token_cost = get_cost('p3', tokIDi);
disp(['Cost of the token (', int2str(tokIDi),...

') is: ', num2str(token_cost)]);

Application example: A simple example (“Example-18: get_cost” in Sec-
tion 4.24) is given at the end of this chapter.

4.4 get_current_colors

Function name: get_current_colors
Purpose: This function outputs all the colors of all the tokens that reside
in various places.
Inputs: (none)
Output Parameter: All the colors of all the tokens in all the places.
This function uses: (none)
Sample use:

[set_of_all_colors] = get_current_colors();

24 CHAPTER 4. GET FUNCTIONS

4.5 get_fringtime

Function name: get_firingtime
Purpose: This function returns the fring time of a specifc transition.
Input Parameter: a transition’s name or index.
Output Parameter: the fring time of the transition.
This function uses: check_valid_transition: to check whether the
input name or index of the transition is valid.
Sample use:

[firingTime] = get_firingtime('tRobot_1');

4.6 get_inputplace

Function name: get_inputplace
Purpose: This function returns the set of input places of a transition.
Input Parameter: a transition’s name or index.
Output Parameters: 1) Set of indices of places; 2) Set of names (text
strings) of places.
This function uses: check_valid_transition: to check whether the
input transition name or index is valid.
Sample use:

% get input places of transition "t1"
[pIndices1, pNames1] = get_inputplace('t1');
% get input places of transition "t2", which has index "5"
[pIndices2, pNames2] = get_inputplace(5);

Related functions: get_inputtrans, get_outputtrans,
get_outputplace

4.7 get_inputtrans

Function name: get_inputtrans
Purpose: This function returns the set of input transitions of a place.
Input Parameter: a place’s name or index.
Output Parameters: 1) Set of indices of transitions; 2) Set of names (text
strings) of transitions.
This function uses: check_valid_place: to check whether the input
place name or index is valid.
Sample use:

25 4.8. GET_OUTPUTPLACE

% get input transitions of place "p1"
[tIndices1, tNames2] = get_inputtrans('p1');
% get input transitions of place "p2", which has index "7"
[tIndices2, tNames2] = get_inputtrans(7);

Related functions: get_inputplace, get_outputtrans,
get_outputplace

4.8 get_outputplace

Function name: get_outputplace
Purpose: This function returns the set of output places of a transition.
Input Parameter: a transition’s name or index.
Output Parameters: 1) Set of indices of places; 2) Set of names (text
strings) of places.
This function uses: check_valid_transition: to check whether the
input transition name or index is valid.
Sample use:

% get output places of transition "t1"
[pIndices1, pNames1] = get_outputplace('t1');
% get output places of transition "t2", which has index "5"
[pIndices2, pNames2] = get_outputplace(5);

Related functions: get_inputplace, get_inputtrans,
get_outputtrans

4.9 get_outputtrans

Function name: get_outputtrans
Purpose: This function returns the set of output transitions of a place.
Input Parameter: a place’s name or index.
Output Parameters: 1) Set of indices of transitions; 2) Set of names (text
strings) of transitions.
This function uses: check_valid_place: to check whether the input
place name or index is valid.
Sample use:

% get output transitions of place "p1"
[tIndices1, tNames2] = get_outputtrans('p1');
% get output transitions of place "p2", which has index "7"
[tIndices2, tNames2] = get_outputtrans(7);

Related functions: get_inputplace, get_inputtrans,
get_outputplace.

26 CHAPTER 4. GET FUNCTIONS

4.10 get_place

Function name: get_place
Purpose: This function extracts the complete info about a place (place
structure) from the Petri net run-time structure (PN.global_places).
Input Parameter: a place’s name or index.
Output Parameter: Place structure.
This function uses: check_valid_place: to check whether the input
place name or index is valid.
Sample use:

% get the complete info about "p1"
pStrcture1 = get_place('p1');
% get the complete info about place "p2", which has index "7"
pStrcture2 = get_place(7);

Related functions: get_trans

4.11 get_priority

Function name: get_priority
Purpose: This function returns the priority of a transition.
Input Parameter: a transition’s name or index.
Output Parameter: priority (natural number: 0, 1, 2, . . .).
This functions uses: check_valid_trans: to check whether transition
name or index is valid.
Further info: See Chapter 6.5, “Prioritizing Transitions” in Davidrajuh
(2018).
Sample use:

% get priority of transition is named 't1'
prior1 = get_priority('t1');
% get priority of transition t2 which has index 10
prior2 = get_priority(10);

4.12 get_tokCT

Function name: get_tokCT
Purpose: This function returns the tokCT (token creation time) of a token.
Input Parameters: 1) a place’s name or index; 2) token ID (tokID).
Output Parameter: token creation time (a positive real number).
This function uses: get_tokens: to get all the details of a token.
Further info: See Chapter 5.1, “Functions for Time-based Token Selection,”

27 4.13. GET_TOKEN

in Davidrajuh (2023).
Sample use:

% tokCT of the token (tokID = 121) in the place 'p1'
[tokCreationTime] = get_tokCT ('p1', 121);

4.13 get_token

Function name: get_token
Purpose: This function returns complete info (token bank) of a token.
Input Parameters: 1) a place’s name or index; 2) token ID (tokID).
Output Parameter: token bank (complete info about the token).
This function uses: check_valid_place: to check whether the input
place name (or index) is valid.
Further info: See Chapter 2, “Colored Petri net: The Basics,” in Davidra-
juh (2023).
Sample use:

% token with tokID 101 in the place 'p1'
[token101_info] = get_tokens('p1', 101);

Related functions: get_tokens

4.14 get_tokens

Function name: get_tokens
Purpose: This function returns complete info (token bank) of a set of to-
kens in a place.
Input Parameters: 1) a place’s name or index; 2) set of token IDs (tokIDs).
Output Parameter: token bank (complete info about the set of tokens).
This function uses: check_valid_place: to check whether the input
place name (or index) is valid.
Further info: See Chapter 2, “Colored Petri Net: The Basics,” in Davidra-
juh (2023).
Sample use:

% tokens with tokIDs [20, 77, 101] in the place 'p1'
[set_of_tokens_info] = get_tokens('p1', [20, 77, 101]);

Related functions: get_token

28 CHAPTER 4. GET FUNCTIONS

4.15 get_trans

Function name: get_trans
Purpose: This function extracts the complete info about a transition (tran-
sition structure) from the Petri net run-time structure (PN.global_transitions).
Input Parameter: a transition’s name or index.
Output Parameter: Transition structure.
This function uses: check_valid_transition: to check whether the
input transition name or index is valid.
Sample use:

% get the complete info about transition "t1"
tStructure1 = get_trans('t1');
% get the complete info about transition "t2", which has index "7"
tStructure2 = get_trans(7);

Related functions: get_place

4.16 nplaces

Function name: nplaces
Full name: Number of places in the Petri net.
Purpose: This function returns the total number of places in the Petri net.
Inputs: (none)
Output Parameter: The total number of places in the Petri net.
This function uses: (none)
Sample use:

% get the total number of places in this Petri net
totalPlaces = nplaces();

Related functions: nresources, ntrans

4.17 nresources

Function name: nresources
Full name: Number of resources in the system.
Purpose: This function returns the total number of resources in the system.
Inputs: (none)
Output Parameter: The total number of resources in the system.
This function uses: (none)
Sample use:

29 4.18. NTOKENS

% get the total number of resources in the system
totalRes = nresources();

Related functions: ntrans, nplaces

4.18 ntokens

Function name: ntokens
Full name: Number of tokens
Purpose: This function returns the total number of tokens in a place.
Input Parameter: a place’s name or index.
Output Parameter: the total number of tokens in the place.
This function uses: get_place: to get the complete place info so that
the number of tokens in this place can be extracted.
Sample use:

% get the total number of tokens in the place 'p1'
number_of_tokens = ntokens('p1');

Related functions: get_place

4.19 ntrans

Function name: ntrans
Full name: Number of transitions in the Petri net.
Purpose: This function returns the total number of transitions in the Petri
net.
Inputs: (none)
Output Parameter: The total number of transitions in the Petri net.
This function uses: (none)
Sample use:

% get the total number of transitions in this Petri net
totalTrans = ntrans();

Related functions: nplaces, nresources

4.20 pname

Function name: pname
Full name: Place Name.
Purpose: This function returns the name of the place, which is identifed
by an index.

30 CHAPTER 4. GET FUNCTIONS

Input Parameter: a place’s index.
Output Parameter: The name (ASCII text string) of the place.
This function uses: (none)
Sample use:

% get the name of the place identified by index 33
name_of_place = pname(33);

Related functions: tname, rname

4.21 rname

Function name: rname
Full name: Resource Name.
Purpose: This function returns the name of the resource, which is identifed
by an index.
Input Parameter: a resource’s index.
Output Parameter: The name (ASCII text string) of the resource.
This function uses: (none)
Sample use:

% get the name of the resource identified by index 5
name_of_resource = rname(5);

Related functions: pname, tname

4.22 timesfred

Function name: timesfired
Full name: Number of times fred.
Purpose: This function returns the number of times a transition has fred
already.
Input Parameter: a transition’s name or index.
Output Parameter: The number of times (natural integer) the transition
has fred so far.
This function uses: get_trans: to get the complete info about the
transition so that the number of times it has fred so far can be extracted.
Sample use:

% how many times "t1" has fired so far?
number_of_times_fired = timesfired('t1');

31 4.23. TNAME

4.23 tname

Function name: tname
Full name: Transition Name.
Purpose: This function returns the name of the transition, which is identi-
fed by an index.
Input Parameter: a transition’s index.
Output Parameter: The name (ASCII text string) of the transition.
This function uses: (none)
Sample use:

% get the name of the transition identified by index 11
name_of_transition = tname(11);

Related functions: pname, rname

4.24 Example-18: get_cost

Figure 4.1: Petri net model of three machines in action.

This simple exercise is to practice the function ‘get_cost’. Fig.4.1
shows a production facility in which material passes through a series of three
machines: a robot, a CNC machine, and a packaging machine. We want to
study the development of the product cost as the material/product fows
through the machines.

Listing-4.1 shows the PDF.

Listing 4.1: PDF (Example-18)
% Example-18: PDF (function get_cost)
function [png] = ex_18_pdf()
png.PN_name = 'Example-18: testing "get_cost"';
png.set_of_Ps = {'p0','p1','p2','p3'};
png.set_of_Ts = {'Robot', 'CNC', 'packaging'};
png.set_of_As = {...

'p0','Robot',1, 'Robot','p1',1,... % Robot

32 CHAPTER 4. GET FUNCTIONS

'p1','CNC',1, 'CNC','p2',1,... % CNC
'p2','packaging',1, 'packaging','p3',1}; % packaging

Listing-4.2 shows the MSF. In MSF, we frst create an empty global array
global_info.COSTS so that this array can be stufed with costs of tokens
in p1, p2, and p3. We assume that raw material costs are negligible (in
other words, the cost of the initial token in p0 is zero).

Listing 4.2: MSF (Example-18)
% Example-18: MSF (get_ost)
clear all; clc; close all;
global global_info
global_info.STOP_AT = 80;
% global variable to store the costs
global_info.COSTS = [];

spng = pnstruct('ex_18_pdf');
dyn.m0 = {'p0',1}; % tokens initially
dyn.ft = {'allothers',10};
% fixed & variable costs of machine operations
dyn.fc_fixed = {'Robot',3, 'CNC',250....

'packaging',70};
dyn.fc_variable = {'Robot',5, 'CNC',50,...

'packaging',22};

pni = initialdynamics(spng, dyn);
sim = gpensim(pni);

% plot the cost development as a bar-chart
X = categorical({'After Robot','After CNC',...

'After packaging'});
X = reordercats(X,{'After Robot','After CNC',...

'After packaging'});
bar(X,global_info.COSTS);
title('Development of the product cost');

Listing-4.3 shows the COMMON_POST. Note that we use COMMON_POST
to extract the costs of tokens as soon as these tokens are deposited into
the output places. If we don’t extract the costs of tokens using COM-
MON_POST (that is, immediately after the fring of transitions), the tokens
will disappear, consumed by the next transitions. We are not using COM-
MON_PRE as there is no need for it.

Listing 4.3: COMMON_POST (Example-18)
function [] = COMMON_POST(transition)

global global_info
fired_trans = transition.name;

4.24. EXAMPLE-18: GET_COST 33

switch fired_trans
case 'Robot'

tokIDr = tokenAny('p1',1);
cost_p1R = get_cost('p1', tokIDr);
global_info.COSTS = [global_info.COSTS cost_p1R];

case 'CNC'
tokIDc = tokenAny('p2',1);
cost_p2C = get_cost('p2', tokIDc);
global_info.COSTS = [global_info.COSTS cost_p2C];

case 'packaging'
tokIDp = tokenAny('p3',1);
cost_p3 = get_cost('p3', tokIDp);
global_info.COSTS = [global_info.COSTS cost_p3];

end

The result of this simulation - the bar chart depicting the cost develop-
ment of the product as it passes through the three machines - is shown in
Fig.4.2.

Figure 4.2: Cost development of the product.

34 BIBLIOGRAPHY

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Davidrajuh, R. (2023). Colored Petri Nets for Modeling of Discrete Systems:
A Practical Approach With GPenSIM, Springer Nature.

Chapter 5

gpensim

Function “gpensim” is the main function for simulation. Table-5.1 presents
a summary of these two functions.

Function Description

gpensim executes simulation on the Petri net struc-
ture with initial dynamics (pni).

gpensim_ver prints the GPenSIM version number.

Table 5.1: gpensim functions.

5.1 gpensim

Function name: gpensim
Purpose: Once the Petri net structure with initial dynamics (pni) is con-
structed by the function initialdynamics, pni is passed to gpensim
for simulation. Hence, gpensim is the main function for simulation.
Input Parameter: pni - the Petri net structure with initial dynamics; if
the input is omitted gpensim will output the current version number.
Output Parameter: Simulation results as a structure; the simulation re-
sults can be plotted using the function plotp or listed on the screen by the
function prnss.
This function uses: (many sub-functions).
This function is used by: [in Main Simulation File (MSF)]
Further info: Ref. Davidrajuh (2018) introduces gpensim.
Sample use:

spng = pnstruct('simple_pn_pdf');
dyn.m0 = {'p1',3, 'p2',4};
pni = initialdynamics(spng, dyn);

35

36 BIBLIOGRAPHY

Sim_Results = gpensim(pni); % perform simulation runs
prnss(Sim_Results); % print the simulation results
plotp(Sim_Results, {'p1','p2','p3'}); % plot the results

Related functions: gpensim_ver, pnstruct, initialdynamics,
plotp, prnss

5.2 gpensim_ver

Function name: gpensim_ver
Full name: gpensim version
Purpose: This function prints the current version of GPenSIM, which is
version 11, 01 December 2023.
Inputs: (none).
Output Parameter: (none).
Output on screen: the version will be printed on the screen.
This function uses: (none)
This function is used by: [in Main Simulation File (MSF)]
Sample use:

%%% print the current version of gpensim
gpensim_ver();
%%%%%% alternatively
gpensim();

The following message will be displayed (output) on the MATLAB Com-
mand Window:

GPenSIM version 11; Last update: December 01,
2023

(C) Reggie.Davidrajuh@uis.no

http://www.davidrajuh.net/gpensim

Related functions: gpensim

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

http://www.davidrajuh.net/gpensim
mailto:Reggie.Davidrajuh@uis.no

Chapter 6

Graphs and Cycles

Petri Net is a bipartite graph containing two types of elements: places and
transitions. Hence, being a graph, all graph algorithms can be applied on a
Petri Net, if we could convert the bipartite Petri net into a directed homoge-
neous graph (‘digraph’). This chapter presents some of the graph algorithms
that are useful for the analysis of Petri Nets. Table-6.1 presents a summary
of these functions.

Function Description

convert_PN_V converts a directed bipartite Petri net into
a homogeneous directed graph (digraph).

cycles detects the cycles (aka circuits) of a di-
graph.

prncycles printout cycles detected by the function
cycles.

stronglyconn fnds the strongly connected components
of a digraph.

stronglyconn_rader (same as stronglyconn) fnds the
strongly connected components of a graph;
however, it uses a faster Rader’s algo-
rithm.

prnscc printout the connected components de-
tected by the functions stronglyconn
or stronglyconn_rader.

Table 6.1: Graphs and Cycles functions.

6.1 convert_PN_V

Function name: convert_PN_V
Purpose: To convert a bipartite Petri Net into a homogeneous directed

37

38 CHAPTER 6. GRAPHS AND CYCLES

graph to apply the usual graph algorithms.
Input Parameter: Static Petri net graph (spng, output of the function
pnstruct) or Petri net structure with initial dynamics (pni, output of the
function initialdynamics).
Output Parameter: A homogeneous directed graph (V) on which the
usual graph algorithms can be run. V is a MATLAB structure with two
felds: 1) V.nodes is a set of node names (text strings). 2) V.A is the
adjacency matrix of the digraph.
This function uses: (none).
This function is used by: [graph algorithms such as depth-frst-search
(DFS), strongly connected components (SCC)]
Further info: Section 8.5, “Interfacing with Graph Algorithms Toolbox,”
in Davidrajuh (2018).
Sample use:

spng = pnstruct('simple_pn_pdf');
V = convert_PN_V(spng);
% V.A: Incidence Matrix; V.nodes: nodes

Application example: Two simple examples (“Example-20: convert_PN_V”
in Section 6.6 and “Example-21: cycles” in Section 6.7) are given at the end
of this chapter.
Related functions: stronglyconn, cycles, dfs

6.2 cycles

Function name: cycles
Purpose: To detect all the elementary circuits (cycles) in a directed graph
(V).
Input Parameter: Directed graph (V, output of function convert_PN_V).
Output Parameter: The cycles in the graph (V.cycles), where each row
represents a circuit.
For example, for a Petri net of seven elements, V.cyles:
2 6 0 0 0 0 0
3 5 1 7 0 0 0
means there are two cycles; cycle 1 consists of second and sixth elements;
cycle 2 consists of third, ffth, frst, and seventh elements. Note that each
row is padded with trailing zeros.
CAUTION: This function uses an inefcient algorithm for fnding cycles
and seems to miss some cycles!!!
This function uses: cycle_detection.
This function is used by: [mincyctime, a function to detect the cycle
times of an event graph (marked graph).]

39 6.3. PRNCYCLES

Further info: Chapter 11, “Discrete Systems as Petri Modules,” in Davidra-
juh (2021).
Sample use:

spng = pnstruct('simple_pn_pdf');
[G] = convert_PN_V(spng);
V = cycles(G); % V.cycles are the cycles found

Application example: Two simple examples (“Example-20: convert_PN_V”
in Section 6.6 and “Example-21: cycles” in Section 6.7) are given at the end
of this chapter.
Related functions: convert_PN_V

6.3 prncycles

Function name: prncycles or print_cycles
Full name: Print cycles in a digraph.
Purpose: To printout all the cycles deteced by the function cycles.
Input Parameter: Directed graph (V) with the cycles - output of function
cycles.
Output Parameter: (none).
Output on screen: The cycles and their elements.
This function uses: none.
This function is used by: [main simulation fle.]
Sample use:

spng = pnstruct('simple_pn_pdf');
[G] = convert_PN_V(spng);
V = cycles(G); % V.cycles are the cycles found
prncycles(V); % same as print_cycles(V)

Application example: Two simple examples (“Example-20: convert_PN_V”
in Section 6.6 and “Example-21: cycles” in Section 6.7) are given at the end
of this chapter.
Related functions: cycles, convert_PN_V

6.4 stronglyconn

Function name: stronglyconn
Full name: Strongly Connected Components.
Purpose: To detect all the strongly connected components of a Petri Net.
Input Parameter: 1) Static Petri net graph (spng, the output of the
function pnstruct) or Petri net structure with initial dynamics (pni, the
output of the function initialdynamics).

40 CHAPTER 6. GRAPHS AND CYCLES

2) (Optional input): ‘1’ to suppress intermediate results.
Output Parameter: 1) Matrix SCC in which each row represents a strongly
connected component. 2) V - the digraph output by the function convert_PN_V.
SCC matrix has a number of rows, and each row represents a connected com-
ponent. For example, for a Petri net of seven elements, SCC:
0 0 0 1 0 0 0
0 1 0 0 0 1 0
1 0 1 0 1 0 1
means there are three components; component 1 (row 1) consists of just one
element (the fourth); component 2 (row 2) consists of two elements, second
and sixth; component 3 (row 3) consists of four elements, the frst, third,
ffth, and seventh elements.
This function uses: stronglyconn_rader, convert_PN_V.
Further info: Chapter 11, “Discrete Systems as Petri Modules,” in Davidra-
juh (2021).
Sample use:

spng = pnstruct('simple_pn_pdf');
[SCC, V] = stronglyconn(spng, 1); % each row of SCC is a ...

component

Application example: Two simple examples (“Example-20: convert_PN_V”
in Section 6.6 and “Example-21: cycles” in Section 6.7) are given at the end
of this chapter.
Related functions: convert_PN_V, cycles

6.5 prnscc

Function name: prnscc
Full name: Printout Strongly Connected Components.
Purpose: To printout the strongly connected components detected by the
function stronglyconn (or stronglyconn_rader).
Input Parameter: 1) SCC (strongly connected components, the output of
the function stronglyconn). 2) V: digraph, the output of the function
convert_PN_V.
Output Parameter: none.
Output on screen: Connected components and their elements.
This function uses: none.
Sample use:

spng = pnstruct('simple_pn_pdf');
[SCC, V] = stronglyconn(spng, 1); % each row of SCC is a ...

component
prn(SCC, V);

41 6.6. EXAMPLE-20: CONVERT_PN_V

Application example: Two simple examples (“Example-20: convert_PN_V”
in Section 6.6 and “Example-21: cycles” in Section 6.7) are given at the end
of this chapter.
Related functions: convert_PN_V, cycles

6.6 Example-20: convert_PN_V

Figure 6.1: Applying graph algorithms to a Petri net.

This example is adapted from Davidrajuh (2018). Fig.6.1 shows a Petri
net with four places (p1 to p4) and two transitions (tA and tB).

In the main simulation fle (Listing-6.1), we compute the following:

1. Convert the Petri net into a directed graph (V).
2. Feed V into the function cycles to fnd out the number of cycles in

this Petri net.
3. Feed the static Petri net graph structure (spng) to the function stronglyconn

to fnd out the number of strongly connected components (or ‘con-
nected components’) in this Petri net.

Listing 6.1: MSF (Example-20)
clear all; clc; close all;

spng = pnstruct('ex_20_pdf');
disp('Petri net"s Extended Incidence Matrix (A): ');
disp(spng.incidence_matrix);

%%%%% 1: Convert Petri net into digraph V
V = convert_PN_V(spng);
disp(' ');

42 CHAPTER 6. GRAPHS AND CYCLES

disp('The Digraph"s Adajacency matrix: ');
disp(V.A);

%%%%% 2: Find the cycles in V
V = cycles(V);
V.cycles
prncycles(V); % print cycles

%%%%% 3: Find the Strongly Connected Comp.
SCC = stronglyconn(spng, 1); % each row is an SCC
SCC
prnscc(SCC, V); % print SCCs

Digraph:

Figure 6.2: Digraph converted from the Petri net.

Fig.6.2 shows the digraph generated from the Petri net. The func-
tion convert_PN_V returns a structure V, which possesses two felds: 1)
V.nodes: this is an array of node names (text strings) 2) V.A: the adjacency
matrix of the digraph.

The digraph’s adjacency matrix is basically a makeover of the Petri net’s
extended incidence matrix (Ae). Ae consists of two parts, namely the input
incidence matrix (Ai) and the output incidence matrix (Ao). Digraph’s adja-
cency matrix is also composed of (Ai) and the transpose of (Ao), in addition
to two zero matrices, as shown in Fig.6.3.

Cycles:
The Petri net (Fig.6.1) does not have any cycles (acyclic). Hence, the func-
tion cycles returns an empty structure.

Strongly Connected Components:
Due to the lack of cycles in the Petri net (Fig.6.1), each element in the Petri
net is a component on its own. Hence, the function stonglyconn returns a

6.6. EXAMPLE-20: CONVERT_PN_V 43

Figure 6.3: Digraph’s Adjacency matrix as a composition of the Petri net’s
Ae.

44 CHAPTER 6. GRAPHS AND CYCLES

matrix in which just one element in each raw is non-zero (non-zero elements
in each raw represent a connected component).

SCC =

6×6 logical array

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

6.7 Example-21: cycles

Figure 6.4: A Petri net with two cycles.

Fig.6.4 shows a Petri net with two cycles. Listing-6.2 presents the MSF.

Listing 6.2: MSF (Example-21)
clear all; clc; close all;
spng = pnstruct('ex_21_pdf');

%%%%% 1: Convert Petri net into digraph V
V = convert_PN_V(spng);

45 6.7. EXAMPLE-21: CYCLES

%%%%% 2: Find the cycles in V
V = cycles(V);
V.cycles
prncycles(V);

%%%%% 3: Find the Strongly Connected Comp.
SCC = stronglyconn(spng, 1); % each row of SCC is a
SCC
prnscc(SCC, V);

The printout below shows the V.cycles as a matrix of dimension p2X7q.
The two rows indicate there are two cycles:

˝ Cycle 1 (row 1) consists of second and sixth elements;
˝ Cycle 2 (row 2) consists of third, ffth, frst, and seventh elements.

Note that each row is padded with trailing zeros.
ans =

2 6 0 0 0 0 0
3 5 1 7 0 0 0

The printout shown below is by the function prncycles, which takes
V.cycles and prints the cycles with the names of the cycle members.

Cycle No-1: *******
-> t2 -> p2

Cycle No-2: *******
-> t3 -> p1 -> t1 -> p3

The printout below shows the SCC as a matrix of dimension p3X7q. The
three rows indicate there are three strongly connected components:

˝ Component 1 (row 1) consists of just one element (fourth);
˝ Component 2 (row 2) consists of two elements (second and sixth);
˝ Component 3 (row 3) consists of four elements (frst, third, ffth, and

seventh elements).

SCC =

3×7 logical array

0 0 0 1 0 0 0
0 1 0 0 0 1 0
1 0 1 0 1 0 1

46 BIBLIOGRAPHY

Finally, function prnscc takes the SCC matrix and printout the com-
ponents with their elements names:

Component No-1: *******
{ tS }

Component No-2: *******
{ t2 - p2 }

Component No-3: *******
{ t1 - t3 - p1 - p3 }

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Davidrajuh, R. (2021). Petri Nets for Modeling of Large Discrete Systems,
Springer.

Chapter 7

Initial Dynamics

The function initialdynamics combines the static Petri Net graph and
the initial dynamics to create the Petri set structure with initial dynamics
(‘pni’). pni is the one that is used to start the simulation by the func-
tion gpensim. pni is also the input to cotree to create the reachability
(coverability) tree.

7.1 initialdynamics

Function name: initialdynamics
Full name: Assign Initial Dynamics.
Purpose: create the Petri net structure with initial dynamics by combining
the static Petri Net graph (spng) and the initial dynamics (e.g., initial
tokens, fring times, resources, and costs).
Input Parameter: Static Petri Net graph (spng, output of the functions
pnstruct) and initial dynamics.
Output Parameter: Petri net structure with initial dynamics (pni); pni
can be input to the function gpensim, to start the simulation.
This function uses: (many sub-functions).
This function is used by: [in Main Simulation File (MSF)]
Further info: chapter 2, “Modeling with GPenSIM: Basic Concepts,” in
Davidrajuh (2018).
Sample use:

spng = pnstruct('simple_pn_pdf');
dyn.m0 = {'p1',3, 'p2',4};
pni = initialdynamics(spng, dyn);
Sim_Results = gpensim(pni); % perform simulation runs

47

48 BIBLIOGRAPHY

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Chapter 8

Is Functions

This chapter describes some utility functions that can help verify the type
of an entity, e.g., is ‘x1’ a transition? Is the Petri net a strongly connected
component? These functions are summarized in Table-8.1.

Function Description

is_enabled Is this transition currently enabled?
is_eventgraph Is this Petri net an event graph (aka

marked graph)?
is_firing Is this transition curretly fring?
is_place Is this element a place?
is_stronglyconn Is this Petri net strongly connected?
is_trans Is this element a transition?

Table 8.1: Summary of Is functions.

8.1 is_enabled

Function name: is_enabled
Full name: Is the transition enabled?
Purpose: to check whether a transition is enabled right now.
Input Parameter: transition’s name or index.
Output Parameter: (Boolean) true or false.
This function uses: is_transition: whether the given entity is a tran-
sition or not.
Sample use:

function [fire, trans] = tBeta_pre(trans)
% in the specific pre-preprocessor of "tBeta"

% allow tBeta to fire only if tAlfa is not enabled

49

50 CHAPTER 8. IS FUNCTIONS

fire = not(is_enabled('tAlfa'));

Related function: is_firing

8.2 is_eventgraph

Function name: is_eventgraph
Full name: Is the Petri net an event graph?
Purpose: to check whether the Petri net is an Event Graph (aka Marked
Graph).
Input Parameter: Static Petri net graph (spng, output of the function
pnstruct) or Petri net structure with initial dynamics (pni, output of the
function initialdynamics).
Output Parameter: (Boolean) true or false.
This function uses: (none).
Further info: Chapter 7, “Performance Evaluation of Discrete Event Sys-
tems,” in Davidrajuh (2018).
Sample use:

spng = pnstruct('simple_pn_pdf');
if is_eventgraph(spng)

disp('This Petri net is an Event (Marked) Graph!');
end

8.3 is_fring

Function name: is_firing
Full name: Is this transition currently fring?
Purpose: to check whether a transition is fring right now.
Input Parameter: transition’s name or index.
Output Parameter: (Boolean) true or false.
This function uses: is_transition: whether the given entity is a tran-
sition or not.
Sample use:

function [fire, trans] = tBeta_pre(trans)
% in the specific pre-preprocessor of tBeta

% allow tBeta to fire only if tAlfa is not firing now
fire = not(is_firing('tAlfa'));

Application example: A simple example (“Example-23: is_fring” in Sec-
tion 8.8) is given at the end of this chapter.
Related function: is_enabled

51 8.4. IS_PLACE

8.4 is_place

Function name: is_place
Full name: Is this entity a place?
Purpose: to check whether a named entity is a place.
Input Parameter: entity’s name.
Output Parameter: 0: Not a place; > 0 : index of place.
This function uses: (none).
Sample use:

pIndex = is_place('p22'); % is "p22" a place?
if pIndex

disp(['"p22" is a place, with place index ', int2str(pIndex)]);
end

Application example: A simple example (“Example-22: Is Functions” in
Section 8.7) is given at the end of this chapter.
Related function: is_trans

8.5 is_stronglyconn

Function name: is_stronglyconn
Full name: Is this Petri net a Strongly Connected Component?
Purpose: To check whether the given Petri net is a Strongly Connected
Component.
Input Parameter: Static Petri net graph (spng, output of the function
pnstruct) or Petri net structure with initial dynamics (pni, output of the
function initialdynamics).
Output Parameter: (Boolean) true or false.
This function uses: stronglyconn: to extract the connected compo-
nents of the Petri net.
Further info: Chapter 11, “Discrete Systems as Petri Modules,” in Davidra-
juh (2021).
Sample use:

spng = pnstruct('simple_pn_pdf');
if is_stronglyconn(spng)

disp('This Petri net is one component!');
end

Related functions: stronglyconn, cycles

52 CHAPTER 8. IS FUNCTIONS

8.6 is_trans

Function name: is_trans
Full name: Is this entity a transition?
Purpose: to check whether a named entity is a transition.
Input Parameter: entity’s name.
Output Parameter: 0: Not a transition; > 0 : index of transition.
This function uses: (none).
Sample use:

tIndex = is_trans('t44'); % Is 't44' a transition
if tIndex

disp(['"t44" is a transition with transition index ', ...
int2str(tIndex)]);

end

Application example: A simple example (“Example-22: Is Functions” in
Section 8.7) is given at the end of this chapter.
Related function: is_place

8.7 Example-22: Is Functions

This example is almost identical to example 14 (Section 1.5). In example 14,
we used “Check Valid Functions,” which throws an error and terminates the
program (returns control to the MATLAB Command Prompt) if the input
name is not valid. In example 22, we use ‘softer’ “Is functions” instead!

Let us imagine that a main simulation fle has just completed a simula-
tion. We may want to check the number of leftover tokens in various places
or how many times the individual transitions have fred. Listing-8.1 shows
that the simulation is complete in a main simulation fle followed by two
subroutines (‘check_place’ and ‘check_trans’).

Listing 8.1: Part of the Main Simulation File (Example-22)

%
% any main simulation file is fine!
%
...
...

sim = gpensim(pni);

% simulation if complete
check_place(); % number of tokens in a place
check_trans(); % number of times a trans has fired

53 8.7. EXAMPLE-22: IS FUNCTIONS

Subroutine ‘check_place’ (Listing-8.2) repeatedly ask a user to input a
valid place name and then checks how many tokens are left in that place.
Similarly, subroutine ‘check_trans’ (Listing-8.3) repeatedly ask a user to
input a valid transition name and then checks how many times this transition
has fred. Both of these functions use the “Is functions.”

Listing 8.2: check_place (Example-22)
function [] = check_place()
prompt = ['\nEnter a valid *place* name without using single ...

quotation marks \n', ...
'(note that wrong place name can crash the program)\n',...
'press return key to quit: '];

reply = 'pSomething';

while not(isempty(reply))
reply = input(prompt, 's');
if isempty(reply), return; end

% is this a valid place name?
if is_place(reply)

% find the number of tokens
ntok = ntokens(reply);
disp(' ');
disp(['"',reply, '" has ', int2str(ntok),...

' tokens now.']);
end

end

Listing 8.3: check_trans (Example-22)
function [] = check_trans()

prompt = ['\nEnter a valid !transition! name without using ...
single quotation marks \n', ...

'(note that wrong transition name can crash the program)\n',...
'press return key to quit: '];

reply = 'tSomething';

while not(isempty(reply))
reply = input(prompt, 's');
if isempty(reply), return; end

% is this a trans name?
if is_trans(reply)

% find the number of times fired
nfired = timesfired(reply);
disp(' ');
disp(['"',reply, '" has fired ', int2str(nfired),...

' times.']);

54 CHAPTER 8. IS FUNCTIONS

end
end

8.8 Example-23: is_fring

Figure 8.1: A Petri net with two transitions.

In Fig.8.1, only one transition fres at a time (either t1 or t2):
In this tiny example, we shall make sure that either t1 or t2 fres, and
not both at the same time. This condition can be realized by using a global
variable (‘semaphore’) or by putting a place with a token for mutual exclusion
between the two transitions.

However, in this example, we shall attempt another technique using the
function ‘is_firing.’ Since both transitions are enabled, we will allow one
of these two to start fring randomly. After that, any enabled transition can
start fring only if the other is not fring.

Listing-8.4 shows the main simulation fle, whereas Listings 8.5 and 8.6
shows the specifc pre-processors for t1 and t2 (there is no need for post-
processors).

Listing 8.4: MSF (Example-23)
clear all; clc; close all;
global global_info
global_info.STOP_AT = 100;

spng = pnstruct('ex_23_pdf');

55 BIBLIOGRAPHY

dyn.m0 = {'pSTART', 10};
dyn.ft = {'t2',20, 't1',10};
pni = initialdynamics(spng, dyn);

sim = gpensim(pni);
plotp(sim, {'p1', 'p2'});

Listing 8.5: t1_pre (Example-23)
function [fire, trans] = t1_pre(trans)

% t1 can fire if t2 is not firing
fire = not(is_firing('t2'));

Listing 8.6: t2_pre (Example-23)
function [fire, trans] = t2_pre(trans)

% t2 can fire if t1 is not firing
fire = not(is_firing('t1'));

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Davidrajuh, R. (2021). Petri Nets for Modeling of Large Discrete Systems,
Springer.

56 BIBLIOGRAPHY

Chapter 9

Performance Metrics

This chapter presents three functions for performance analysis. The function
mincyctime can be applied only for Marked Graphs (aka Event Graphs);
a Marked Graph is a special type of Petri net in which all the places have
exactly one input and one output transition. The other two functions,
extractt and occupancy, summarize the frings of transitions. Table-
9.1 presents a summary of these functions.

Function Description

extractt returns a matrix with three columns:
[fring-transition, start-time, stop-time].

mincyctime fnds the “minimum-cycle-time (MCT)” of
a marked graph.

occupancy extracts start-times and stop-times of
transition frings from the simulation re-
sults.

Table 9.1: Summary of functions for Performance Metrics.

9.1 extractt

Function name: extractt
Full name: Extract transitions frings information.
Purpose: After simulation, extract the start and fnish of fring times of
diferent transitions.
Input Parameters: 1) Simulation results (output of the function gpensim);
2) set of transitions (names or indices).
Output Parameter: DURATION matrix : A matrix containing three columns:

1. Column-1: The fring transition (index of the transition).
2. Column-2: fring start time.

57

58 CHAPTER 9. PERFORMANCE METRICS

3. Column-3: fring fnishing time.

This function uses: check_valid_transition: to check whether the
input transition (name or index) is valid.
Further info: chapter 10, “Performance-Metrics,” in Davidrajuh (2018)
Sample use:

...
sim_results = gpensim(pni);
[DURATION] = extractt(sim_results, {'trans1', 'trans2'})

Related function: occupancy

9.2 mincyctime

Function name: mincyctime
Full name: Minimum Cycle Time.
Purpose: This function is applicable only for marked graphs (aka event
graphs). This function will analyze all the cycles and print the results point-
ing out the minimum cycle (the “bottleneck”).
The Minim-Cycle-Time = max(cycle Delay/tokens in the cycle)
If an optional target for throughput is given as the second input parame-
ter, this function will also suggest the remedies for achieving the requested
throughput.
Input Parameter - compulsory: Petri net structure with initial dynam-
ics (pni) - the output of the function initialdynamics
Input Parameter - optional: wanted throughput.
Output Parameter: structure (V) with all the cycles.
This function uses: is_eventgraph, cycles.
Further info: See chapter 7.2, “Minimum Cycle Time in Marked Graphs,”
in Davidrajuh (2018).
Sample use:

...
pni = initialdynamics(spng, dyn);
V = mincyctime(pni);

Application example: A simple example (“Example-24: mincyctime” in
Section 9.4) is given at the end of this chapter.

9.3 occupancy

Function name: occupancy
Full name: Extract a summary of transitions frings information.

59 9.4. EXAMPLE-24: MINCYCTIME

Purpose: After simulation, extract a summary of diferent transitions’ fring
times (total fring times and in percentage).
Input Parameter: 1) Simulation results (output of the function gpensim);
2) set of transitions (names or indices).
Output Parameter: Output: 1. OCCUPANCY matrix : 1st row [time taken
by each transition] and 2nd row:[active time in percentage]
Output: 2. DURATION matrix (see 9.1): A matrix containing three columns:
[fring-transition, start-time, stop-time].
This function uses: extractt: to extract DURATION matrix;
check_valid_transition: to check whether the input transition (name
or index) is valid.
Further info: chapter 10, “Performance-Metrics,” in Davidrajuh (2018).
Sample use:

...
sim_results = gpensim(pni);
[OCCUPANCY, DURATION] = occupancy(sim_results, {'t1', 't2'});

Related function: extractt

9.4 Example-24: mincyctime

Fig.9.1 shows a marked graph (aka marked graph) as all the places in that
Petri net have exactly one input and one output transition. This marked
graph also has four cycles. Let us assume that the fring times of all transi-
tions are 1 minute.

First, we will fnd the throughput of the Petri net (tokens/minute) using
the function mincyctime. Then, suppose we want a higher throughput, say
0.5 tokens/minute; we can feed this value as the optional input and get some
ideas from mincyctime on how this higher throughput can be achieved.

Listing-9.1 shows that main simulation fle.

Listing 9.1: MSF (Example-24)
clear all; clc; close all;

spng = pnstruct('ex_24_pdf');
dyn.ft = {'allothers',1}; % firing times of all: 1 minute
dyn.m0 = {'p6',1, 'p4',1, 'p7',1,'p9',1};
pni = initialdynamics(spng, dyn);

% expected flowrate is 0.5 tokens/minute
mincyctime(pni, 0.5);

The function mincyctime prints out the following information on the
number of cycles in the marked graph, the dominating cycle (minimum cy-

60 CHAPTER 9. PERFORMANCE METRICS

Figure 9.1: A Marked Graph with four cycles.

61 BIBLIOGRAPHY

cle or the bottleneck), and the current throughput (which is 0.33 token-
s/minute).

This is a Strongly Connected Petri net.

Cycle-1: -> p8 -> t3 -> p7 -> t4 -> p4 -> t5
-> p3 -> t6 -> p1 -> t1 -> p2 -> t2
TotalTD = 6 TokenSum = 2 Cycle Time = 3

Cycle-2: -> p3 -> t6 -> p6 -> t5
TotalTD = 2 TokenSum = 1 Cycle Time = 2

Cycle-3: -> p7 -> t4 -> p5 -> t3
TotalTD = 2 TokenSum = 1 Cycle Time = 2

Cycle-4: -> t2 -> p8 -> t3 -> p9
TotalTD = 2 TokenSum = 1 Cycle Time = 2

Minimum-cycle-time is: 3, in cycle number-1

*** Token Flow Rate: ***
In a steady state, the firing rate of each
transition is: 1/C* = 0.33333
meaning, on average, 0.33333 tokens go through
any node in the Petri net per unit of time.

Further, mincyctime suggests the following on how we can increase the
throughput from 0.33 to 0.5 tokens/minute.

*** We can increase the current flow rate to 0.5
tokens/TU by improving the critical circuit alone
...
In the circuit-1 either:
1. increase the sum of tokens by one token, or
2. decrease the total delay (firing times) by 2
TU.

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

62 BIBLIOGRAPHY

Chapter 10

Petri Net Structure

The frst three functions presented in this chapter, namely createPDF,
pnstruct, and matrixD, are used to develop a static Petri Net graph. The
fnal two functions, postset and preset, return the inputs and outputs
of elements. Table-10.1 presents a summary of these functions.

Function Description

createPDF creates a Petri net Defnition File (PDF)
from the inputs - incidence matrices Ai
and Ao.

matrixD returns incidence matrices [Dm,
D, Dp] extracted from GPenSIM’s
extended incidence matrix (Ae,
PN.incidence_matrix).

pnstruct creates a MATLAB structure from the
static Petri Net graph based on the Petri
Net Defnition File (PDF).

postset returns the postset of an element (or set
of elements).

preset returns the preset of an element (or set of
elements).

Table 10.1: Summary of functions for Petri Net Structure.

10.1 createPDF

Function name: createPDF
Full name: create a Petri net Defnition File (PDF).
Purpose: This function will create a PDF fle from input and output inci-
dence matrices Ai and Ao.

63

64 CHAPTER 10. PETRI NET STRUCTURE

Input Parameters - compulsory: 1) The input incidence matrix (Ai); 2)
the output incidence matrix (Ao).
Input Parameters - optional: 3) Name of the output PDF fle. 4) A label
for the Petri Net.
Output Parameter: A Petri net Defnition fle (PDF) fle will be created
and stored in the current folder.
This function uses: (none).
Further info: See chapter 8.3, “Avoiding PDF Files,” in Davidrajuh (2018)
Sample use:

Ai = [0
1
0
0

1
0
0
0

0
0
0
1

0
0
1
0

0
0
1
0

0; ...
1; ...
0; ...
0];

Ao = [1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
0
0
0

0; ...
0; ...
0; ...
1];

PDF_filename = 'mg1_pdf'; % without ending ".m"
PN_name = 'Marked Graph example';
createPDF(Ai, Ao, PDF_Filename, PN_name);

Application example: A simple example (“Example-25: createPDF” in
Section 10.6) is given at the end of this chapter.

10.2 matrixD

Function name: matrixD
Full name: Matrices D ` , D, and D ´ .
Purpose: This function will extract the incidence matrices (D ` : output
incidence matrix; D ´ : input incidence matrix; D: (net) incidence matrix)
from GPenSIM’s extended incidence matrix Ae; Matrix D is used in
textbooks on Petri Nets (e.g., Moody and Antsaklis (2012)).
Note that D ` is the same as Ao and D ´ is the same as Ai in the previous
Section 10.1.
Input Parameters: (none).
Output Parameters: Three matrices: 1) Matrix D ` ; 2) Matrix D; 3)
Matrix D ´ .
This function uses: (some sub-functions).
Sample use:

% in MSF:
spng = pnstruct('sample_pdf');

65 10.3. PNSTRUCT

[Dp, D, Dm] = matrixD();

Application example: A simple example (“Example-26: matrixD” in Sec-
tion 10.7) is given at the end of this chapter.

10.3 pnstruct

Function name: pnstruct
Full name: Static Petri Net Structure.
Purpose: This function creates the static Petri Net graph structure (spng)
that represents the static Petri Net graph.
Input Parameters: One or more Petri Net Defnition Files (PDFs).
Output Parameter: A MATLAB structure (spng) is a compact represen-
tation of the static Petri net graph.
There are 13 felds in spng:

1. name: a text string or label given in the PDF(s).
2. global_places: this is a structure array representing the places.
3. No_of_places (np): Total number of places in the Petri net.
4. global_transitions: this is a structure array of transitions.
5. No_of_transitions (nt): Total number of transitions in the Petri

net.
6. global_Vplaces: place structures for all the places.
7. incidence_matrix: the extended incidence matrix (Ae). Dimen-

sion is pnt ˆ 2 ¨ npq.
8. Inhibitors_exist: (Boolean value) Whether or not we have in-

hibiting arcs in the Petri net.
9. Inhibited_Transitions: A vector of Boolean values (length nt)

indicating which transitions are inhibited (identifed by the transition
index).

10. inhibitor_matrix: A matrix that represents the inhibiting arcs.
Dimension: pnt ˆ npq. Each row represents a transition, and each
column a place.

11. No_of_modules (nM): Number of Petri Modules in the Petri net.
12. module_membership: A matrix of dimension (2 × nt). The frst row

of the matrix shows the membership of each transition. The second
row indicates whether a transition is an input or output port.

13. module_names: Set of all the module names.

This function uses: (some sub-functions).
This function is used by: [in Main Simulation File]
Sample use:

66 CHAPTER 10. PETRI NET STRUCTURE

% in MSF:
% create the structure for
% static Petri net graph
spng = pnstruct('simple_pn_pdf');

10.4 postset (new in version 11)

Function name: postset
Full name: postset.
Purpose: This function returns the set of output elements of an element
(or set of elements).
Input Parameter: set of elements (either places or transitions), identifed
by their name.
Output Parameter: 1) Set of postset elements’ names (set of ASCII text
string) 2) Set of postset elements’ indices.
Output to Screen: The postset names will be displayed on the screen.
This function uses: get_outputplaces, get_outputtrans
Sample use:

postset(preset({'p1'}));
postset(postset({'t2'}));

Application example: A simple example (“Example-27: preset and post-
set” in Section 10.8) is given at the end of this chapter.
Related functions: preset, get_outputplaces, get_outputtrans

10.5 preset (new in version 11)

Function name: preset
Full name: preset.
Purpose: This function returns the set of input elements of an element (or
set of elements).
Input Parameter: set of elements (either places or transitions), identifed
by their name.
Output Parameter: 1) Set of preset elements’ names (set of ASCII text
string) 2) Set of preset elements’ indices.
Output to Screen: The preset names will be displayed on the screen.
This function uses: get_inputplaces, get_inputtrans
Sample use:

% get the preset of "t5" and "t6"

67 10.6. EXAMPLE-25: CREATEPDF

[preset_Names, preset_Indices] = preset({'t5', 't6'});
% get the preset of preset of "t5" and "t6"
[preset_Names, preset_Indices] = preset(preset({'t5', 't6'}));

Application example: A simple example (“Example-27: preset and post-
set” in Section 10.8) is given at the end of this chapter.
Related functions: postset, get_inputplaces, get_inputtrans

10.6 Example-25: createPDF

Figure 10.1: Petri net for testing the function createPDF.

Fig.10.1 shows a tiny Petri net with three places and two transitions.
The input and output incidence matrices (Ai and Ao) of this Petri net:

ˆ
p1 p2 p3

˙
tAlfa

Ai “
tBeta

1
1

0
0

0
0

ˆ
p1 p2 p3

˙
tAlfa

Ao “
tBeta

0
0

1
0

0
1

Rather than creating a PDF fle, we are going to use the incidence ma-
trices and ask the function createPDF to create the PDF automatically, as
shown in the MSF (Listing-10.1).

68 CHAPTER 10. PETRI NET STRUCTURE

Listing 10.1: Main Simulation File (Example-25)
clear all; clc; close all;

% input incidence matrix
Ai = [1 0 0; ...

1 0 0];

% output incidence matrix
Ao = [0 1 0; ...

0 0 1];

% optional: name for the PDF to be created
PDF_Filename = 'ex_25_pdf'; % without ending ".m"

% optional: name for the Petri net
PN_name = 'Example-25: Testing automatic PDF creation';

% call the functio to create the PDF file
createPDF(Ai, Ao, PDF_Filename, PN_name);

The PDF (named ‘ex_25_pdf.m’) that is automatically created by the
function createPDF is given below.

% This PDF file was generated by "createPDF"
function on
% On 09-Jul-2024 at 14:27:18
% PDF: ex_25_pdf.m

function [png] = ex_25_pdf.m()

png.PN_name = ’Example-25: Testing automatic
PDF creation’;
png.set_of_Ps = {’p1’,’p2’,’p3’};
png.set_of_Ts = {’t1’,’t2’};
png.set_of_As = {’p1’,’t1’,1,’t1’,’p2’,1,... %t1
’p1’,’t2’,1, ’t2’,’p3’,1, ... %t2
};

10.7 Example-26: matrixD

Fig.10.2 presents a Petri net with 13 elements. Hence, we can use the func-
tion matrixD to compute the incidence matrices, as doing it by hand could
be clumsy.

Listing-10.2 shows that the input incidence matrix (Ai) and the output
incidence matrix (Ao) matrix can be directly extracted from the structure
for static Petri net graph (spng) (or from pni - the Petri net structure with
initial dynamics or PN - the Petri net run-time structure). However, the

69 10.8. EXAMPLE-27: PRESET AND POSTSET

Figure 10.2: Petri net for testing the function matrixD.

function matrixD ofers an easy high-level alternative.

Listing 10.2: Main Simulation File (Example-26)

clear all; clc; close all;
spng = pnstruct('ex_26_pdf');

%%%%% Extract the "D" matrices
[Dp, D, Dm] = matrixD();

np = nplaces(); % number of places
% Ae: extended incidence matrix
Ae = spng.incidence_matrix;
% Ai : input incidence matrix
Ai = Ae(:, np+1:end);
% Ao : output incidence matrix
Ao = Ae(:, 1:np);

if all(all(eq(Dm, Ai)))
disp(['Input incidence matrices "Dm" ' ...

'and "Ai" are the same!']);
end

if all(all(eq(Dp, Ao)))
disp(['Output incidence matrices "Dp" ' ...

'and "Ao" are the same!']);
end

70 CHAPTER 10. PETRI NET STRUCTURE

Figure 10.3: Petri net for testing functions postset.

10.8 Example-27: preset and postset

Fig.10.3 shows a Petri net for testing the postset and preset functions.

Listing 10.3: Main Simulation File (Example-27)
clear all; clc; close all;
spng = pnstruct('ex_27_pdf');

%%%%% Testing preset and postset %%%%%
preset({'p1'});
preset({'t1','t2','t3'});
postset(preset({'p1'}));
postset(postset({'t2'}));

In this main simulation fle (Listing-10.3), we are performing four sets of
tests. The frst statement fnds the preset of p1, which is nothing, as p1 is
a source.

preset of "p1" :
-- none ---

The second statement fnds the preset of three transitions: preset of t1 is
p1; preset of t2 is p2 and p3. preset of t3 is p1, p3, and p4. Put together,
the result is p1, p2, p3, and p4.

preset of "t1" "t2" "t3" :
"p1", "p2", "p3", "p4"

The third statement fnds the postset of the preset of p1. Since preset
is p1 is nothing, nothing’s postset is also nothing.

71 BIBLIOGRAPHY

preset of "p1" :
-- none ---

postset of nothing is nothing

The fnal statement fnds the postset of postset of t2. postset of t2 is p2 and
p4. postset of p2 is t2 and postset of p4 is t3. Hence, the result is t2 and t3.

postset of "t2" : "p2", "p4"

postset of "p2" "p4" :
"t2", "t3"

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Moody, J. O. and Antsaklis, P. J. (2012). Supervisory control of discrete event
systems using Petri nets, Vol. 8, Springer Science & Business Media.

72 BIBLIOGRAPHY

Chapter 11

Plotp

This chapter presents only one function, namely plotp.

11.1 plotp

Function name: plotp
Full name: Plot tokens in places versus time.
Purpose: After simulation (by the function gpensim), this function will
plot the number of tokens in various places.
Input Parameters: 1) Simulation results (output of the function gpensim);
2) Set of places.
Output Parameter: TOKEN matrix: A simpler matrix that shows the time
and the state (marking). TOKEN matrix shows only time versus (partial)
state info, the tokens in specifc places (set of places in the input parameter
to plotp). Note that to get the full state info (tokens in all the places),
we must enter the complete set of place names as the input parameter to
function plotp.
Output on screen: a graphical plot.
This function uses: extractp: To extract tokens from the simulation
results structure.
This function is used by: [in Main Simulation File]
Further info: chapter Chapter 2, “Modeling with GPenSIM: Basic Con-
cepts,” in Davidrajuh (2018).
Sample use: See Example-28 (Section 11.2).
Related function: prnss

11.2 Example-28: plotp

Let us say that in the Petri net shown in Fig.11.1, we are only interested in
how the tokens in places pStep2 and pEnd change in comparison to each
other. Hence, in the main simulation fle (Listing-11.1), we will plot the

73

74 CHAPTER 11. PLOTP

Figure 11.1: Graphical plot by the function plotp.

tokens in these two places using the function plotp; also, we will obtain the
TOKEN matrix from the function plotp for further analysis.

Listing 11.1: Main Simulation File (Example-28)

clear all; clc; close all;
global global_info
global_info.STOP_AT = 10;

spng = pnstruct('ex_28_pdf');
dyn.m0 = {'pStep1', 6};
dyn.ft = {'tStep1',2, 'tStep2',5};
pni = initialdynamics(spng, dyn);

sim = gpensim(pni);
% plot tokens and display TOKENs
TOKENS = plotp(sim, {'pStep2','pEnd'})

Fig.11.2 shows the plot, and the screen dump showing the contents of
the matrix TOKEN is given below. Note that the frst row of TOKEN matrix
is the header; it indicates that pStep2’s index is three and pEnd’s index
is 1. For the rest of the rows, the frst column represents the time series,
and the second and third columns are the tokens in pStep2 and pEnd.
Section 2.1 gives more details on the composition of TOKEN matrix. TOKEN
matrix possesses the same information shown in Fig.11.2.

75 11.2. EXAMPLE-28: PLOTP

Figure 11.2: Graphical plot by the function plotp.

TOKEN matrix =
0 3.0000 1.0000
0 0 0
0 0 0
0.5000 0 0
1.0000 0 0
1.5000 0 0
2.0000 0 0
2.0000 1.0000 0
2.0000 0 0
2.5000 0 0
3.0000 0 0
3.5000 0 0
4.0000 0 0
4.0000 1.0000 0
4.0000 1.0000 0
4.5000 1.0000 0
5.0000 1.0000 0
5.5000 1.0000 0
6.0000 1.0000 0
6.0000 2.0000 0
6.0000 2.0000 0
6.5000 2.0000 0
...

76 BIBLIOGRAPHY

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Chapter 12

PNCT Functions

The Petri Net Control Toolbox (PNCT) was developed at the University of
Cagliari. PNCT ofers simple and crude functionality for plotting a reacha-
bility (section 2.1) tree and for structural analysis (chapter 20). GPenSIM
extends fve PNCT functions to provide more understandable information:

1. PNCT function plottree is used by GPenSIM function cotree to plot
the reachability tree.

2. PNCT functions siphons, tinvar, pinvar, and traps are extended by
GPenSIM to provide functions for structural analysis with the same
function names.

3. GPenSIM function gpensim_2_PNCT converts GPenSIM’s Extended
Incidence Matrix Ae into PNCT incidence matrices Pre_A and Post_A.

12.1 gpensim_2_PNCT

Function name: gpensim_2_PNCT
Full name: GPenSIM to PNCT format.
Purpose: This function converts GPenSIM’s extended incidence matrix Ae

to PNCT incidence matrices “Pre_A” and “Post_A”.
Input Parameter: GPenSIM’s incidence matrix Ae (e.g., spng.incidence_matrix
or pni.incidence_matrix or PN.incidence_matrix).
Output Parameters: Thee incidence matrices in PNCT format: [Pre_A,
Post_A, D] (where D= Post_A, Pre_A).
This function uses: (none)
Further info: Chapter 9, “Structural Invariants,” in Davidrajuh (2018)
presents some basic material.
Sample use:

% in MSF:
spng = pnstruct('simple_pn_pdf');

77

78 CHAPTER 12. PNCT FUNCTIONS

dyn.m0 = {'p1',15, 'p2',13};
dyn.ft = {'t1',10};
pni = initialdynamics(spng, dyn);

A = spng.incidence_matrix;
% or A = pni.incidence_matrix;

[Pre_A, Post_A, D] = gpensim_2_PNCT(A)

Application example: A simple example (Example-29) is given below.

12.2 Example-29: gpensim_2_PNCT

Figure 12.1: Petri net for testing the function gpensim_2_PNCT.

Fig.12.1 presents a simple Petri net in which we can either use the func-
tion matrixD to compute the incidence matrices or do it by hand.

Listing-12.1 shows that the transpose of input incidence matrix (Ai) is
PNCT’s ‘Post_A’ and transpose of output incidence matrix (Ao) is PNCT’s
‘Pre_A’.

Listing 12.1: Main Simulation File (Example-29)
clear all; clc; close all;
spng = pnstruct('ex_29_pdf');

%%%%% extract the GPenSIM incidence matrices
[Ao, A, Ai] = matrixD();

%%%%% convert to the PNCT incidence matrices
[Pre_A, Post_A, D] = ...

79 BIBLIOGRAPHY

gpensim_2_PNCT(spng.incidence_matrix);

%%%%% dispaly the incidence matrices
disp('PNCT "Pre_A":'); disp(Pre_A);
disp('PNCT "Post_A":'); disp(Post_A);
disp('GPenSIM "Ae":'); disp(spng.incidence_matrix);

%%%%% now, compare GPenSIM and PNCT
if all(all(eq(Post_A, transpose(Ai))))

disp(['PNCT "Post_A" is the same as ' ...
' GPenSIM "Ai" transposed!']);

end
if all(all(eq(Pre_A, transpose(Ao))))

disp(['PNCT "Pre_A" is the same as ' ...
' GPenSIM "Ao" transposed!']);

end

The fndings:

PNCT "Pre_A":
0 0
0 0
1 1

PNCT "Post_A":
1 0
0 1
0 0

GPenSIM ext. incidence matrix "Ae" = (Ai|Ao):
0 0 1 1 0 0
0 0 1 0 1 0

PNCT "Post_A" is the same as GPenSIM "Ai"
transposed!
PNCT "Pre_A" is the same as GPenSIM "Ao"
transposed!

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

80 BIBLIOGRAPHY

Chapter 13

PNML-GPenSIM

Petri Net Markup Language (PNML; standard: ISO/IEC-15909) is an XML-
based transfer format for Petri nets. With PNML, Petri net models can be
transferred from GPenSIM to another tool. This chapter presents two func-
tions that can exchange Petri net models implemented with GPenSIM with
other tools. The two functions presented (pnml2gpensim and gpensim2pnml)
in this chapter enhance the usefulness of GPenSIM. For example, since GPen-
SIM lacks animation of Petri net execution, one can use a tool with graphic
facilities to run the Petri net models and then continue with GPenSIM for
further model building and analysis:

1. Preliminary model building and Simulation: The initial Petri net model
can be created using a tool with a graphical Petri net editor (e.g.,
PIPE2 ([PIPE2 2017]).

2. Conversion of the preliminary model into GPenSIM format: using the
function pnml2gpensim, creating the static Petri net graph (PDF) and
a main simulation fle (MSF) with the initial dynamics (initial markings
and fring times).

3. Advanced modeling and simulation with GPenSIM: With PDF and
MSF, a modeler can continue to develop the pre-processors and post-
processors to complete the model building.

Table-13.1 presents a summary of these two functions.

Function Description

pnml2gpensim creates GPenSIM Petri net model from
PNML fle.

gpensim2pnml creates a PNML fle from a GPenSIM Petri
net model.

Table 13.1: PNML - GPenSIM functions.

81

82 CHAPTER 13. PNML-GPENSIM

13.1 gpensim2pnml

Function name: gpensim2pnml
Full name: GPenSIM to PNML.
Purpose: Create a PNML document that represents a Petri Net structure
in the GPenSIM environment.
Input: Either static Petri net graph structure (output of the function pnstruct)
or Petri net structure with initial dynamics (output of the function initialdynamics).
Output: a PNML document that represents the Petri net.
This functions uses: (none)
This function is used by: [in Main Simulation File]
Further info: Chapter 8.2, “PNML-2-GPenSIM Converter,” in Davidrajuh
(2018) and Davidrajuh (2013).
Sample use:

% in MSF:
spng = pnstruct('example_pdf');
% or, pni = initialdynamics(spng, dyn);
gpensim2pnml(pni); % a PNML document will be produced

Related function: pnml2gpensim.

13.2 pnml2gpensim

Function name: pnml2gpensim
Full name: PNML to GPenSIM.
Purpose: From a PNML document that represents a Petri net structure,
create a Petri net Defnition fle (PDF), a sample main simulation fle (MSF),
and COMMON_PRE and COMMON_POST fles that represent the Petri
net structure in the GPenSIM environment.
This function performs the following steps:

1. PNML fle to MATLAB structure: Convert the PNML fle to MATLAB
structure and get the root of the DOM tree.

2. DOM tree: From the root tree of the DOM tree, recursively visit the
child nodes to get the PNML structure.

3. PNML structure: From the PNML structure, get the net child and
start extracting the Petri net structure (places, transitions, and arcs).

4. Petri net structure to GPenSIM fles: Write the Petri net structure
into the GPenSIM fles MSF and PDF.

Input: a PNML document that represents a Petri net.
Output: a PDF fle (will be given a random name, e.g., “pdf???_pdf.m”)
a sample main simulation fle (named “msf.m”), and templates for common
processors (COMMON_PRE and COMMON_POST fles)).

83 13.3. EXAMPLE-30: PNML2GPENSIM

This functions uses: MATLAB function ‘xmlread’.
This function is used by: [in Main Simulation File]
Further info: Chapter 8.2, “PNML-2-GPenSIM Converter,” in Davidrajuh
(2018) and Davidrajuh (2013).
Sample use:

% in MSF:
pnml2gpensim('samplePNML1.xml'); % the following files will be ...

created:
% a PDF, an MSF, and common processor files

Application example: A simple example (“Example-30: pnml2gpensim”)
is given below.
Related function: gpensim2pnml.

13.3 Example-30: pnml2gpensim

Note that this example is the same as Example-31 given in Davidrajuh
(2018).

Fig.13.1 shows a PNML fle named ‘PNML-fle001.xml.’ In the main sim-
ulation fle (Listing-13.1), we feed this fle to the function pnml2gpensim,
which will automatically produce four GPenSIM fles such as a main simu-
lation fle (named “msf.m”), a PDF (named “pdf???_pdf.m”) and templates
(sample) for COMMON_PRE and COMMON_POST.

Listing 13.1: Main Simulation File (Example-30)
clear all; clc; close all;
% input: name of the PNML file (incl. ending ".xml")
PNMLfile = 'PNML-file001.xml';
pnml2gpensim(PNMLfile);
disp(' ');
disp(' ************** ');
disp('GPenSIM files are generated for the PNML file: ');
disp([' "', PNMLfile,'"']);

% list all the files in this folder
dir

These four automatically generated fles (by the function pnml2gpensim)
are shown in Listings 13.2 to 13.5.

Listing 13.2: Generated PDF “pdf???_pdf.m” (Example-30)
% GPenSIM PDF file generated from PNML-file001.xml ...
% PDF: 'pdf_pdf.m'
function [png] = pdf_pdf()

84 CHAPTER 13. PNML-GPENSIM

Figure 13.1: Sample PNML fle (‘PNML-fle001.xml’) for testing the function
pnml2gpensim.

85 13.3. EXAMPLE-30: PNML2GPENSIM

png.PN_name = 'PDFxxx';
png.set_of_Ps = {'P0','P1','P2',...

'P3','P4'};
png.set_of_Ts = {'T0','T1','T2',...

'T3'};
png.set_of_As = {'P0','T0',1, 'P1','T1',1, ...

'P2','T0',1, 'P2','T2',3, 'P3','T2',1, ...
'P4','T3',1, 'T0','P1',1, 'T1','P0',1, ...
'T1','P2',1, 'T2','P4',1, 'T3','P2',3, ...
'T3','P3',1};

Listing 13.3: Generated MSF “msf.m” (Example-30)
% GPenSIM Main Simulation File
% this MSF is generated from PNML file "PNML-file001.xml"
% MSF: 'msf.m'
clear all; clc;

global global_info; % global user data attached to global_info
global_info.PRINT_LOOP_NUMBER = 1;

pns = pnstruct('pdf_pdf');
dyn.m0 = {'P0',5, 'P2',3, 'P3',2};

pni = initialdynamics(pns, dyn);
sim = gpensim(pni);

prnss(sim);

Listing 13.4: Generated template for COMMON_PRE (Example-30)
% COMMON_PRE file generated from PNML file "PNML-file001.xml"
% 'COMMON_PRE.m'

function [fire, transition] = COMMON_PRE(transition)
%function [fire,transition] = COMMON_PRE(transition)

if (strcmpi(transition.name, 'T0'))

elseif (strcmpi(transition.name, 'T1'))

elseif (strcmpi(transition.name, 'T2'))

elseif (strcmpi(transition.name, 'T3'))

else
% error (['Error in the transition name: ', transition.name]);

end

% fire = 1; % let it fire

86 BIBLIOGRAPHY

Listing 13.5: Generated template for COMMON_POST (Example-
30)
% COMMON_POST file generated from PNML file "PNML-file001.xml"
% 'COMMON_POST.m'

function [] = COMMON_POST(transition)
%function [] = COMMON_POST(transition)

if (strcmpi(transition.name, 'T0'))

elseif (strcmpi(transition.name, 'T1'))

elseif (strcmpi(transition.name, 'T2'))

elseif (strcmpi(transition.name, 'T3'))

else
% error (['Error in the transition name: ', transition.name]);

end

Bibliography

Davidrajuh, R. (2013). Adding pnml capability to gpensim, 2013 European
Modelling Symposium, IEEE, pp. 183–188.

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Chapter 14

Print Colors

This chapter presents the functions for printing colors of tokens, such as
prncolormap, prnfinalcolors, and prnfinalcolorsSummary. Table-
14.1 presents a summary of these functions.

Function Description

prncolormap prints tokens’ colors at diferent places.
prnfinalcolors prints the colors of the fnal tokens,

which were the ones left in difer-
ent places when the simulation was
stopped.

prnfinalcolorsSummary prints the colors of the fnal tokens in a
summarized format.

Table 14.1: Summary of functions for printing token colors from the simula-
tion results.

14.1 print_colormap_for_place

Function name: print_colormap_for_place
Purpose: Prints tokens’ colors in one specifc place.
Input Parameters: 1) Simulation results; 2) place index.
Output to screen: Printout of tokens’ colors in the specifc place.
This function is used by: prncolormap and [in MSF, processor fles]
Further info: Refer to Chapter 2, “Colored Petri Nets,” of Davidrajuh
(2023) for details and examples.
Sample use:

% in Processor files:
...
Sim_Results = gpensim(pni);

87

88 CHAPTER 14. PRINT COLORS

% place p2's index is 5
print_colormap_for_place(Sim_Results, 5);

Related functions: prncolormap

14.2 prncolormap

Function name: prncolormap
Full name: Print color map.
Purpose: After simulation by gpensim, this function will print the colors
of all the tokens in diferent places at diferent times.
Input Parameters: 1) simulation results (output of function gpensim);
2) Optional - a set of places.
Output to screen: The colors of all the tokens in all places (in specifc
places, if given as the optional input) will be printed on the screen.
This function uses: print_colormap_for_place.
This function is used by: [in the main simulation fle]
Further info: Refer to Chapter 2, “Colored Petri Nets,” of Davidrajuh
(2023) for details and examples.
Sample use:

% in main simulation file
...
results = gpensim(pni);
prncolormap(results, {'pNUM1','pADDED', 'pRESULT'});

Application example: A simple example (“Example-31: Print token col-
ors” in Section 14.5) is given at the end of this chapter.
Related functions: print_colormap_for_place, prnfinalcolors

14.3 prnfnalcolors

Function name: prnfinalcolors
Full name: Print colors of fnal tokens.
Purpose: After simulation by the function gpensim, this function will
print the colors of all the fnal tokens that reside in various places at the end
of the simulation.
Input Parameters: 1) simulation results (output of function gpensim);
2) Optional - a set of places.
Output to screen: Printout of the colors of all the fnal tokens at the end
of the simulation.
This function uses: print_colormap_for_place.
This function is used by: [in the main simulation fle]
Further info: Refer to Chapter 2, “Colored Petri Nets,” of Davidrajuh

89 14.4. PRNFINALCOLORSSUMMARY

(2023) for details and examples.
Sample use:

% in main simulation file
...
results = gpensim(pni);
prnfinalcolors(results);

Application example: A simple example (“Example-31: Print token col-
ors” in Section 14.5) is given at the end of this chapter.
Related functions: print_colormap_for_place, prncolormap

14.4 prnfnalcolorsSummary

Function name: prnfinalcolorsSummary
Full name: Print a summary of colors of the fnal tokens.
Purpose: This is a compact version of the function prnfinalcolors.
After simulation by gpensim, this function will print a summary of the col-
ors of all the fnal tokens that reside in various places at the end of the
simulation.
Input Parameters: 1) simulation results (output of gpensim). 2) (Op-
tional) a set of places.
Output to screen: Printout of a summary of all the colors of all the fnal
tokens at the end of the simulation.
This function uses: print_colormap_for_place.
This function is used by: [in the main simulation fle]
Further info: Refer to Chapter 2, “Colored Petri Nets,” of Davidrajuh
(2023) for details and examples.
Sample use:

% in main simulation file
...
results = gpensim(pni);
prnfinalcolorsSummary(results);

Application example: A simple example (“Example-31: Print token col-
ors”) is given below.
Related functions: print_colormap_for_place, prncolormap,
prnfinalcolors

14.5 Example-31: Print token colors

Fig.14.1 shows a simple Petri net for experimenting with the functions for
printing token colors after the simulation. In COMMON_PRE (Listing-

90 CHAPTER 14. PRINT COLORS

Figure 14.1: Petri net for testing the functions for printing token colors.

14.1), tA adds the color ‘tA’ to the tokens it deposits on pAB, whereas tB
clears all colors and deposits colorless tokens on pB.

Listing 14.1: COMMON_PRE (Example-31)
function [fire, transition] = COMMON_PRE(transition)

switch transition.name
case 'tA'

% transition's name ("tA") is the new color
transition.new_color = transition.name;

case 'tB'
% clear all inherited colors
% also, add no new colors
transition.override = 1;

end

% let the enabled transition fire
fire = 1;

Hence, when the simulation ends:

˝ pAB should have, if there were any tokens on it, tokens with the color
‘tA’ only.

˝ pA should also possess a number of tokens with the color ‘tA’.
˝ pB should have some colorless tokens.
˝ pGen: If there is any token left in pGen, as these tokens are initial

tokens, they must be colorless as well.

Listing 14.2: Main Simulation File (Example-31)
clear all; clc; close all;
global global_info

91 14.5. EXAMPLE-31: PRINT TOKEN COLORS

global_info.STOP_AT = 10;

spng = pnstruct('ex_31_pdf');
dyn.m0 = {'pGen',3};
dyn.ft = {'allothers',1};
pni = initialdynamics(spng, dyn);
sim = gpensim(pni);

disp('prncolormap(sim) *****');
prncolormap(sim);

disp('prncolormap(sim, {"pA","pB"}) *****');
prncolormap(sim, {'pA','pB'});

disp('prnfinalcolors(sim) *****');
prnfinalcolors(sim);

disp('prnfinalcolors(sim, {"pA", "pB"}) *****');
prnfinalcolors(sim, {'pA', 'pB'});

disp('prnfinalcolorsSummary(sim) *****');
prnfinalcolorsSummary(sim);

disp('prnfinalcolorsSummary(sim, {"pGen", "pB"}) *****');
prnfinalcolorsSummary(sim, {'pGen', 'pB'});

The function prncolormap, without the second (optional) input of a
set of places, prints all the colors of all the tokens that were located in all
the places at any time during and at the end of the simulation (when the
compiler was sampling the net with the default sampling frequency (if not
changed by OPTION)).

92 CHAPTER 14. PRINT COLORS

prncolormap(sim) *****

**** **** Printing Colormap ...

Color Map for place: pA
% print the extracted color_map
Time: 1 Colors: "tA"
Time: 2 Colors: "tA"
Time: 2 Colors: "tA"
Time: 2 Colors: "tA"
Time: 3 Colors: "tA"
...
...

Color Map for place: pAB
% print the extracted color_map
Time: 1 Colors: "tA"
Time: 2 Colors: "tA"
Time: 3 Colors: "tA"

Color Map for place: pB
(no colors)

Color Map for place: pGen
(no colors)

When a set of places (e.g., {‘pA’, ‘pB’}) are input to function prncolormap
as the optional input, it will only print the colors of tokens that were
available on these specifc places at any time during and at the end of the
simulation.

93 14.5. EXAMPLE-31: PRINT TOKEN COLORS

prncolormap(sim, "pA","pB") *****

**** **** Printing Colormap ...

Color Map for place: pA
% print the extracted color_map
Time: 1 Colors: "tA"
Time: 2 Colors: "tA"
Time: 2 Colors: "tA"
Time: 2 Colors: "tA"
Time: 3 Colors: "tA"
...
...

Color Map for place: pB
(no colors)

The function prnfinalcolors, without the second (optional) input of
a set of places, will print only the colors of fnal tokens - tokens that were
left in diferent places at the end of the simulation.

prnfinalcolors(sim) *****

**** **** Colors of Final Tokens ...
No. of final tokens: 6

Place: pA
Time: 1 Colors: "tA"
Time: 2 Colors: "tA"
Time: 3 Colors: "tA"

Place: pB
Time: 2 *** NO COLOR ***
Time: 3 *** NO COLOR ***
Time: 4 *** NO COLOR ***

Function prnfinalcolors, with the second (optional) input of a set
of places (e.g., {‘pA’, ‘pB’}), will print only the colors of fnal tokens that
were left in the specifc places at the end of the simulation. This printout
will be the same as above, as the fnal tokens happen to end up in pA and
pB only.

94 CHAPTER 14. PRINT COLORS

prnfinalcolors(sim, "pA", "pB") *****

**** **** Colors of Final Tokens ...
No. of final tokens: 6

Place: pA
Time: 1 Colors: "tA"
Time: 2 Colors: "tA"
Time: 3 Colors: "tA"

Place: pB
Time: 2 *** NO COLOR ***
Time: 3 *** NO COLOR ***
Time: 4 *** NO COLOR ***

Function prnfinalcolorsSummary, without the second (optional) in-
put of a set of places, prints a summary of all the colors of tokens that were
left in places at the end of the simulation run.

prnfinalcolorsSummary(sim) *****

Colors of Final Tokens (SUMMARY):

**** Place: pA
Total number of tokens: 3
Colors: "tA"
Total cost of tokens: 0

**** Place: pAB
Total number of tokens: 0

**** Place: pB
Total number of tokens: 3

*** NO COLOR ***
Total cost of tokens: 0

**** Place: pGen
Total number of tokens: 0

Grand Totals:
Total number of tokens in all places: 6
Total cost of all the tokens: 0
Set of colors in all tokens: "tA"

Function prnfinalcolorsSummary, with the second (optional) input
of a set of places (e.g., {‘pGen’, ‘pB’}), prints a summary of the colors of

95 BIBLIOGRAPHY

fnal tokens that were left in the specifc places at the end of the simulation
run.

prnfinalcolorsSummary(sim, "pGen", "pB") *****

Colors of Final Tokens (SUMMARY):

**** Place: pGen
Total number of tokens: 0

**** Place: pB
Total number of tokens: 3

*** NO COLOR ***
Total cost of tokens: 0

Grand Totals:
Total number of tokens in all places: 3
Total cost of all the tokens: 0

Bibliography

Davidrajuh, R. (2023). Colored Petri Nets for Modeling of Discrete Systems:
A Practical Approach With GPenSIM, Springer Nature.

96 BIBLIOGRAPHY

Chapter 15

Print State

This chapter presents the functions of printing states (markings). Table-15.1
presents a summary of these functions.

Function Description

current_marking returns the current marking (current state) of
the simulation and prints it on the screen.

initial_marking returns the initial marking (initial state) at
the beginning of the simulation and prints it
on the screen.

final_marking returns the fnal marking (fnal state) at the
end of the simulation and prints it on the
screen.

marking_string convert a marking (vector of natural num-
bers) into a printable text string.

prnstate prints the current markings.
prnVirtualState prints the current virtual state (tokens inside

transitions).
prnTransStatus prints details of current status (e.g., current

time, fring transitions, and enabled transi-
tions).

Table 15.1: Summary of functions for printing state info.

15.1 current_marking (new in version 11)

Function name: current_marking
Full name: current marking (current state).
Purpose: After the simulation starts (gpensim is running), we may want
to know the current state in the processor fles. This function prints the

97

98 CHAPTER 15. PRINT STATE

current marking on screen in a compact form (e.g., “3p2 + 5p3”) also returns
it as a vector (length of the vector is the number of places (np)).
Note-1: current marking, as a vector, is the same as PN.X, where PN is the
Petri Net run-time structure.
Note-2: This function is similar to prnstate.
Input Parameter: (none)
Output Parameter: A vector of natural numbers (length is np, number
of places); in this vector, each column represents the number of tokens in
a place identifed by the column as an index. E.g., in a Petri net with fve
places, p1 to p5, and if the initial marking is (3p2 + 5p3), then the vector
returned will be [0 3 5 0 0].
Output to screen: The current state will be printed in an intelligible
format (e.g., 3p2 + 5p3).
This function uses: (none)
Sample use:

% in a pre-processor
disp(' ');
disp(['Before firing of "', trans.name, '" :']);
cMarking = current_marking();
...

Application example: A simple example (“Example-32: Print Markings”
in Section 15.9) is given at the end of this chapter.
Related functions: initial_marking, final_marking, prnstate

15.2 initial_marking (new in version 11)

Function name: initial_marking
Full name: initial marking (initial state).
Purpose: After the simulation starts (gpensim is running), we may want
to know the initial state in the processor fles. This function prints the initial
marking on screen in a compact form (e.g., ‘3p2 + 5p3’) also returns it as a
vector (length is number of places (np)).
Note: initial marking, as a vector, is the same as pni.initial_marking
and PN.initial_marking, where pni is the Petri Net structure with
initial marking and PN is the Petri Net run-time structure.
Input Parameter: (none)
Output Parameter: A vector of natural numbers (length is np, number
of places); in this vector, each column represents the number of tokens in
a place identifed by the column as an index. E.g., in a Petri net with fve
places, p1 to p5, and if the initial marking is (3p2 + 5p3), then the vector
returned will be [0 3 5 0 0].
Output to screen: The initial state will be printed in an intelligible format

99 15.3. FINAL_MARKING (NEW IN VERSION 11)

(e.g., 3p2 + 5p3).
This function uses: (none)
Sample use:

% in the main simulation file or a processor file
disp(' ');
iMarking = initial_marking();
...

Application example: A simple example (“Example-32: Print Markings”
in Section 15.9) is given at the end of this chapter.
Related functions: current_marking, final_marking

15.3 fnal_marking (new in version 11)

Function name: final_marking
Full name: fnal marking (fnal state).
Purpose: After the simulation ends (gpensim stopped running), we may
want to know the fnal state in the main simulation fle. This function prints
the fnal marking on screen in a compact form (e.g., ‘3p2 + 5p3’) also returns
it as a vector (length is number of places).
Note: fnal marking, as a vector, is the same as PN.X in the simulation
results output from gpensim.
Input Parameter: (none)
Output Parameter: A vector of natural numbers (length is np, number
of places); in this vector, each column represents the number of tokens in
a place identifed by the column as an index. E.g., in a Petri net with fve
places, p1 to p5, and if the fnal marking is (3p2 + 5p3), then the vector
returned will be [0 3 5 0 0].
This function uses: (none)
Sample use:

% in the main simulation file
disp(' ');
fMarking = final_marking();
...

Application example: A simple example (“Example-32: Print Markings”
in Section 15.9) is given at the end of this chapter.
Related functions: initial_marking, current_marking

100 CHAPTER 15. PRINT STATE

15.4 markings_string

Function name: markings_string
Full name: Text string representing a marking (state).
Purpose: returns a text string representing the given input marking.
Input Parameter: a vector of length np (number of global places) repre-
senting a marking (e.g., the output of function current_marking).
Input Parameter - Optional: selected places: a vector of places indices.
Output Parameter : a text string representing the given marking.
Sample use:

% in a processor file:
...

% get current marking
cMarking = current_marking();

% expected state: 5 more tokens in p3
expected_state = cMarking + [0 0 5 0 0];

% make a text string for expected_state
mStr = markings_string(expected_state);

% print the text string on screen
disp(['Expected marking: ', mStr]);

15.5 print_real_time_state_info

Function name: print_real_time_state_info
Full name: Print status of all transitions (enabled and fring).
Purpose: same as function prnTransStatus; see Section 15.7.

15.6 prnstate

Function name: prnstate
Full name: Print current state (marking).
Purpose: To print the current state (marking) that shows the number of
tokens in diferent places.
Input Parameter - Optional: Any text that should precede the current
state display (e.g., ’Current state is: ’).
Output Parameter: (none). Output to screen: Display of current state
(marking); e.g., p2 + 3p5 + 7p7.
This function uses: markings_string.
Sample use:

15.7. PRNTRANSSTATUS (NEW IN VERSION 11) 101

% in a processor file (pre- or post-)

% display the current state
prnstate('The current state is: ');

The potential output will be something like:

The current state is: 5pRobot1 + 7pRobot2

Application example: A simple example (“Example-33: Print State”
in Section 15.10) is given at the end of this chapter.
Related functions: prnTransStatus, prnVirtualState, markings_string

15.7 prnTransStatus (new in version 11)

Function name: prnTransStatus
Full name: Print status of all transitions (enabled and or fring).
Purpose: (During simulation by the function gpensim) To print the status
of all transitions (enabled and or fring), along with the current time. Thus,
this function is useful in the pre-processors and post-processors.
Note: this function is the same as print_real_time_state_info in the
earlier versions.
Input Parameters: (none).
Output Parameters: (none).
Output to screen: The current time and the status (fring and or enabled)
of each transition.
This function uses: (none)
This function is used by: [Pre- and post-processor fles]
Sample use:

% in COMMON_PRE
function [fire, trans] = COMMON_PRE(trans)

% every time any transition is enabled,
% print the status of all the transitions
prnTransStatus();
...

Application example: A simple example (“Example-33: Print State”
in Section 15.10) is given at the end of this chapter.
Related functions: prnstate, markings_string,
print_real_time_state_info

102 CHAPTER 15. PRINT STATE

15.8 prnVirtualState

Function name: prnVirtualState
Full name: Print current virtual state (tokens inside transitions).
Purpose: To print the current virtual state that shows the number of to-
kens still residing inside diferent transitions.
Input Parameter- Optional: Any text that should precede the current
virtual state display (e.g., ‘Current virtual state is: ’).
Output to screen: Display the current virtual state (tokens inside transi-
tions).
This function uses: markings_string.
Further info: chapter 1.6, “Atomicity and Virtual Tokens,” in Davidrajuh
(2018).
Sample use:

% inside any pre- or post-processor files
prnVirtualState('Tokens in side transitions right now: ');
...

Application example: A simple example (“Example-33: Print State” in
Section 15.10) is given at the end of this chapter.
Related functions: prnstate, markings_string

15.9 Example-32: Print Markings

This example is for experimenting with the functions initial_marking,
current_marking, final_marking, and marking_string.

Figure 15.1: Petri net for testing the functions for extracting markings.

Listing-15.1 is the main simulation fle for simulating the Petri net, which
is shown in Fig.15.1. In the MSF, frst, we echo (print to screen) the initial

103 15.9. EXAMPLE-32: PRINT MARKINGS

marking (initial state) and then start gpensim. Once the simulation by
gpensim is completed, we will also echo the fnal marking (fnal state) on the
screen. Meanwhile, while gpensim is running, in the COMMON_PRE and
in COMMON_POST, we will echo the enabled transition and the current
state (in the COMMON_PRE) and the fred transition and the current state
(in the COMMON_POST).

Listing 15.1: Main Simulation File (Example-32)
clear all; clc; close all;

spng = pnstruct('ex_32_pdf');

dyn.m0 = {'p1',2, 'p4',1};
dyn.ft = {'allothers',1};
pni = initialdynamics(spng, dyn);

iniMarking = initial_marking();
disp(['Initial marking in vector form: ', ...

int2str(iniMarking)]);

disp('starting "gpensim"');
sim = gpensim(pni);
disp('exiting "gpensim"');

finMarking = final_marking();
disp(['Final marking in vector form: ', ...

int2str(finMarking)]);

Listing 15.2: COMMON_PRE (Example-32)
function [fire, trans] = COMMON_PRE(trans)
disp(' ');
disp(['Before firing of "', trans.name, '" :']);
current_marking();

fire = 1;

Listing 15.3: COMMON_POST (Example-32)
function [] = COMMON_POST(trans)

disp(['After firing of "', trans.name, '" :']);
current_marking();
disp(' ');

The printout on the screen (shown below) resembles animation; all we
need to do is to put “pause” statements in COMMON_PRE and COM-
MON_POST so that we can follow each fring and the resulting state change.

104 CHAPTER 15. PRINT STATE

Initial marking: 2p1 + p4
Initial marking in vector form: 2 0 0 1

starting "gpensim"

Before firing of "t1" :
Current marking: 2p1 + p4
After firing of "t1" :
Current marking: p1 + p2 + p3 + p4

Before firing of "t3" :
Current marking: p1 + p2 + p3 + p4
After firing of "t3" :
Current marking: p2

exiting "gpensim"

Final marking : p2
Final marking in vector form: 0 1 0 0

15.10 Example-33: Print State

This example is the same as the previous example, Example-32 (Section 15.9).
However, in this example, we use the following functions instead: prnstate,
prnTransStatus, and prnVirtualState.

Listing-15.4 is the main simulation fle for simulating the Petri net, which
is shown in Fig.15.1. In the MSF, frst, we echo (print to screen) the initial
marking (initial state) and then start gpensim. Once the simulation by
gpensim is completed, we will also echo the fnal marking (fnal state) on the
screen. Meanwhile, while gpensim is running, in the COMMON_PRE and
COMMON_POST, we will echo the enabled and fring transitions, virtual
state, along with the current time and current state.

Listing 15.4: Main Simulation File (Example-33)
clear all; clc; close all;

spng = pnstruct('ex_33_pdf');
dyn.m0 = {'p1',2, 'p4',1};
dyn.ft = {'allothers',1};
pni = initialdynamics(spng, dyn);

105 15.10. EXAMPLE-33: PRINT STATE

disp('At start: ');
prnstate();

disp('starting "gpensim"');
sim = gpensim(pni);
disp('exiting "gpensim"');

disp('At last: ');
prnstate();

Listing 15.5: COMMON_PRE (Example-33)

function [fire, trans] = COMMON_PRE(trans)
disp(' ');
disp(['Before firing of "', trans.name, '" :']);
prnVirtualState('Virtual state: ');
prnstate('Current state: ');
prnTransStatus();

fire = 1;

Listing 15.6: COMMON_POST (Example-33)

function [] = COMMON_POST(trans)

disp(['After firing of "', trans.name, '" :']);
prnVirtualState('Virtual state: ');
prnstate('Current state: ');
prnTransStatus();
disp(' ');

The printout on the screen (shown below) resembles the printout of the
previous example (Example-32) but includes additional information on en-
abled and fring transitions and virtual state.

106 BIBLIOGRAPHY

At start:
2p1 + p4

starting "gpensim"

Before firing of "t1" :
Virtual state: (no tokens)
Current state: 2p1 + p4

Time: 0
Enabled Transitions: t1

After firing of "t1" :
Virtual state: (no tokens)
Current state: p1 + p2 + p3 + p4

Time: 1
Firing Transitions: t1
Enabled Transitions: t1
...
...
...
Time: 3
Firing Transitions: t2

exiting "gpensim"

At last:
2p2 + 3p4

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Chapter 16

Print State Space

This chapter presents only one function, namely prnss. This function prints
the simulation results (output of the function gpensim) on the screen.

16.1 prnss

Function name: prnss
Full name: Print state space.
Purpose: This function takes the simulation results from gpensim and
prints all the states and the causing transitions and timing on screen (no
graphical display).
Input Parameter: Simulation Results (a structure output by function
gpensim).
Output on screen: Text display on the screen showing the states, enabled
transitions on each state and the fred transitions.
This function uses: (some sub-functions)
This function is used by: [in the main simulation fle]
Further info: Chapter 2, “Modeling with GPenSIM: Basic Concepts,” of
Davidrajuh (2018).
Sample use:

% in Main Simulation File:
...
Sim_Results = gpensim(pni); % perform simulation runs
prnss(Sim_Results);

Application example: A simple example (“Example-34: prnss”) is given
below.
Related functions: cotree

107

108 CHAPTER 16. PRINT STATE SPACE

16.2 Example-34: prnss

Figure 16.1: Petri net for testing the functions prnss.

Petri net for testing the function prnss is shown in Fig.16.1. The reacha-
bility tree for this Petri net would possess several paths, as shown in Fig.16.2.
However, when we simulate the Petri net using gpensim, only one of the
paths is achieved. The function prnss, taking the simulation results from
gpensim, will print the path with all the states, from the initial state to
the fnal state.

Listing-16.1 shows the main simulation fle, and the printout on screen
is shown after the MSF.

Listing 16.1: Main Simulation File (Example-34)

clear all; clc; close all;

global global_info
global_info.STOP_AT = 100;

spng = pnstruct('ex_34_pdf');
dyn.m0 = {'pS',3};
dyn.ft = {'tA',1, 'tB',2};
pni = initialdynamics(spng, dyn);

sim = gpensim(pni);
prnss(sim);

The printout on the screen by the function prnss is shown below:

109 16.2. EXAMPLE-34: PRNSS

Figure 16.2: Reachability tree for the Petri net shown in Fig.16.1.

110 CHAPTER 16. PRINT STATE SPACE

Simulation of "Example-34: testing "prnss"":
======= State Diagram =======

** Time: 0 **
State:0 (Initial State): 3pS
At start
At time: 0, Enabled transitions are: tA tB
At time: 0, Firing transitions are: tA tB

** Time: 1 **
State: 1
Fired Transition: tA
Current State: pA + pS
Virtual tokens: pS

Right after new state-1
At time: 1, Enabled transitions are: tA tB
At time: 1, Firing transitions are: tA tB

** Time: 2 **
State: 2
Fired Transition: tA
Current State: 2pA
Virtual tokens: pS

Right after new state-2
At time: 2, Enabled transitions are:
At time: 2, Firing transitions are:

** Time: 2 **
State: 3
Fired Transition: tB
Current State: 2pA + pB
Virtual tokens: (no tokens)

Right after new state-3
At time: 2, Enabled transitions are:
At time: 2, Firing transitions are:

111 BIBLIOGRAPHY

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

112 BIBLIOGRAPHY

Chapter 17

Priority

This chapter presents four simple functions for the manipulation of transition
priorities. These functions can be used in pre- and post-processor fles. In
GPenSIM, all the transitions have zero priority by default. At the start,
in the main simulation fle, transitions can be assigned diferent priorities
(integer values; the higher the value, the higher the priority). During run-
time, the priorities can be changed in pre-processors and post-processors
using the functions mentioned in this chapter.

Table-17.1 presents a summary of these functions.

Function Description

priorcomp compares the priorities of two transitions.
priordec decreases the priority of a transition by the

given value (if a value is not provided, then
by 1).

priorinc increases the priority of a transition by the
given value (if a value is not provided, then
by 1).

priority_enabled_
trans

sorts out enabled transitions in descending
order of priority.

priorset set (assign) a value as priority to a transi-
tion.

Table 17.1: Summary of functions for manipulating transition priority.

17.1 priorcomp

Function name: priorcomp
Full name: Priority comparison.
Purpose: This function compares the priorities of two transitions. A posi-
tive (zero or negative, resp.) value will be returned if the frst transition has

113

114 CHAPTER 17. PRIORITY

a higher (equal or lower, resp.) value than the second transition.
Input Parameter: Names or indices of two transitions.
Output Parameter:

1. ‘1’: if the frst transition has higher priority than the second transition.
2. ‘0’: if the priorities are equal.
3. ‘-1’: if the frst transition has lower priority than the second transition.

This function uses: (none).
Further info: See Chapter 3, “Pre-processor and Post-processor Files,” of
Davidrajuh (2018).
Sample use:

% in the specific pre-processor of "t1", t1_pre.m:
...
HEL = priorcomp('t1', 't2');
fire = HEL; % fire, if priority of "t1" is higher than "t2"

Related functions: priordec, priorinc, priorset

17.2 priordec

Function name: priordec
Full name: Priority decrement.
Purpose: To decrease the priority of a transition. If the value (second input
parameter, a positive integer) is given, then the priority will be reduced by
that amount. Otherwise, priority will be decreased by 1.
Input Parameter - Compulsory: Name or index of the transition.
Input Parameter - Optional: Value (a positive integer) for decrement.
Output: (none).
This function uses: (none)
Further info: See Chapter 3, “Pre-processor and Post-processor Files,” of
Davidrajuh (2018).
Sample use:

% in the specific pre-processor of "t1", t1_pre.m:
...
% if "t2" is firing now, reduce its priority so that
% "t2" will not fire in the next round
if is_firing('t2')

priordec('t2');
end

Application example: A simple example (“Example-36: priordec” in Sec-
tion 17.6) is given at the end of this chapter.
Related functions: priorcomp, priorinc, priorset

115 17.3. PRIORINC

17.3 priorinc

Function name: priorinc
Full name: Priority increment.
Purpose: To increase the priority of a transition. If the value (second input
parameter, a positive integer) is given, then the priority will be increased by
that amount. Otherwise, priority will be increased by 1.
Input Parameter - Compulsory: Name or index of the transition.
Input Parameter - Optional: Value (a positive integer) for increment.
Output: (none).
This function uses: (none).
Further info: See Chapter 3, “Pre-processor and Post-processor Files,” of
Davidrajuh (2018).
Sample use:

% in the specific pre-processor of "t1", t1_pre.m:
...
% if "t2" is not firing now, increase its priority so that
% "t2" will fire in the next round
if not(is_firing('t2'))

priorinc('t2');
end

Application example: A simple example (“Example-35: priorset and pri-
orinc” in Section 17.5) is given at the end of this chapter.
Related functions: priorcomp, priordec, priorset

17.4 priorset

Function name: priorset
Full name: Set new priority to a transition.
Purpose: To set a new value to the priority of a transition. The priority
values are positive integers; the higher the value, the better the priority. The
default priority values of transitions are zero.
Input Parameters: 1) Name or index of the transition; 2) The value for
priority (a positive integer).
Output Parameter: (none).
This function uses: (none).
Further info: See Chapter 3, “Pre-processor and Post-processor Files,” of
Davidrajuh (2018).
Sample use:

% in the specific pre-processor of "t1", t1_pre.m:
...
% if "t2" is not firing now, set its priority to a

116 CHAPTER 17. PRIORITY

% high value so that "t2" will fire in the next round
if not(is_firing('t2'))

priorset('t2', 10);
end

Application example: A simple example (“Example-35: priorset and pri-
orinc”) is given below.
Related functions: priorcomp, priordec, priorinc

17.5 Example-35: priorset and priorinc

Figure 17.1: Petri net model for the Producer-Consumers Problem.

The producer-consumer problem (PCP) is a classical problem in Com-
puter Science. PCP is an example of a synchronization problem when mul-
tiple processes are involved. Fig.17.1 shows a crude Petri net model to simu-
late the PCP. The model is composed of a producer (tProducer) and three
consumers (t1, t2, and t3). Also, there are two bufers: pProduced and
pConsumed.

In this model, the producer tProducer is active, and the consumers are
passive. tProducer decides who will consume the product in each cycle by
randomly choosing the consumer. At the beginning of each cycle:

˝ The priorities of all consumers are reset to 0.
˝ tProducer randomly chooses a consumer.
˝ The chosen consumer’s priority will be increased by 1.

117 17.5. EXAMPLE-35: PRIORSET AND PRIORINC

˝ Since all three consumers compete for the product, the one with the
higher priority (the chosen one for this round) will win.

Listings 17.1 to 17.3 show the main simulation fle, COMMON_PRE,
and COMMON_POST. After the listings, a typical simulation output is
displayed.

Listing 17.1: Main Simulation File (Example-35)
clear all; clc; close all;
global global_info
global_info.STOP_AT = 20;

spng = pnstruct('ex_35_pdf');

dyn.m0 = {'pConsumed',1};
dyn.ft = {'allothers',1};
pni = initialdynamics(spng, dyn);

sim = gpensim(pni);

Listing 17.2: COMMON_PRE (Example-35)
function [fire, trans] = COMMON_PRE(trans)
trans_name = trans.name;

if ismember(trans_name, {'t1','t2','t3'})
disp(['Enabled consumer: ', trans_name]);
fire = 1; return

end

%%%%%% if we are here, it is the producer
%% Step-1: reset all priorities
priorset('t1',0); priorset('t2',0); priorset('t3',0);
%% step-2: randomly choose a consumer
choosen_consumer = ceil(3*rand);
nameChosen = ['t', int2str(choosen_consumer)];
disp(['Producer chooses: "', nameChosen, '"']);
%% step-3: set higher priority to choosen
priorset(nameChosen, 1);

fire = 1;

Listing 17.3: COMMON_POST (Example-35)
function [] = COMMON_POST(trans)
trans_name = trans.name;

% print name of the consumer only
if ismember(trans_name, {'t1','t2','t3'})

118 CHAPTER 17. PRIORITY

disp(['fired consumer: "', trans.name, '" :']);
disp(' ');

end

The printout on the screen:

Producer chooses: "t1"
Enabled consumer: "t1"
fired consumer: "t1"

Producer chooses: "t3"
Enabled consumer: "t3"
fired consumer: "t3"

Producer chooses: "t1"
Enabled consumer: "t1"
fired consumer: "t1"

Producer chooses: "t2"
Enabled consumer: "t2"
fired consumer: "t2"

Producer chooses: "t2"
...
...

17.6 Example-36: priordec

We shall use the same Petri net model (Fig.17.1) for the producer-consumer
problem (PCP) that we used in the previous example (Example-35, Sec-
tion 17.5). In the previous example, the producer (tProducer) was active
as it chose the consumer for each round. However, in this example, the
producer is passive, while the consumers are active. The consumers decide
which consumer will consume in the current round.

The decision-making process is elegantly simple yet remarkably
efective: a consumer is allowed to consume at random. After consumption,
in COMMON_POST, the consumer decreases its priority, thereby giving the
other two (starving) consumers a chance in the next round.

Listings 17.4 and 17.5 show the MSF and COMMON_POST; COM-
MON_PRE is not needed. After the listings, a typical simulation output is
displayed.

Listing 17.4: Main Simulation File (Example-36)

119 17.6. EXAMPLE-36: PRIORDEC

clear all; clc; close all;

global global_info
global_info.STOP_AT = 200;

spng = pnstruct('ex_36_pdf');

dyn.m0 = {'pConsumed',1};
dyn.ft = {'allothers',1};
pni = initialdynamics(spng, dyn);

sim = gpensim(pni);
disp("SUMMARY ********");
disp(['t1 fired: ', int2str(timesfired('t1'))]);
disp(['t2 fired: ', int2str(timesfired('t2'))]);
disp(['t3 fired: ', int2str(timesfired('t3'))]);

Listing 17.5: COMMON_POST (Example-36)

function [] = COMMON_POST(trans)

trans_name = trans.name;
% print name of the consumer only
if ismember(trans_name, {'t1','t2','t3'})

priordec(trans_name);
disp(['fired consumer: "', trans.name, '"']);
disp(' ');

end

The printout on the screen:

...

...

...
fired consumer: "t2"
fired consumer: "t3"
fired consumer: "t1"
fired consumer: "t2"
fired consumer: "t3"

SUMMARY ********
t1 fired: 33
t2 fired: 33
t3 fired: 33

120 BIBLIOGRAPHY

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Chapter 18

Reachability Tree with Time
and Cost

This chapter presents only one function: ‘cotreeTC.’ The reachability (cov-
erability) tree generated by the function cotree possesses four shortcom-
ings:

1. The function cotree does not include time, even if the transitions
have fring times.

2. The function cotree does not include costs, even if the transitions
are assigned with fring costs.

3. The function cotree does not consider the pre-processors (the en-
abling conditions).

4. The function cotree does not allow parallel frings of transitions; only
one transition is allowed to fre at a time.

The function cotreeTC, presented in this chapter, fxes the frst two
shortcomings of the function cotree:

1. The function cotreeTC considers the fring times of transitions (if
transitions are timed)

2. The function cotreeTC considers the fring costs of transitions (if
transitions are assigned with fring costs)

However, the function cotreeTC still has the other two issues: It does
not consider pre-processors and allows only one transition to fre at a time.

18.1 cotreeCT (new in version 11)

Function name: cotreeCT
Full name: Print coverability (reachability) tree with time and cost.
Purpose: This function is similar to cotree, as it prints the reachability

121

122 CHAPTER 18. REACHABILITY TREE WITH TIME AND COST

tree. However, each state will be printed with the time and cost of the state
if the transitions are timed and assigned with fring costs. Also, optionally,
we can limit the number of states printed by giving an optional input num-
ber.
Input Parameters: 1) Petri net structure with initial dynamics (pni, out-
put of initialdynamics). 2) Optional: maximum number of states to
be printed.
Output on screen: a printout of state space (similar to the printout of
cotree); however, the time and cost of the states are also shown.
Output Parameter: COTREE_TC matrix in which each row corresponds to
a state. In a row, the frst part is the marking, followed by fred transition,
parent state, time of the state, and cost of the state.
This function uses: print_retree
Further info: Sections 2.1, “COTREE Matrix” of this reference manual.
Also, Chapter 4, “Analysis of Petri Nets,” in Davidrajuh (2018) for reacha-
bility tree; chapter 6, “Token selection based on cost,” in Davidrajuh (2023)
for cost calculation.
Sample use:

% in main simulation file
spng = pnstruct('cotree_example_def');
dyn.m0 = {'p1',2, 'p4', 1};
dyn.ft = {'t1',2, 't2', 1};
dyn.fc_fixed = {'t1',16, 't2', 32};
dyn.fc_variable = {'t1',5, 't2', 5};
pni = initialdynamics(spng, dyn);
COTREE_TC = cotreeTC(pni, 10); % print only the first ten states

Application example: A simple example (“Example-37: cotreeTC” in Sec-
tion 18.3) is given at the end of this chapter.
Related functions: cotree

18.2 retree

Function name: retree
Full name: Print coverability (reachability) tree with time and cost.
Purpose: same as function cotreeCT; see Section 18.1.

18.3 Example-37: cotreeTC

Fig.18.1 shows a simple Petri net for which we are going to generate the
reachability tree with time and costs. Listing-18.1 shows the main simulation
fle in which we add time and cost to the transitions.

123 18.3. EXAMPLE-37: COTREETC

Figure 18.1: Petri net for generating reachability tree with time and cost.

Figure 18.2: Reachability tree generated with the function cotree.

124 CHAPTER 18. REACHABILITY TREE WITH TIME AND COST

Listing 18.1: Main Simulation File (Example-37)

clear all; clc; close all;

spng = pnstruct('ex_37_pdf');
dyn.m0 = {'p1',2, 'p2',1};
dyn.ft = {'t1',1, 't2',2};
dyn.fc_fixed = {'t1',100, 't2',200};
dyn.fc_variable = {'t1',10, 't2',20};

pni = initialdynamics(spng, dyn);
COTREE_TC = cotreeTC(pni);
disp('');
disp('COTREE_TC matrix:'); disp(COTREE_TC);
cotree(pni, 1);

Fig.18.2 shows the coverability tree obtained by the function cotree,
in which time and cost details are missing.

The function cotreeTC printout ASCII text output only, and it doesn’t
produce graphical out. The text output is given below. Comparing the text
output with the graphical plot in Fig.18.2, we can see that the text output
prints all the state info and adds time and costs as well.

125 18.3. EXAMPLE-37: COTREETC

======= Extended Reachability Tree =======
State no.: 1 ROOT node
2p1 + p2

State no.: 2 Firing event: t1
Time of the state: 1
Cost of the state: 110
State: p1 + 2p2
Node type: ’ ’ Parent state: 1

State no.: 3 Firing event: t2
Time of the state: 2
Cost of the state: 240
State: p1 + p3
Node type: ’ ’ Parent state: 1

State no.: 4 Firing event: t1
Time of the state: 2
Cost of the state: 220
State: 3p2
Node type: ’T’ Parent state: 2

State no.: 5 Firing event: t2
Time of the state: 3
Cost of the state: 350
State: p2 + p3
Node type: ’T’ Parent state: 2

State no.: 6 Firing event: t1
Time of the state: 3
Cost of the state: 350
State: p2 + p3
Node type: ’D’ Parent state: 3

Finally, the screen dump of the matrix COTREE_TC is given below. In
this matrix:

1. As there are three places, the frst three integers are the markings.
2. The fourth element is the fred transition (represented) that causes the

state.
3. The ffth element is the parent state (row number).
4. The sixth element is the type of the state (Root = 82, normal = 0,

duplicate = 68, or terminal = 84).
5. The seventh element is the time of the state.

126 BIBLIOGRAPHY

6. Finally, the eighth and last element is the cost of the state.

COTREE_TC matrix:
2 1 0 0 0 82 0 0
1 2 0 1 1 0 1 110
1 0 1 2 1 0 2 240
0 3 0 1 2 84 2 220
0 1 1 2 2 84 3 350
0 1 1 1 3 68 3 350

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Davidrajuh, R. (2023). Colored Petri Nets for Modeling of Discrete Systems:
A Practical Approach With GPenSIM, Springer Nature.

Chapter 19

Resource Management

In Petri nets, resources are represented by places with some initial tokens
equaling the number of available instances of the resource. If the modeler
wants, resources can be handled diferently in GPenSIM, as they can be kept
away from the Petri net. Thus, the Petri net model becomes smaller, and
GPenSIM takes care of the resource management in the background. This
chapter presents functions for transitions acquiring resources, and then re-
leasing them after use. There are also two functions, namely prnschedule
and plotGC, which are useful to print and plot resource usage.

The acquisition of resources happens in the pre-processor fles and the
release in post-processor fles. For complete details on resources, see chapter
8, “GPenSIM Resources: The Basics,” in Davidrajuh (2023). Table-19.1
summarizes the functions for resource acquisition and release.

A short note on GPenSIM Resources: The functions presented
in this chapter involve ‘instances of a resource’, ‘generic resource’, ‘specifc
resource’, and ‘write access’:

1. Instances of a resource: A resource may have many identical copies
(‘instances’); E.g., in a supermarket, there are three cashiers, and all
of them are the same for a customer who wants to check out. In this
case, we say that the resource ‘cashier’ possesses three instances.

2. Generic resource: Though the system may possess multiple resources,
we just need any resource - it doesn’t matter which one - for some
applications.

3. Specifc resource: For some applications, we need a specifc (named)
resource, as a generic resource may not suit well for the job.

4. Write access: If a resource contains many instances, in some cases
(e.g., for maintenance), we may need to acquire all the instances of the
resource.

127

128 CHAPTER 19. RESOURCE MANAGEMENT

Function Description

availableInst Checks whether any instances of a resource are
available.

availableRes Checks whether any resources are available.
requestSR Requests some instances from specifc

(‘named’) resources.
requestGR Requests some resource instances without nam-

ing any resource.
requestAR Requests some resource instances among many

alternative resources.
requestWR Requests all the instances of a specifc resource

(exclusive access).
release Releases all the resources and their resource in-

stances held by a transition.
prnschedule Prints useful information on resource usage.
plotGC Plots Gantt Chart, showing how the resources

were used (by which transition and how long).

Table 19.1: Summary of functions for resource usage.

19.1 availableInst

Function name: availableInst
Full name: Available instances of a given resource.
Purpose: Returns information about a given resource’s available (free) in-
stances.
Input Parameter: Name or index of the resource.
Output Parameter: A structure, “Resource Availability Info (RAI)” con-
sisting of the three felds:

˝ avINS.r_index: index of the resource.
˝ avINS.n: number of free (available) resource instances.
˝ avINS.instance_indices: a set of indices of the available in-

stances.

This function uses: (none).
Further info: See chapter 8, “GPenSIM Resources: The Basics,” in Davidra-
juh (2023).
Sample use:

% in a pre-processor file
...
% check available printers
avInst_PRN = availableInst('printers');

129 19.2. AVAILABLERES

if not(avInst_PRN.n)
% no available printers
...

Related functions: availableRes

19.2 availableRes

Function name: availableRes
Full name: Available resources.
Purpose: Returns info about all the available (free) resources.
Input Parameter: a set of resource names (or resource indices). If the input
parameter is not given, then all the resources will be checked for available
instances.
Output Parameter: An array of structures (called “Resource Availability
Info ‘RAI”), where each structure has the following elements:

˝ avRES.r_index: index of the resource.
˝ avRES.n: this resource’s free (available) instances.
˝ avRES.instance_indices: the set of indices of the available in-

stances.

This function uses: (none).
Further info: See chapter 8, “GPenSIM Resources: The Basics,” in Davidra-
juh (2023).
Sample use:

% in processor file
% for checking available instances of 'prn', 'cpu':
avRes = availableRes({'printer', 'CPU'});

% for checking all available resources
% avRes = availableRes();

for i = 1: len(avRes)
if avRES(i).n

% there some available instances of this resource
...

end
end
...

Related functions: availableInst

19.3 release

Function name: release
Full name: Release resource(s) used after fring of a transition.

130 CHAPTER 19. RESOURCE MANAGEMENT

Purpose: Releases all the resources used by a transition. Note that releas-
ing only some of the resources is not possible.
Input Parameter (optional): Name or index of the fred transition. If
the name is not given, then the transition just fred is assumed to release the
resources it used.
Output Parameter: (none). (the resources used by the transition are re-
leased)
This function uses: (none).
Further info: See chapter 8, “GPenSIM Resources: The Basics,” in Davidra-
juh (2023).
Sample use:

% in post-processor of tROBOT2 (tROBOT2_post)
...
release('tRobot1'); % release all resources used by tRobot1
release(); % also release all resources used by tROBOT2

Application example: A simple example (“Example-38: Resource Man-
agement” in Section 19.10) is given at the end of this chapter.
Related functions: requestAR, requestGR, requestSR, requestWA

19.4 requestAR

Function name: requestAR
Full name: Request alternative resources.
Purpose: To reserve some resource instances from a group of named re-
sources.
Input Parameters: 1) a pool of resources; 2) the number of instances re-
quired.
Output Parameter: Boolean, ‘0’ if the reservation is unsuccessful.
This function uses: (none).
Further info: See chapter 8, “GPenSIM Resources: The Basics,” in Davidra-
juh (2023).
Sample use:

% in a pre-processor file
...
% request *any of the* two German cars
r1 = requestAR({'Benz', 'BMW', 'Audi'}, 2);

% and *any of the* 3 Japanese cars
r2 = requestAR({'Toyota', 'Honda', 'Mazda'}, 3);

if and(r1, r2)
% yes, we have reserved 2 German + 3 Japanese cars

131 19.5. REQUESTGR

...

Related functions: requestGR, requestSR, requestWA

19.5 requestGR

Function name: requestGR
Full name: Request generic (not specifcally named) resources.
Purpose: To reserve some instances from any of the (unspecifed) resources.
Input Parameter: the number of instances required.
Output Parameter: Boolean, ‘0’ if the reservation is unsuccessful.
This function uses: (none)
Further info: See chapter 8, “GPenSIM Resources: The Basics,” in Davidra-
juh (2023).
Sample use:

% in a pre-processor file
...
% request *any* two cars (German, Japan, whatever...)
status = requestGR(2);
...

Related functions: requestAR, requestSR, requestWA

19.6 requestSR

Function name: requestSR
Full name: Request specifc resources.
Purpose: To reserve some instances of the specifc (named) resources.
Input Parameter: a list of resources and the number of instances required.
Output Parameter: Boolean, ‘0’ if the reservation is unsuccessful.
This function uses: (none).
Further info: See chapter 8, “GPenSIM Resources: The Basics,” in Davidra-
juh (2023).
Sample use:

% in a pre-processor file
...
% request two BMWs and one Totoya
status = requestSR({'BMW',2, 'Toyota',1});
...

Application example: A simple example (“Example-38: Resource Man-
agement” in Section 19.10) is given at the end of this chapter.
Related functions: requestAR, requestGR, requestWA

132 CHAPTER 19. RESOURCE MANAGEMENT

19.7 requestWA

Function name: requestWA
Full name: Request Write Access to a resource.
Purpose: Request all the instances of a specifc resource.
Input Parameter: Name of the resource.
Output Parameter: Boolean, ‘0’ if the reservation is unsuccessful.
This functions uses: (none).
Further info: See chapter 8, “GPenSIM Resources: The Basics,” in Davidra-
juh (2023).
Sample use:

% in a pre-processor file
...
% request *all the instances* of Cashiers
status = requestWA('Cashier');
if not (status)

disp(['some of the Cashier instances, '...
' or all of them are busy']);

...
end

Related functions: requestAR, requestGR, requestSR

19.8 plotGC

Function name: plotGC
Full name: Plot Gantt Chart.
Purpose: After simulation involving resources, this function plots the re-
source usage as a Gantt Chart.
Input Parameters:

1. Simulation results (output of gpensim).
2. Optional input - Process groups: we can group transitions into groups.

As the optional second input parameter, we can group transitions into
processes (e.g., ‘t3’, ‘t5’, ‘t2’, ‘t4’, ‘t6’, ‘t1’) so that transitions belong-
ing to the same process will be plotted in the same color.

3. Optional input - Time Limit: we can limit the time axis on the plot.
4. Optional input - Title: Text for the title of the plot.

Output to screen: A Gantt Chart is plotted.
This function uses: (none)
Further info: See chapter 8, “GPenSIM Resources: The Basics,” in Davidra-
juh (2023).
Sample use:

133 19.9. PRNSCHEDULE

% main simulation file
...
dyn.m0 = {'pSTART',10};
dyn.ft = {'allothers',1};
dyn.re = {'Resource-X',3, inf}; % resource as semafor
pni = initialdynamics(spng, dyn);
sim = gpensim(pni);

% plot Gantt Chart
processGroups = {{'t3', 't5'}, {'t2', 't4', 't6'}, {'t1'}};
plotGC(sim, processGroups);

Application example: A simple example (“Example-38: Resource Man-
agement” in Section 19.10) is given at the end of this chapter.
Related functions: prnschedule

19.9 prnschedule

Function name: prnschedule
Full name: Print Schedule.
Purpose: After simulation involving resources, this function prints the re-
source usage. For every resource utilized, this function prints the transition
that used the resource and the start and end times of utilization.
Input Parameter: Simulation results (output of gpensim).
Output on screen: A detailed report on resource usage is printed.
Output Parameters:

1. LE (Line efciency, in %).
2. RES_USAGE: [number_of_resources X 2] matrix, column-1: number

of times each resource was used; column-2: total time of usage of each
resource.

3. completion_time (simulation end time).
4. LT (Line time).
5. Total_time_at_Ks: total time of all resource usage.

This function uses: (some sub-functions)
Further info: See chapter 8, “GPenSIM Resources: The Basics,” in Davidra-
juh (2023).
Sample use:

% part of Examples-19: "Resources to Realize Critical"
% in Davidrajuh (2023) "Colored Petri Nets for Modeling
% of Discrete Systems"
...
dyn.m0 = {'pSTART',10};
dyn.ft = {'tX1',1, 'tX2',5};

134 CHAPTER 19. RESOURCE MANAGEMENT

dyn.re = {'Resource-X',1, inf}; % resource as semafor dyn.ip = ...
{'tX1',1}; % let tX1 fire first

pni = initialdynamics(spng, dyn);
sim = gpensim(pni);

% summary of resource usage
prnschedule(sim);

Application example: A simple example (“Example-38: Resource Man-
agement” in given below.
Related functions: plotGC

19.10 Example-38: Resource Management

Figure 19.1: Processes A and B using two Resources Q and R (Adapted
from Davidrajuh (2023).

This example is adapted from Davidrajuh (2023). Fig.19.1 shows a Petri
net with two processes (A and B) that share two resources (Q and R):

˝ Resources Q and R have one instance each.
˝ Process A consists of two steps, tA1 and tA2.

– tA1: tA1 needs both resources Q and R to start. When tA1
is completed, it will not release the resources, as they are also
required for step tA2.

– tA2: When tA2 is completed, both resources will be released.

˝ Process B also consists of steps tB1 and tB2.

135 19.10. EXAMPLE-38: RESOURCE MANAGEMENT

– tB1: tB1 needs the resource Q to start. When tB1 is completed,
Q will not be released as it is necessary for tB2 as well.

– tB2: in addition to Q, tB2 needs R too. When tB2 is completed,
resources Q and R will be released together.

˝ Processes A and B run cyclically.

Listing-19.1 shows the main simulation fle.

Listing 19.1: Main Simulation File (Example-38)
global global_info
global_info.STOP_AT = 20;

pns = pnstruct('ex_38_pdf');

dyn.m0 = {'pA1',1, 'pB1',1};
dyn.ft = {'allothers',1};
dyn.re = {'Q',1,inf, 'R',1,inf};
pni = initialdynamics(pns, dyn);
sim = gpensim(pni);

% print resource usage
prnschedule(sim);
plotGC(sim, {{'tA1','tA2'},{'tB1','tB2'}});

The common processor fles for the acquisition and release of resources
are given in Listings 19.2. and 19.3.

Listing 19.2: COMMON_PRE (Example-38)
function [fire, transition] = COMMON_PRE(transition)
switch transition.name

case 'tA1'
% request: specific, both Q and R
granted = requestSR({'Q',1, 'R',1});

case 'tA2'
% need nothing (do nothing)
granted = 1;

case 'tB1'
% request: specific, Q only
granted = requestSR({'Q',1});

case 'tB2'
% request: specific, R only
granted = requestSR({'R', 1});

end

% fire only if acquisition sucessful
fire = granted;

136 CHAPTER 19. RESOURCE MANAGEMENT

Listing 19.3: COMMON_POST (Example-38)

function [] = COMMON_POST(transition)
switch transition.name

case 'tA1'
% do nothing

case 'tA2'
% release all resources acquired by tA1
release('tA1');

case 'tB1'
% do nothing

case 'tB2'
% release all resources acquired by tB1 & tB2
release('tB1');
release('tB2');

otherwise
end

The printout generated by the function prnschedule is given below. This
printout describes which transition is used for each resource and each in-
stance of this resource. The printout ends with a summary of resource us-
age. The details of the printout are described in the following chapter on
“Resource Usage”.

137 19.10. EXAMPLE-38: RESOURCE MANAGEMENT

RESOURCE USAGE:

RESOURCE INSTANCES OF ***** Q *****
tB1 [0 : 2]
tA1 [2 : 4]
tA1 [4 : 6]
tA1 [6 : 8]
tA1 [8 : 10]
tB1 [10 : 12]
tB1 [12 : 14]
tB1 [14 : 16]
tA1 [16 : 18]
Resource Instance: Q:: Used 9 times.
Utilization time: 18

RESOURCE INSTANCES OF ***** R *****
tB2 [1 : 2]
tA1 [2 : 4]
tA1 [4 : 6]
tA1 [6 : 8]
tA1 [8 : 10]
tB2 [11 : 12]
tB2 [13 : 14]
tB2 [15 : 16]
tA1 [16 : 18]
Resource Instance: R:: Used 9 times.
Utilization time: 14

RESOURCE USAGE SUMMARY:
Q: Total occasions: 9 Total Time spent: 18
R: Total occasions: 9 Total Time spent: 14

***** LINE EFFICIENCY AND COST CALCULATIONS:

Number of servers: k = 2
Total number of server instances: K = 2
Completion = 20
LT = 40
Total time at Stations: 32
LE = 80 %

**
Sum resource usage costs: 0 (NaN% of total)
Sum firing costs: 0 (NaN% of total)
Total costs: 0

**

138 BIBLIOGRAPHY

Note that tA2 is missing in the printout shown above and in the Gantt
chart shown below (Fig.19.2). This is because tA2 never acquired any re-
source; tA2 was merely using the resource acquired by tA1. Hence, the time
the resources (Q and R) used by tA2 are credited to tA1 in the printout
and in the Gantt chart.

Fig.19.2 shows the Gantt Chart generated by the plotGC function. Note
that this fgure has been edited to be more intelligible.

Figure 19.2: Gantt Chart showing the resource usage among the transitions.

Bibliography

Davidrajuh, R. (2023). Colored Petri Nets for Modeling of Discrete Systems:
A Practical Approach With GPenSIM, Springer Nature.

Chapter 20

Structural-Invariants

This chapter presents the functions for fnding structural invariants (e.g.,
siphons, traps, place invariants (P-invariants), and transition invariants (T-
invariants). Structural invariants (aka net invariants) are the structural
properties of a Petri net that depend only on the static (topological) struc-
ture, and they are independent of the Petri net dynamics (e.g., markings,
fring times, etc.). For a detailed study, see Chapter 9, “Structural Invari-
ants,” in Davidrajuh (2018).

GPenSIM functions for structural properties use The Petri Net Control
Toolbox (PNCT) developed at the University of Cagliari. GPenSIM uses
the bridge gpensim_2_PNCT() (section 12.1) to access the functions in
PNCT.

Table-20.1 summarizes the functions for structural invariants.

Function Description

pinvariant fnds the place-invariant of a Petri net.
siphons fnds the siphons of a Petri net.
siphons_minimal fnds the minimal-siphons of a Petri net.
tinvariant fnds the transition-invariant of a Petri

net.
traps fnds the traps of a Petri net.
traps_minimal fnds the minimal-traps of a Petri net.

Table 20.1: Summary of functions for fnding structural invariant.

20.1 pinvariant

Function name: pinvariant
Full name: Place Invariant (P-Invariant).
Purpose: To fnd the place invariants of a Petri net.

139

140 CHAPTER 20. STRUCTURAL-INVARIANTS

Input Parameter: Static Petri net graph (spng, output of pnstruct); al-
ternatively, Petri net with initial dynamics (pni, output of initialdynamics)
can also be input.
Output Parameter: A matrix in which each row represents a P-invariant.
In each row, non-zero columns are the indices of places involved in P-
invariant. Also, the P-invariants are printed on the screen.
This function uses: (PNCT function pinvar)
Further info: See chapter 9, “Structural Invariants,” in Davidrajuh (2018).
Sample use:

% Example-38 in Davidrajuh (2018)
spng = pnstruct('ptinvar_pdf');
PI = pinvariant(spng);
disp('P-Invariant (in matrix form): ');
disp(PI);

Application example: A simple example (“Example-40: pinvariant and
tinvariant” in Section 20.8) is given at the end of this chapter.
Related functions: tinvariant

20.2 siphons

Function name: siphons
Full name: Siphons.
Purpose: To fnd the siphons of a Petri net. Siphons are a set of places
which, if they become empty of tokens, will always remain empty for all
reachable markings of the net.
Input Parameter: Static Petri net graph (spng, output of pnstruct); al-
ternatively, Petri net with initial dynamics (pni, output of initialdynamics)
can also be input.
Output Parameter: A matrix in which each row represents a siphon. In
each row, non-zero columns are the indices of places involved in the siphon.
Also, the siphons are printed on the screen. This function uses: (PNCT
function siphon)
Further info: See chapter 9, “Structural Invariants,” in Davidrajuh (2018).
Sample use:

% Example-36 in Davidrajuh (2018)
spng = pnstruct('siphons_pdf');
S = siphons(spng);
disp('Siphons (in matrix form): ');
disp(S);

Related functions: siphon_minimal

20.3. SIPHONS_MINIMAL 141

20.3 siphons_minimal

Function name: siphons_minimal
Full name: Minimal Siphons.
Purpose: To fnd the minimal siphons of a Petri net. Siphons are a set of
places which, if they become empty of tokens, will always remain empty for
all reachable markings of the net. A siphon is called a minimal siphon if it
contains no other siphon.
Input Parameter: Static Petri net graph (spng, output of pnstruct); al-
ternatively, Petri net with initial dynamics (pni, output of initialdynamics)
can also be input.
Output Parameter: A matrix in which each row represents a minimal
siphon. In each row, non-zero columns are the indices of places involved in
the minimal siphon. Also, the minimal siphons are printed on the screen.
This function uses: (PNCT function siphon)
Further info: See chapter 9, “Structural Invariants,” in Davidrajuh (2018).
Sample use:

% Example-36 in Davidrajuh (2018)
spng = pnstruct('siphons_pdf');
SM = siphons_minimal(spng);
disp('Minimal siphons (in matrix form): ');
disp(SM);

Application example: A simple example (“Example-39: siphons and traps”
in Section 20.7) is given at the end of this chapter.
Related functions: siphon

20.4 tinvariant

Function name: tinvariant
Full name: Transition Invariant (T-Invariant).
Purpose: To fnd the transition invariants of a Petri net.
Input Parameter: Static Petri net graph (spng, output of pnstruct); al-
ternatively, Petri net with initial dynamics (pni, output of initialdynamics)
can also be input.
Output Parameter: A matrix in which each row represents a T-invariant.
In each row, non-zero columns are the indices of transitions involved in the
T-invariant. Also, the T-invariants are printed on the screen.

This function uses: (PNCT function tinvar)
Further info: See chapter 9, “Structural Invariants,” in Davidrajuh (2018).
Sample use:

% Example-38 in Davidrajuh (2018)

142 CHAPTER 20. STRUCTURAL-INVARIANTS

spng = pnstruct('ptinvar_pdf');
TI = tinvariant(spng);
disp('T-invariants (in matrix form): ');
disp(TI);

Application example: A simple example (“Example-40: pinvariant and
tinvariant” in Section 20.8) is given at the end of this chapter.
Related functions: pinvariant

20.5 traps

Function name: traps
Full name: Traps.
Purpose: To fnd the traps of a Petri net. A trap is a group of places where
they never lose all their tokens once marked.
Input Parameter: Static Petri net graph (spng, output of pnstruct); al-
ternatively, Petri net with initial dynamics (pni, output of initialdynamics)
can also be input.
Output Parameter: A matrix in which each row represents a trap. In each
row, non-zero columns are the indices of places involved in the trap. Also,
the traps are printed on the screen. This function uses: (PNCT function
traps)
Further info: See chapter 9, “Structural Invariants,” in Davidrajuh (2018).
Sample use:

% Example-37 in Davidrajuh (2018)
spng = pnstruct('traps_pdf');
T = traps(spng);
disp('Traps (in matrix form): ');
disp(T);

Related functions: traps_minimal

20.6 traps_minimal

Function name: traps_minimal
Full name: Minimal Traps.
Purpose: To fnd the traps of a Petri net. A trap is a group of places which
never lose all their tokens once marked. A trap is called a minimal trap if it
contains no other traps.
Input Parameter: Static Petri net graph (spng, output of pnstruct); al-
ternatively, Petri net with initial dynamics (pni, output of initialdynamics)
can also be input.
Output Parameter: A matrix in which each row represents a minimal
trap. In each row, non-zero columns are the indices of places involved in

20.7. EXAMPLE-39: SIPHONS AND TRAPS 143

the minimal trap. Also, the minimal traps are printed on the screen. This
function uses: (PNCT function traps)
Further info: See chapter 9, “Structural Invariants,” in Davidrajuh (2018).
Sample use:

% Example-37 in Davidrajuh (2018)
spng = pnstruct('traps_pdf');
TM = traps_minimal(spng);
disp('Minimal traps (in matrix form): ');
disp(TM);

Application example: A simple example (“Example-39: siphons and traps”)
is given below.
Related functions: traps

20.7 Example-39: siphons and traps

Figure 20.1: Finding siphons and traps.

We shall fnd the siphons and traps in the Petri net shown in Fig.20.1.
Listing-20.1 shows the main simulation fle.

Listing 20.1: Main Simulation File (Example-39)
clear all; clc; close all;

pns = pnstruct('ex_39_pdf');

144 CHAPTER 20. STRUCTURAL-INVARIANTS

SM = siphons_minimal(pns);
disp('Min. Siphons (in matrix form): '); disp(SM);

TM = traps_minimal(pns);
disp('Min. Traps (in matrix form): '); disp(TM);

The printout from running the main simulation fle is shown below. It
identifes p0 as the sole siphon. If p0 loses all of its tokens due to the re-
peated fring of t0, of course, p0 has no chance of getting any tokens from
anywhere. Hence, p0 is a siphon. The printout also identifes p2 as the sole
trap. This is because once p2 has a token, p2 will lose this token due to the
fring of t2. However, t2 will deposit a new token into p2. Hence, p2 will
never become empty (a trap).

Minimal siphons in this net:
{p0}
Min. Siphons (in matrix form):
1 0 0 0 0

Minimal traps in this net:
{p2}
Min. Traps (in matrix form):
0 0 1 0 0

20.8 Example-40: pinvariant and tinvariant

Figure 20.2: Finding P-invariants and T-invariants.

145 20.8. EXAMPLE-40: PINVARIANT AND TINVARIANT

We shall fnd the P-invariants and T-invariants in the Petri net shown in
Fig.20.2. Listing-20.2 shows the main simulation fle.

Listing 20.2: Main Simulation File (Example-40)
pns = pnstruct('ex_40_pdf');

PI = pinvariant(pns); disp(' ');
disp('P-invariants in matrix form: '); disp(PI);

TI = tinvariant(pns); disp(' ');
disp('T-invariants in matrix form: '); disp(TI);

The printout from running the main simulation fle is shown below. It
identifes p1, p3, and p4 as the sole P-invariant. This means the weighted
sum of tokens in this group remains constant throughout the simulation,
immaterial of initial tokens and which transitions fred:

˝ p1 loses a token if t2 fres. However, t2 will deposit a token into p3.
˝ p3 loses a token if t3 or t4 fres. However, these two transitions will

deposit a token into p4.
˝ p4 loses a token if t1 fres. However, t1 will deposit a token into p1

(and p2).

Hence, the sum of tokens p1, p3, and p4 always remains the same.
The printout also identifes t1, t2, and t3 as the sole T-invariant. This

means if these three transitions fre one after the other, then we reach the
same state we started with:

˝ t1 consumes a token from p4 and deposits a token each into p1 and
p2.

˝ t2 transfers a token from p1 to p3.
˝ t3 consumes a token each from p2 and p3 and deposits a token into

p4.

Hence, the initial state is reached after the fring of t1, t2, and t3.

P-invariants:
{p1,p3,p4}

P-invariants in matrix form:
1 0 1 1

T-invariants:
{t1,t2,t3}

T-invariants in matrix form:
1 1 1 0

146 BIBLIOGRAPHY

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Chapter 21

Timer

This chapter presents four simple utility functions for working with time.
Table-21.1 presents a summary of these functions.

Function Description

compare_time compares two time strings.
current_clock returns the computer’s real-time clock (the

current time), either in seconds or in [hour
min sec] format.

current_time returns GPenSIM’s global clock (the cur-
rent time) (same as PN.current_time).

rt_clock_string returns current time as a text string in
[HH:MM:SS] format.

Table 21.1: Summary of timer functions.

21.1 compare_time

Function name: compare_time
Full name: Compare two input time.
Purpose: compares two input times and returns whether the frst one is the
earliest, the same, or the latest.
Input Parameters: 1) Time-1; 2) Time-2. Accepted input formats are
either as a string (e.g. ‘unifrdn(10, 12)’) or as a vector [hour min sec].
Output Parameter: an integer: -1, if Time-1 is the latest; 0, if bother are
equal; +1, if Timer-1 is the earliest.
This function uses: (none).
Sample use:

ct = compare_time ([hour1 min1 sec1], [hour2 min2 sec2]);

147

148 CHAPTER 21. TIMER

if not(ct) % both are equal
...

21.2 current_clock

Function name: current_clock
Full name: current clock.
Purpose: Returns the real-time clock (Computer’s real-time) in seconds or
as a vector in [hour min sec] format.
Input Parameter: ‘1’ : output clock in seconds. ‘3’ : output clock as a
vector [hour min sec].
Output Parameter: Clock value is returned either as in seconds or a vec-
tor [hour min sec].
This function uses: (none).
Further info: Chapter 8, “Interfacing with External Hardware,” in Davidra-
juh (2018) for real-time simulation.
Sample use:

current_clock_HMS = current_clock(3);
disp(current_clock_HMS); % display: hourX minX secX

Related functions: rt_clock_string

21.3 current_time

Function name: current_time
Full name: current time.
Purpose: Returns the current value of the simulated time
(same as PN.curren_time).
Input Parameters: (none).
Output Parameter: the value of PN.curren_time.
This function uses: (none).
Sample use:

current_time = current_time(); % same as PN.curren_time

Related functions: current_clock

21.4 rt_clock_string

Function name: rt_clock_string
Full name: time as a text string.

149 BIBLIOGRAPHY

Purpose: Returns the real-time clock [hour min sec] as a text string for
display in HH:MM:SS format (e.g., ‘10:05:30’).
Input Parameters: (none).
Output Parameter: current time as a text string in HH:MM:SS format.
This function uses: (none)
Further info: Chapter 5.5, “Using Hourly Clock,” in Davidrajuh (2018) for
real-time simulation.
Sample use:

disp_str = rt_clock_string();
disp(disp_str); % display '10:43:20'

Related functions: current_clock

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

150 BIBLIOGRAPHY

Chapter 22

Token-Selection

Colored Petri nets are inevitable for modeling real-world discrete systems,
and tokens’ colors are the basis of Colored Petri nets. This chapter presents
functions for selecting tokens based on color, time, and cost. Tables 22.1,
22.2, and 22.3 present a summary of these functions based on color, time,
and cost, respectively.

For a thorough study of Colored Petri nets, see Chapter 2, “Colored Petri
Nets: The Basics,” in Davidrajuh (2023).

Function Description

tokenAllColor Selects only the tokens that have all of the
specifed colors.

tokenAny Selects any tokens (without any preference
on color).

tokenAnyColor Selects tokens with any of the specifed col-
ors; selected tokens must have at least one
of the specifed colors.

tokenColorless Selects only the colorless tokens (tokens
with NO color).

tokenEXColor Selects tokens with **exactly** the same
colors as the specifed colors.

tokenWOAllColor Excludes a token with all of the specifed
colors.

tokenWOAnyColor Excludes a token with ANY of the speci-
fed colors.

tokenWOEXColor Excludes a token with *exactly* the same
colors as the specifed colors.

tokIDs Returns a set of tokIDs of tokens in a
place.

Table 22.1: Functions for color-based token selection.

151

152 CHAPTER 22. TOKEN-SELECTION

Function Description

tokenArrivedBetween Selects tokens that were deposited into a
place within the given time interval.

tokenArrivedEarly Selects tokens that were deposited earliest
into a place.

tokenArrivedLate Selects tokens that were deposited latest
into a place.

Table 22.2: Functions for time-based token selection.

Function Description

tokenCheap Selects tokens that are the cheapest in a
specifc place.

tokenCostBetween Selects tokens that cost between two lim-
its.

tokenExpensive Selects tokens that are the most expensive
in a specifc place.

Table 22.3: Functions for cost-based token selection.

22.1 tokenAllColor

Function name: tokenAllColor
Full name: tokens with all the specifed colors.
Purpose: returns a set of tokens from a specifed place, where each token
color consists of all the specifed colors in the input parameter.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
3) set of colors.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 2, “Colored Petri Nets: The Basics,” in Davidra-
juh (2023).
Sample use:

[set_of_tokID, nr_token_av] = tokenAllColor('pBUFFER1', 3, ...
{'Red','Green','Blue'}})

Application example: A simple example (“Example-41: Color-based To-
ken Selection” in Section 22.16) is given at the end of this chapter.
Related functions: tokenAnyColor, tokenEXColor

153 22.2. TOKENANY

22.2 tokenAny

Function name: tokenAny
Full name: any token.
Purpose: returns a set of tokens from a specifed place without preference
for token colors. In other words, pick up arbitrary tokens from the specifed
place.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
Note that this function is similar to the function tokenIDs, in which the
second input argument (Number of tokens wanted) is optional; However, in
tokenAny, the two input arguments are compulsory.
This function uses: check_valid_place.
Further info: See chapter 2, “Colored Petri Nets: The Basics,” in Davidra-
juh (2023).
Sample use:

[set_of_tokID, nr_token_av] = tokenAny('pBUFFER1', 3)

Related functions: tokenIDs

22.3 tokenAnyColor

Function name: tokenAnyColor
Full name: tokens with any of the specifed colors.
Purpose: returns a set of tokens from a specifed place, where each token
color consists of any of the specifed colors (one or more of the specifed col-
ors) in the input parameter.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
3) set of colors.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 2, “Colored Petri Nets: The Basics,” in Davidra-
juh (2023).
Sample use:

154 CHAPTER 22. TOKEN-SELECTION

[set_of_tokID, nr_token_av] = tokenAnyColor('pBUFFER1', 3, ...
{'Red','Green','Blue'}})

Related functions: tokenAllColor, tokenEXColor

22.4 tokenColorless

Function name: tokenColorless
Full name: tokens without any color (colorless).
Purpose: returns a set of tokens from a specifed place, where each token
does not possess any color (colorless).
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 2, “Colored Petri Nets: The Basics,” in Davidra-
juh (2023).
Sample use:

[set_of_tokID, nr_token_av] = tokenColorless('pBUFFER1', 3);

22.5 tokenEXColor

Function name: tokenEXColor
Full name: tokens with the exact colors.
Purpose: (EX stands for ‘exact’) This function returns a set of tokens where
each token has the same color set as specifed.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
3) set of colors.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 2, “Colored Petri Nets: The Basics,” in Davidra-
juh (2023).
Sample use:

155 22.6. TOKENWOALLCOLOR

[set_of_tokID, nr_token_av] = tokenEXColor('pBUFFER1', 3, ...
{'Red','Green','Blue'}})

Application example: A simple example (“Example-41: Color-based To-
ken Selection” in Section 22.16) is given at the end of this chapter.
Related functions: tokenAnyColor, tokenAllColor

22.6 tokenWOAllColor

Function name: tokenWOAllColor
Full name: tokens without all the specifed colors.
Purpose: (WO stands for ‘without’) returns a set of tokens from a specifed
place, each token color consisting of none of the specifed colors in the input
parameter.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
3) set of colors.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 2, “Colored Petri Nets: The Basics,” in Davidra-
juh (2023).
Sample use:

[set_of_tokID, nr_token_av] = tokenWOAllColor('pBUFFER1', 3, ...
{'Red','Green','Blue'}})

Related functions: tokenAllColor

22.7 tokenWOAnyColor

Function name: tokenWOAnyColor
Full name: tokens without any of the specifed colors.
Purpose: (WO stands for ‘without’) returns a set of tokens from a specifed
place, where each token color does not consist of any of the specifed colors
(one or more of the specifed colors) in the input parameter.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
3) set of colors.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);

156 CHAPTER 22. TOKEN-SELECTION

only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 2, “Colored Petri Nets: The Basics,” in Davidra-
juh (2023).
Sample use:

[set_of_tokID, nr_token_av] = tokenWOAnyColor('pBUFFER1', 3, ...
{'Red','Green','Blue'}})

Application example: A simple example (“Example-41: Color-based To-
ken Selection” in Section 22.16) is given at the end of this chapter.
Related functions: tokenAnyColor

22.8 tokenWOEXColor

Function name: tokenWOEXColor
Full name: tokens without the exact colors.
Purpose: (EX stands for ‘exact’ and WO stands for ‘without’) returns a set
of tokens (tokIDs) excluding the ones that have the same colors as specifed.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
3) set of colors.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 2, “Colored Petri Nets: The Basics,” in Davidra-
juh (2023).
Sample use:

[set_of_tokID, nr_token_av] = tokenWOEXColor('pBUFFER1', 3, ...
{'Red','Green','Blue'}})

Related functions: tokenEXColor

22.9 tokIDs

Function name: tokIDs
Full name: tokenID numbers.
Purpose: Returns a set of tokIDs of tokens in a place; if the second argu-
ment, the number of tokIDs wanted, is not given, tokIDs of all the tokens in

22.10. TOKENARRIVEDBETWEEN 157

the place is returned.
Input Parameter - Compulsory: Place name or index.
Input Parameter - Optional: Number of tokIDs wanted (‘nr_tokIDs_wanted’).
Output Parameter: a set of tokIDs (‘set_of_tokID’). Note that the set of
tokIDs returned will be the same length as the number of tokens wanted (sec-
ond input argument ´nr_tokIDs_wanted’); only the frst few of ‘set_of_tokID’
will be valid tokIDs, followed by trailing zeros.
This function uses: check_valid_place.
Further info: See chapter 2, “Colored Petri Nets: The Basics,” in Davidra-
juh (2023).
Sample use:

set_of_tokID = tokIDs('pBUFFER2', 3);

Time-based Token Selection

22.10 tokenArrivedBetween

Function name: tokenArrivedBetween
Full name: tokens deposited in the specifed place within the specifed time
interval.
Purpose: returns a set of tokens from a specifed place, where each token
was deposited within the specifed time interval.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
3) time interval as a vector [interval_start interval_end]).
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 5, “Time-based Token Selection,” in Davidrajuh
(2023).
Sample use:

% Example 13 in Davidrajuh (2023)
% pick three tokens from "pQueue" deposited between 10 and 20 TU
tokIDs = tokenArrivedBetween('pQueue',3, [10, 20]);

Related functions: tokenArrivedEarly, tokenArrivedLate

158 CHAPTER 22. TOKEN-SELECTION

22.11 tokenArrivedEarly

Function name: tokenArrivedEarly
Full name: tokens deposited earliest.
Purpose: returns a set of tokens deposited earliest to a specifed place.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 5, “Time-based Token Selection,” in Davidrajuh
(2023).
Sample use:

% Example 13 in Davidrajuh (2023)
% pick oldest three tokens from "pQueue"
tokIDs = tokenArrivedEarly('pQueue',3);

Application example: A simple example (“Example-42: Time-based To-
ken Selection” in Section 22.17) is given at the end of this chapter.
Related functions: tokenArrivedBetween, tokenArrivedLate

22.12 tokenArrivedLate

Function name: tokenArrivedLate
Full name: tokens deposited latest.
Purpose: returns a set of tokens deposited at the latest to a specifed place.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 5, “Time-based Token Selection,” in Davidrajuh
(2023).
Sample use:

% Example 13 in Davidrajuh (2023)
% pick newest three tokens from "pQueue"
tokIDs = tokenArrivedLate('pQueue',3);

159 22.13. TOKENCHEAP

Application example: A simple example (“Example-42: Time-based To-
ken Selection” in Section 22.17) is given at the end of this chapter.
Related functions: tokenArrivedBetween, tokenArrivedEarly

Cost-based Token Selection

22.13 tokenCheap

Function name: tokenCheap
Full name: cheapest tokens in a specifc place.
Purpose: returns a set of tokens that are the cheapest in a specifc place.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 6, “Token Selection Based on Cost,” in Davidra-
juh (2023).
Sample use:

% Example 17 in Davidrajuh (2023)
% pick cheapest three tokens from "pBuffer"
tokIDs = tokenCheap('pBuffer',3);

Application example: A simple example (“Example-43: Cost-based Token
Selection” in Section 22.18) is given at the end of this chapter.
Related functions: tokenCostBetween, tokenExpensive

22.14 tokenCostBetween

Function name: tokenCostBetween
Full name: tokens that cost between two limits.
Purpose: Returns tokens in a specifc place that cost between two limits,
the lower cost (lc) and the upper cost (uc).
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
3) Lower cost limit. 4) Upper cost limit.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.

160 CHAPTER 22. TOKEN-SELECTION

This function uses: check_valid_place.
Further info: See chapter 6, “Token Selection Based on Cost,” in Davidra-
juh (2023).
Sample use:

% Example 17 in Davidrajuh (2023)
% three tokens from "pBuffer" that cost between 270 CU and 290 CU
tokID = tokenCostBetween('pBuffer', 3, 270, 290);

Related functions: tokenCheap, tokenExpensive

22.15 tokenExpensive

Function name: tokenExpensive
Full name: Most expensive tokens in a specifc place.
Purpose: returns a set of most expensive tokens in a specifc place.
Input Parameters: 1) Place name or index. 2) Number of tokens wanted.
Output Parameters: 1) a set of tokIDs (‘set_of_tokID’). 2) Number of
valid tokIDs in ‘set_of_tokID’. Note that the set of tokIDs returned will be
the same length as the number of tokens wanted (second input argument);
only the frst few of ‘set_of_tokID’ will be valid tokIDs, followed by trailing
zeros.
This function uses: check_valid_place.
Further info: See chapter 6, “Token Selection Based on Cost,” in Davidra-
juh (2023).
Sample use:

% Example 17 in Davidrajuh (2023)
% pick most expensive three tokens from "pBuffer"
tokIDs = tokenExpensive('pBuffer',3);

Application example: A simple example (“Example-43: Cost-based Token
Selection” in Section 22.18) is given at the end of this chapter.
Related functions: tokenCostBetween, tokenCheap

22.16 Example-41: Color-based Token Selection

Fig.22.1 shows the Colored Petri net we shall use to test some functions for
selecting tokens based on color. This Petri net possesses two parts:

˝ The upper part adds colors to tokens (tPainter adds colors to tokens
and deposits them into pPainted-1 and pPainted-2).

˝ The lower part is the delay mechanism, involving pDelay, tDelay, and
pDelayed; tDelay has a large fring time. The lower part is to make

22.16. EXAMPLE-41: COLOR-BASED TOKEN SELECTION 161

Figure 22.1: Testing functions for color-based token selection.

162 CHAPTER 22. TOKEN-SELECTION

sure that the selecting transitions (tWithColors and tWOutColors)
are forced to wait until tPainter has completed the coloring of tokens.

tPainter only adds a few colors to the deposited tokens into pPainted-1
and pPainted-2. The frst three colors are single strings: {‘Red’}, {‘Green’},
and {‘Blue’}, followed by a color that has two strings: {‘Red’, ‘Green’}.
The fourth and the ffth colors have three and four strings, respectively:
{‘Red’,‘Green’,‘Blue’} and {‘Red’,‘Green’,‘Blue’,‘Grey’}. The fnal token
will be colorless (tPainter adds empty color, {}).

Listing-22.1 shows the main simulation fle.

Listing 22.1: Main Simulation File (Example-41)
global global_info
global_info.STOP_AT = 200;

% colors to add
global_info.cr = {{'Red'}, {'Green'}, {'Blue'},... % one string

{'Red','Green'}, ... % two strings
{'Red','Green','Blue'}, ... % three strings
{'Red','Green','Blue','Grey'},{}}; % four and zero strings

% initial color rotation index
global_info.cr_index = 0;

png = pnstruct('ex_41_pdf');

%%%% initial dynamics %%%%
dyn.m0 = {'pPaint',10, 'pDelay',1};
dyn.ft = {'tDelay',100, 'allothers',1};
pni = initialdynamics(png, dyn);

sim = gpensim(pni);
prnfinalcolors(sim, {'pWithColors','pWOutColors'});

In this example, we are only using specifc pre-processors to avoid a large
common pre-processor. The pre-processor for tPainter (Listing-22.2) adds
colors given in the global variable, ‘global_info.cr’, to the tokens deposited
in pPainted-1 and pPainted-2.

Listing 22.2: tPainter_pre (Example-41)
function [fire, transition] = tPainter_pre(transition)
global global_info

% tPaint paints only seven colors (seven times)
ntP = timesfired('tPainter');
% colors are finished, no more
if eq(ntP, length(global_info.cr))

fire = 0;

https://length(global_info.cr
https://global_info.cr
https://global_info.cr

163 22.16. EXAMPLE-41: COLOR-BASED TOKEN SELECTION

return
end

global_info.cr_index = global_info.cr_index + 1;
transition.new_color = global_info.cr{global_info.cr_index};
fire = 1;

Transition tWithColors fres only two times. The frst time it fres, it
will ask for a token with *exactly* three colors (function tokenEXColor):
{‘Red’, ‘Green’, ‘Blue’}. There is only one token in pPainted-1 with three
specifed colors only - color number four. Hence, this token will be selected
and deposited into pWithColors. The second time tWithColors fres, it
asks for a token with *all* three colors (function tokenAllColor); if a
token has more colors than these three, then it is also OK. In this case, there
is only one token that can satisfy this demand, and it has four colors - color
number fve; this token will be selected and deposited into pWithColors.
The pre-processor tWithColors_pre is shown in Listing-22.3,

Listing 22.3: tWithColors_pre (Example-41)
function [fire, transition] = tWithColors_pre(transition)
nt = timesfired(transition.name);
switch nt

case 0
tokID1 = tokenEXColor('pPainted-1',1,...

{'Red','Green','Blue'});
case 1

tokID1 = tokenAllColor('pPainted-1',1,...
{'Red','Green','Blue'});

otherwise
tokID1 = 0;

end

transition.selected_tokens = tokID1;
fire = tokID1; % must have the specified colors

Transition tWOutColors fres only once. In the pre-processor, tWOut-
Colors requests a token that does not possess any of the three colors {‘Red’,
‘Green’, ‘Blue’}. There is only one token that can satisfy this demand, and
it is the colorless token. Hence, this token will be selected and deposited into
pWOutColors. The pre-processor tWOutColors_pre is shown in Listing-
22.4.

Listing 22.4: tWOutColors_pre (Example-41)
function [fire, transition] = tWOutColors_pre(transition)
nt = timesfired(transition.name);
switch nt

164 CHAPTER 22. TOKEN-SELECTION

case 0
tokID1 = tokenWOAnyColor('pPainted-2', 1,...

{'Red','Green','Blue'});
otherwise

tokID1 = 0;
end

transition.selected_tokens = tokID1;
fire = tokID1; % must have the specified colors

The printout of the main simulation fle confrms the correct selection of
the tokens.

**** **** Colors of Final Tokens ...
No. of final tokens: 34

Place: pWithColors
Time: 101 Colors: "Blue" "Green" "Red"
Time: 102 Colors: "Blue" "Green" "Grey" "Red"

Place: pWOutColors
Time: 101 *** NO COLOR ***

22.17 Example-42: Time-based Token Selection

Fig.22.2 shows the Colored Petri net we shall use to test some functions for
selecting tokens based on time. As in the previous example, this Petri net
also possesses two parts:

˝ The upper part adds colors to tokens; tTimer adds the current time
as a color to tokens and deposits them into pTimed.

˝ The lower part is the delay mechanism, involving pDelay, tDelay,
and pDelayed; tDelay has a large fring time. The lower part is to
make sure that the selecting transitions (tEarliest and tLatest) are
forced to wait until tTimer has completed adding time as the color to
tokens.

Listing-22.5 shows the main simulation fle.

Listing 22.5: Main Simulation File (Example-42)
global global_info
global_info.STOP_AT = 200;

spng = pnstruct('ex_42_pdf');
dyn.m0 = {'pStart',10, 'pDelay',1};
dyn.ft = {'tDelay',100, 'allothers',1};

22.17. EXAMPLE-42: TIME-BASED TOKEN SELECTION 165

Figure 22.2: Testing functions for time-based token selection.

166 CHAPTER 22. TOKEN-SELECTION

pni = initialdynamics(spng, dyn);
sim = gpensim(pni);
prnfinalcolors(sim, {'pEarliest','pLatest'});

All the enabled transitions are handled in the COMMON_PRE (Listing-
22.6). In COMMON_PRE:

˝ tTimer is allowed to fre as many times as there are tokens in its
input place pStart. However, tTimer adds the current time (function
current_time) as the token’s color.

˝ The two selection transitions (tEarliest and tLatest) are allowed to
fre only three times.

˝ When tEarliest is enabled, it asks for the earliest token that arrived
in pTimed (FIFO).

˝ When tLatest is enabled, it asks for the latest token that arrived in
pTimed (LIFO).

Listing 22.6: COMMON_PRE (Example-42)
function [fire, transition] = COMMON_PRE(transition)

% Selecting trans (tEariest and tLatest)
% only three times
ntP = timesfired(transition.name);
if ismember(transition.name, {'tEarliest','tLatest'})

if eq(ntP, 3)
fire = 0;
return

end
end

switch transition.name
case 'tTimer'

transition.new_color = num2str(current_time());
tokID1 = 1; % always let tTimer fire

case 'tEarliest'
tokID1 = tokenArrivedEarly('pTimed', 1);

case 'tLatest'
tokID1 = tokenArrivedLate('pTimed', 1);

case 'tDelay'
tokID1 = 1; % let tDelay fire

end

transition.selected_tokens = tokID1;
fire = tokID1; % must have the specified colors

167 22.18. EXAMPLE-43: COST-BASED TOKEN SELECTION

The printout of the main simulation fle confrms the correct selection of
the tokens.

**** **** Colors of Final Tokens ...
No. of final tokens: 24

Place: pEarliest
Time: 101 Colors: "0"
Time: 102 Colors: "1"
Time: 103 Colors: "2"

Place: pLatest
Time: 101 Colors: "9"
Time: 102 Colors: "8"
Time: 103 Colors: "7"

22.18 Example-43: Cost-based Token Selection

Fig.22.3 shows a production facility where some production machines are
employed:

˝ The machines are arranged in assembly lines (Lines 1 to 3), and the
products that end up in the output cartridge (pOUT) are the same.

˝ However, the machines M11 to M33 work at diferent speeds, and
these were purchased at diferent times in the factory’s history.

˝ Since the machines were purchased at diferent times, they also incur
diferent costs (both fxed and variable costs).

The Petri net is to fnd the cheapest and most expensive production
paths. Note that, like the previous two examples in this chapter, Petri net
also employs a delay mechanism to freeze the selection transitions tCheap
and tExpen until all three sample products (tokens) arrive in pOUT.

Listing-22.7 shows the main simulation fle, and Listing-22.8 shows the
COMMON_PRE.

Listing 22.7: Main Simulation File (Example-43)
global global_info
global_info.STOP_AT = 200;

spng = pnstruct('ex_43_pdf');
dyn.m0 = {'p1In',1,'p2In',1,'p3In',1, 'pDelay',1};
dyn.ft = {'tDelay',100, 'allothers', 1};
dyn.fc_fixed = {'M11',76, 'M12',62, 'M13',48, ...

'M21',59, 'M22',29, 'M23',50, ...
'M31',74, 'M32',12, 'M33',23};

168 CHAPTER 22. TOKEN-SELECTION

Figure 22.3: Testing functions for time-based token selection.

169 BIBLIOGRAPHY

pni = initialdynamics(spng, dyn);

sim = gpensim(pni);
prnfinalcolors(sim, {'pCheap','pExpen'});

Listing 22.8: COMMON_PRE (Example-43)
function [fire, transition] = COMMON_PRE(transition)

switch transition.name
case 'tCheap'

% chose the cheapest token form pOUT
tokID1 = tokenCheap('pOUT',1);

case 'tExpen'
% chose the expensive token form pOUT
tokID1 = tokenExpensive('pOUT', 1);

case 'tDelay'
tokID1 = 1; % let tDelay fire

otherwise
% all others - machine M11 to M33 add their
% name to the path
transition.new_color = transition.name;
tokID1 = 1; % let them fire

end
transition.selected_tokens = tokID1;
fire = tokID1; % must have the specified colors

The simulation result (shown below) indicates that assembly line 3 is the
cheapest (a product costs 109 CU), and assembly line 1 is the most expensive
(a product costs 186 CU).

**** **** Colors of Final Tokens ...
No. of final tokens: 3

Place: pCheap
Time: 101 Colors: "M31" "M32" "M33" Cost: 109

Place: pExpen
Time: 101 Colors: "M11" "M12" "M13" Cost: 186

Bibliography

Davidrajuh, R. (2023). Colored Petri Nets for Modeling of Discrete Systems:
A Practical Approach With GPenSIM, Springer Nature.

170 BIBLIOGRAPHY

Chapter 23

Utility-Functions

This chapter - the fnal one - presents some more utility functions. Readers
may fnd that some of the functions are useful and some are not. However,
as the author of this book (and developer of GPenSIM), I want to list all
these functions for the sake of completion. Table-23.1 presents a summary
of these functions.

Function Description

arcweight,
arcweightPT and
arcweightTP

Returns the weight of an arc from an ele-
ment (place or transition) to another ele-
ment (place or transition).

combinatorics All combinations of the input vector; each
combination becomes a row of a matrix.

dispMultipleCR This functions displays multiple carriage-
returns (given as the input parameter) on
the screen.

pnclass Prints the class of Petri net (e.g., Binary,
State Machine, Marked (Event) Graph,
Timed Petri Net, Strongly Connected
component, etc.).

randomgen Randomly rearranges the input set (e.g.,
[1 2 3] becomes [3 1 2]).

wakeup and util_wakup Makes a wake-up sound to draw the users’
attention.

Table 23.1: Summary of utility functions.

23.1 arcweight (new in version 11)

Function name: arcweight
Full name: weight of arc between two elements.

171

172 CHAPTER 23. UTILITY-FUNCTIONS

Purpose: the function that returns the weight of an arc from an element
(place or transition) to another element (transition or place).
Input Parameters: 1) Place name or transition name (text string, index
NOT accepted). 2) Transition name or Place name (text string, index NOT
accepted).
Output Parameter: Weight of the arc between the frst and second ele-
ment.
This function uses: (none).
Sample use:

disp(['Arc weight (t1, p2) : ', ...
int2str(arcweight('t1','p2'))]);

Application example: A simple example (“Example-44: arcweight” in Sec-
tion 23.16) is given at the end of this chapter.
Related functions: arcweightPT, arcweightTP

23.2 arcweightPT

Function name: arcweightPT
Full name: weight of arc between a place and a transition.
Purpose: This is a low-level function that returns the weight of an arc from
a given place to a given transition.
Input Parameters: 1) Place index (name as text string NOT accepted).
2) Transition index (name as text string NOT accepted).
Output Parameter: Weight of the arc between the given place and the
transition.
This function uses: (none).
Sample use:

disp(['Arc weight between "pBuff1" (index 33) and ...
"tMachine1" (index 5) is ', arcweightPT(33, 5)]);

Application example: A simple example (“Example-44: arcweight” in Sec-
tion 23.16) is given at the end of this chapter.
Related functions: arcweight, arcweightTP

23.3 arcweightTP

Function name: arcweightTP
Full name: weight of arc between a transition and a place.
Purpose: This is a low-level function that returns the weight of an arc from
a given transition to a given place.

173 23.4. COMBINATORICS

Input Parameters: 1) Transition index (name as text string NOT ac-
cepted). 2) Place index (name as text string NOT accepted).
Output Parameter: Weight of the arc between the given transition and
the place.
This function uses: (none).
Sample use:

disp(['Arc weight between "tMachine1" (index 5) and ...
"pBuff1" (index 33) is ', arcweightTP(5, 33)]);

Application example: A simple example (“Example-44: arcweight” in Sec-
tion 23.16) is given at the end of this chapter.
Related functions: arcweight, arcweightPT

23.4 combinatorics

Function name: combinatorics
Full name: all combinations of the input vector.
Purpose: Using dynamic programming, this function will compute all the
combinations of the input vector.
For example, if the input is [3 1 2], the output will be a matrix with each
row a new combination as shown below:
2 1 3
1 2 3
1 3 2
2 3 1
3 2 1
3 1 2
Input Parameter: A vector. E.g., [-3 5.2 3.1]
Output Parameter: A matrix in which each row represents a new combi-
nation of the elements in the input vector.
This functions uses: (none)
Sample use:

transition_indices = [7 9 11];
% randomize
all_random_combinations = combinatorics(transition_indices);

23.5 dispMultipleCR

Function name: dispMultipleCR
Full name: print multiple carriage returns.

174 CHAPTER 23. UTILITY-FUNCTIONS

Purpose: Sometimes, we need to separate two displays on screen with mul-
tiple carriage returns. This function does that. Input Parameter: Number
of carriage returns needed to be printed.
Output on screen: Multiple carriage returns (blank lines) will be printed
on the screen.
This function uses: (none).
Sample use:

disp('this is the first message');
dispMultipleCR(5);
disp('this second message comes after 5 blank lines ');

23.6 dispSetOfPlaces

Function name: dispSetOfPlaces
Full name: display a set of places.
Purpose: This function will print the names of places identifed by their
indices.
Input Parameters: 1) Header line. 2) Set of places identifed by their
indices.
Output to screen: a set of places will be printed on the screen. For ex-
ample, let the inputs be ’The following places are source places: ’ and [3 1
2]. Assume the names of places identifed by their indices are ‘p3’, ‘p1’, and
‘p2’. Then, the following message will be printed on the screen.
The following places are source places:
p3
p1
p2

This function uses: (none)
Sample use:

dispSetOfPlaces('The three sink places are: ', [2, 8, 11]);

Related functions: dispSetOfTrans

23.7 dispSetOfTrans

Function name: dispSetOfTrans
Full name: display a set of transitions.
Purpose: This function will print the names of transitions identifed by
their indices.

23.8. GOODNAME 175

Input Parameters: 1) Header line. 2) Set of transitions identifed by their
indices.
Output to screen: a set of transition names will be printed on the screen.
For example, let the inputs be ’The following transitions are cold (source)
transitions: ’ and [3 1 2]. Assume the names of transition identifed by their
indices are ‘tC’, ‘tA’, and ‘tB’. Then, the following message will be printed
on the screen.
The following transitions are cold (source) transitions:
tC
tA
tB

This function uses: (none).
Sample use:

dispSetOfTrans('The three sink transitions are: ', [5, 18, 32]);

Related functions: dispSetOfPlaces

23.8 goodname

Function name: goodname
Full name: make a better string of the given input text string.
Purpose: To make the length of a text string to a predefned size. If the
input length exceeds the predefned size, the string will be chopped. If the
length is less, the string will be padded with blanks.
For example, let us assume the input string is ‘Reggie.’ goodname(’Reggie’,
20) will return a string ‘Reggie ’ (containing 14 trailing spaces), whereas
goodname(’Reggie’, 2) will return ‘Re’.
Also, alignment can be fed as the third and optional input argument. For
example,
goodname(’Reggie’,2, ’l’) (left alignment) will return ‘Reggie ’;
Whereas, goodname(’Reggie’,2, ’r’) (right alignment) will return ‘
Reggie’.
Input Parameters: 1) text string. 2) Length of string to be returned. 3)
Optional: Alignment: ’l’ for left and ’r’ for right.
Output Parameter: A modifed string.
This function uses: (none)
Sample use:

disp(['Name in 10 charater length, aligned to left:', ...
goodname('Reggie', 10, 'l')]);

176 CHAPTER 23. UTILITY-FUNCTIONS

23.9 pnclass

Function name: pnclass
Full name: Petri Net Class.
Purpose: checks the class of Petri net. This function returns a vector of
fags representing the following information (output variable):
fag-1: Binary (Ordinary) or Generalized Petri Net
fag-2: State Machine
fag-3: Marked (Event) Graph
fag-4: Timed Petri Net
fag-5: Number of Strongly Connected components

Input Parameter: Petri net with initial dynamics (pni, output of
initialdynamics); alternatively, Static Petri net graph (spng, output
of pnstruct) can also be input.
Output Parameter: A vector with a set of fags, as described above.
Output on screen: The class of Petri Net will be printed.
This function uses: stronglyconn.
Further info: Chapter 6, “Petri net Extension,” in Davidrajuh (2018),
Chapter 11, “Discrete Systems as Petri Modules,” Davidrajuh (2021), and
Davidrajuh (2023).
Sample use:

% in a processor file
global PN
[classtype] = pnclass(PN);
disp(['PN Class: ', int2str(classtype)]);

Application example: A simple example (“Example-45: pnclass” in Sec-
tion 23.17) is given at the end of this chapter.

23.10 randomgen

Function name: randomgen
Full name: Randomly rearrange.
Purpose: This function randomly rearranges the input set. For example, if
the vector [1 2 3] is input, then the output will be one of the six possibilities.
Input Parameter: A vector of numbers.
Output Parameter: A vector containing the elements of the input vector
rearranged.
This function uses: (none).
Sample use:

177 23.11. PRNERRORMSG

% input a vector of numbers
input_vector = [1:5];
[output_vector] = randomgen(input_vector);
disp(['Input vector ', int2str(input_vector), ...

' rearranged is : ', int2str(output_vector)]);

23.11 prnerrormsg

Function name: prnerrormsg
Full name: Print error message.
Purpose: During the simulation or before or after, we may want to catch
an error and display it clearly using a standard format. This simple function
will do that.
Input Parameter: Error message (a text string).
Output to screen: The error message will be displayed on the screen.
This function uses: (none).
Sample use:

...
% catch an error
if not_happened

error_msg = 'Did not happen';
prnerrormsg(error_msg);

end
...

23.12 search_names

Function name: search_names
Full name: Search a set of names.
Purpose: fnds the indices of an element (name) within a set of names. If
an element is not found within the set of names, 0 is returned.
Input Parameters: 1) Name; 2) Set of names to be searched.
Output Parameter: Index of name within the set, if found. Otherwise, 0
will be returned.
This function uses: (none).
Sample use:

% Assume "Set_of_Names" be {'alfa', 'beta', '∆', 'alfa'}
% and a variable "var1" be 'gamma'
[element_nr] = search_names(var1, Set_of_Names);
if any(element_nr)

disp([var1, ' is in the set!']);

178 CHAPTER 23. UTILITY-FUNCTIONS

else
disp([var1, ' is NOT in the set!']);

end

23.13 string_HH_MM_SS

Function name: string_HH_MM_SS
Full name: Convert seconds to a string of "Hour:Minute:Sec" format.
Purpose: converts seconds to string ’[HH MM SS]’.
Input Parameter: Seconds.
Output Parameter: A text string of ’[HH MM SS]’ format.
This function uses: (none).
Sample use:

% Assume Time1 is in seconds.
% convert Time1 to a text string
display_string = string_HH_MM_SS(Time1);
disp([' Time1 is :', display_string]);

23.14 util_wakeup

Same as the function wakeup described below.

23.15 wakeup

Function name: wakeup
Full name: Wake-up.
Purpose: Makes a wake-up sound. This function draws the users’ attention.
It uses MATLAB’s built-in function chirp to make sound. This function is
useful if the simulation (gpensim) takes a long time. In the min simulation
fle, if we put this wakeup after the function gpensim, it will notify the
user that the simulation is complete.
NOTE: This function was named ’util_wakeup’ before.
Input Parameter: (none)
Output: An audio warning sound.
This function uses: (MATLAB’s built-in function chirp).
Sample use:

% In main simulation file:
sim_results = gpensim(pni);
wakeup(); % let the user know that the simulation is complete

Related functions: util_wakeup

179 23.16. EXAMPLE-44: ARCWEIGHT

23.16 Example-44: arcweight

Figure 23.1: Petri net for testing functions for fnding arc weights.

Fig.23.1 shows a Petri net for testing the newer utility functions. Listing-
23.1 shows the main simulation fle.

Listing 23.1: Main Simulation File (Example-44)
spng = pnstruct('ex_44_pdf');

%%%% function "arcweightPT"
p1_index = is_place('p1'); % get place index
t1_index = is_trans('t1'); % get trans index
aw_p1t1 = arcweightPT(p1_index, t1_index);
disp(['arc weight (p1, t1) = ', int2str(aw_p1t1)]);

%%%% function "arcweightTP"
p2_index = is_place('p2'); % get place index
aw_t1p2 = arcweightTP(t1_index, p2_index);
disp(['arc weight (t1, p2) = ', int2str(aw_t1p2)]);

%%%% function "arcweight"
aw_p2t2 = arcweight('p2', 't2');
disp(['arc weight (p2, t2) = ', int2str(aw_p2t2)]);
aw_t2p1 = arcweight('t2', 'p1');
disp(['arc weight (t2, p1) = ', int2str(aw_t2p1)]);

The arcweightPT and arcweightTP functions are low-level functions
that accept only place and transition indices. For example, if we know the
index of t1 (function is_trans returns the index of a transition) and the

180 CHAPTER 23. UTILITY-FUNCTIONS

index of p2 (function is_place returns the index of a place), then using
arcweightTP, we can get the weight of the arc from t1 to p2. Similarly,
arcweightPT will return the weight of the arc from p2 to t1.

However, if we want to use the names (text strings) rather than indices,
the arcweight is the function to use.

The simulation run result is shown below.

arc weight (p1, t1) = 1
arc weight (t1, p2) = 2
arc weight (p2, t2) = 3
arc weight (t2, p1) = 4

23.17 Example-45: pnclass

We shall use the same Petri net that is used in Example-44 (Section 23.16).
The main simulation fle is given below:

Listing 23.2: Main Simulation File (Example-45)

spng = pnstruct('ex_45_pdf');

dyn.m0 = {'p1', 1};
dyn.ft = {'allothers', 1};
pni = initialdynamics(spng, dyn);

Flags = pnclass(pni);
disp(' ');
disp('Returned Flags:'); disp(Flags);

The simulation run result is shown below.

**** Example-45: testing function "pnclass"

This is a Generalized Petri Net.
This is a Petri Net State Machine.
This is an Event Graph (Marked Graph).
This is a Timed Petri net.
This is a Strongly Connected Petri net.

Returned Flags:
0 1 1 1 1 0 0 0

181 BIBLIOGRAPHY

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Davidrajuh, R. (2021). Petri Nets for Modeling of Large Discrete Systems,
Springer.

Davidrajuh, R. (2023). A classifer of petri nets for gpensim environment,
2023 7th International Symposium on Multidisciplinary Studies and Inno-
vative Technologies (ISMSIT), IEEE, pp. 1–6.

182 BIBLIOGRAPHY

Appendices

183

Appendix A

GPenSIM Compiler OPTIONS

Table-A.1 presents some of the compiler OPTIONS in GPenSIM. OPTIONS
are added on ‘global_info’ in the main simulation fle. For details, see
chapter 5, “Optimizing Simulations with GPenSIM,” Davidrajuh (2018))

OPTION Meaning

DELTA_TIME the sampling frequency.
FIRING_SEQ,
FS_REPEAT,
FS_ALLOW_PARALLEL

options for fring sequence.

HOURLY_CLOCK to activate the hourly (business) clock that
runs in HH:MM:SS format.

MAX_LOOP the maximum number of simulation loops.
PRINT_LOOP_NUMBER print loop numbers during simulation.
REAL_TIME to use the computer’s real-time clock.
STARTING_AT simulation start time.
STOP_AT simulation stop time.
STOP_SIMULATION to (abruptly) stop simulation.

Table A.1: Compiler OPTIONS in GPenSIM.

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

185

186 BIBLIOGRAPHY

Appendix B

Reserved Words in GPenSIM

GPenSIM consists of a large number of functions. To fully utilize its facilities,
it is important to avoid using these functions’ names as variable names in
fles created by the user.

There are some reserved words in GPenSIM (GPenSIM uses these words
in its systems fles). Using these reserved words as variables’ names is pro-
hibited; otherwise, simulations may not start at all. Table-B.1 presents the
reserved words.

Function Description

PN PN is a structure representing a run-time
Petri net. PN is a global variable visible in
all system fles.

global_info As the name depicts, global_info is also
a global variable; global_info is used to
set the global OPTIONS (see in Appendix-
A); also, it can be used to pass user-defned
variables between diferent fles.

function names such
as ‘pnstruct’,
‘initialdynamics’,
‘gpensim’

some of the main function names are reserved
words as without these functions, there is no
way to start the simulations.

COMMON_PRE,
COMMON_POST

GPenSIM will automatically call these two
fles if the common processors are available.

‘allothers’ In the main simulation fle, ‘allothers’ is
a keyword for assigning the fring times for
the unspecifed transitions.

Table B.1: GPenSIM Reserved Words.

For details, see Section 2.9, “GPenSIM Reserved Words,” in Davidrajuh
(2018).

187

188 BIBLIOGRAPHY

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Appendix C

GPenSIM Webpage

Figure C.1: GPenSIM Website

GPenSIM’s website is http://www.davidrajuh.net/gpensim/.
This website (Fig.C.1) presents some material on GPenSIM; for example,
GPenSIM systems fles (version 10) can be freely downloaded from this web-

189

http://www.davidrajuh.net/gpensim/

190 BIBLIOGRAPHY

site. Also, this website functions as a companion website for the three books
published on GPenSIM.

Figure C.2 shows the basic book on GPenSIM (“Modeling Discrete-
Event Systems with GPenSIM,” Davidrajuh (2018)), which can be con-
sidered as a simple user manual. The examples in this book (source code)
can be downloaded from the GPenSIM website.

Figure C.2: Basic Book on GPenSIM.

Figure C.3 shows the second book on GPenSIM (“Petri Nets for Mod-
eling Large Discrete Systems,” Davidrajuh (2021)). This book discusses
modular model building with a new Modular Petri Net theory, focusing on
modeling large discrete systems. The examples in this book (source code)
can also be downloaded from the GPenSIM website.

Figure C.4 shows the third book on GPenSIM (“Colored Petri Nets
for Modeling of Discrete Systems,” Davidrajuh (2023)). This book
is for modeling real-world discrete systems for which Colored Petri Nets
are needed. This book focuses on coloring of tokens, resources, and cost
calculation.

Bibliography

Davidrajuh, R. (2018). Modeling Discrete-Event Systems with GPenSIM,
Springer International Publishing, Cham.

Davidrajuh, R. (2021). Petri Nets for Modeling of Large Discrete Systems,
Springer.

191 BIBLIOGRAPHY

Figure C.3: Book on Modeling Large Discrete Systems with GPenSIM.

Figure C.4: Book on Colored Petri Nets with GPenSIM.

192 BIBLIOGRAPHY

Davidrajuh, R. (2023). Colored Petri Nets for Modeling of Discrete Systems:
A Practical Approach With GPenSIM, Springer Nature.

List of Figures

2.1 Petri net for generating reachability tree. 10
2.2 Generated reachability tree. 11
2.3 Petri net with Inhibitor Arc for generating reachability tree. 12

3.1 Petri net for checking the function ‘fring sequence’. 16
3.2 Coverability tree for the Petri net shown in Fig.3.1. 17

4.1 Petri net model of three machines in action. 31
4.2 Cost development of the product. 33

6.1 Applying graph algorithms to a Petri net. 41
6.2 Digraph converted from the Petri net. 42
6.3 Digraph’s Adjacency matrix as a composition of the Petri net’s Ae. . 43
6.4 A Petri net with two cycles. 44

8.1 A Petri net with two transitions. 54

9.1 A Marked Graph with four cycles. 60

10.1 Petri net for testing the function createPDF. 67
10.2 Petri net for testing the function matrixD. 69
10.3 Petri net for testing functions postset. 70

11.1 Graphical plot by the function plotp. 74
11.2 Graphical plot by the function plotp. 75

12.1 Petri net for testing the function gpensim_2_PNCT. 78

13.1 Sample PNML fle (‘PNML-fle001.xml’) for testing the function
pnml2gpensim. 84

14.1 Petri net for testing the functions for printing token colors. 90

15.1 Petri net for testing the functions for extracting markings. 102

16.1 Petri net for testing the functions prnss. 108
16.2 Reachability tree for the Petri net shown in Fig.16.1. 109

17.1 Petri net model for the Producer-Consumers Problem. 116

193

194 LIST OF FIGURES

18.1 Petri net for generating reachability tree with time and cost. 123
18.2 Reachability tree generated with the function cotree. 123

19.1 Processes A and B using two Resources Q and R (Adapted from
Davidrajuh (2023). 134

19.2 Gantt Chart showing the resource usage among the transitions. . . . 138

20.1 Finding siphons and traps. 143
20.2 Finding P-invariants and T-invariants. 144

22.1 Testing functions for color-based token selection. 161
22.2 Testing functions for time-based token selection. 165
22.3 Testing functions for time-based token selection. 168

23.1 Petri net for testing functions for fnding arc weights. 179

C.1 GPenSIM Website . 189
C.2 Basic Book on GPenSIM. 190
C.3 Book on Modeling Large Discrete Systems with GPenSIM. 191
C.4 Book on Colored Petri Nets with GPenSIM. 191

List of Tables

1.1 Check-Valid functions. 1

2.1 Functions for Reachability (Coverability) Tree. 7

4.1 Get-functions (part I). 21
4.2 Get-functions (part II). 22

5.1 gpensim functions. 35

6.1 Graphs and Cycles functions. 37

8.1 Summary of Is functions. 49

9.1 Summary of functions for Performance Metrics. 57

10.1 Summary of functions for Petri Net Structure. 63

13.1 PNML - GPenSIM functions. 81

14.1 Summary of functions for printing token colors from the simulation
results. 87

15.1 Summary of functions for printing state info. 97

17.1 Summary of functions for manipulating transition priority. 113

19.1 Summary of functions for resource usage. 128

20.1 Summary of functions for fnding structural invariant. 139

21.1 Summary of timer functions. 147

22.1 Functions for color-based token selection. 151
22.2 Functions for time-based token selection. 152
22.3 Functions for cost-based token selection. 152

23.1 Summary of utility functions. 171

A.1 Compiler OPTIONS in GPenSIM. 185

195

196 LIST OF TABLES

B.1 GPenSIM Reserved Words. 187

Index

arcweight, 171
arcweightPT, 172
arcweightTP, 172
availableInst, 128
availableRes, 129

build_cotree_i, 9

check_valid_fle, 1
check_valid_place, 2
check_valid_resource, 2
check_valid_transition, 3
combinatorics, 173
compare_time, 147
convert_PN_V, 37
cotree, 7
cotreeCT, 121
cotreei, 9
createPDF, 63
current_clock, 148
current_marking, 97
current_time, 148
cycles, 38

DELTA_TIME, 185
dispMultipleCR, 173
dispSetOfPlaces, 174
dispSetOfTrans, 174
DURATION matrix, 57, 59

extractt, 57

fnal_marking, 99
FIRING_SEQ, 185
fringseq, 15
FS_ALLOW_PARALLEL, 185
FS_REPEAT, 185

get_all_tokens, 22
get_color, 22

get_cost, 23
get_current_colors, 23
get_fringtime, 24
get_inputplace, 24
get_inputtrans, 24
get_outputplace, 25
get_outputtrans, 25
get_place, 26
get_priority, 26
get_tokCT, 26
get_token, 27
get_tokens, 27
get_trans, 28
goodname, 175
gpensim, 35
gpensim2pnml, 82
gpensim_2_PNCT, 8, 77
gpensim_ver, 36

HOURLY_CLOCK, 185

initial_marking, 98
initialdynamics, 47
is_enabled, 49
is_eventgraph, 50
is_fring, 15, 50
is_place, 51
is_stronglyconn, 51
is_trans, 52

markings_string, 100
matrixD, 64
MAX_LOOP, 185
mincyctime, 58

nplaces, 28
nresources, 28
ntokens, 29
ntrans, 29

197

198 INDEX

occupancy, 58
OCCUPANCY matrix, 59

pinvariant, 139
plot_cotree, 8
plotGC, 132
plotp, 73
pname, 29
pnclass, 176
PNCT_graph, 8
pnml2gpensim, 82
pnstruct, 65
postset, 66
preset, 66
print_colormap_for_place, 87
print_cotree, 8, 9
print_cycles, 39
PRINT_LOOP_NUMBER, 185
print_real_time_state_info, 100
priorcomp, 113
priordec, 114
priorinc, 115
priorset, 115
prncolormap, 88
prncycles, 39
prnerrormsg, 177
prnfnalcolors, 88
prnfnalcolorsSummary, 89
prnscc, 40
prnschedule, 133
prnss, 107
prnstate, 100
prnTransStatus, 101
prnVirtualState, 102

randomgen, 176
REAL_TIME, 185
release, 129
requestAR, 130
requestGR, 131
requestSR, 131
requestWA, 132
Resource Availability Info (RAI), 128
retree, 122
rname, 30
rt_clock_string, 148

search_names, 177
siphons, 140
siphons_minimal, 141

STARTING_AT, 185
STOP_AT, 185
STOP_SIMULATION, 185
string_HH_MM_SS, 178
stronglyconn, 39

timesfred, 30
tinvariant, 141
tname, 31
tokenAllColor, 152
tokenAny, 153
tokenAnyColor, 153
tokenArrivedBetween, 157
tokenArrivedEarly, 158
tokenArrivedLate, 158
tokenCheap, 159
tokenColorless, 154
tokenCostBetween, 159
tokenEXColor, 154
tokenExpensive, 160
tokenWOAllColor, 155
tokenWOAnyColor, 155
tokenWOEXColor, 156
tokIDs, 156
traps, 142
traps_minimal, 142

util_wakeup, 178

wakeup, 178

November 2024
ISBN 978-82-8439-311-7

University of Stavanger
Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

www.uis.no

	Dedication
	Preface
	Check Valid Functions
	check_valid_file
	check_valid_place
	check_valid_resource
	check_valid_transition
	Example-14: Check valid functions
	Bibliography

	Cotree
	cotree
	cotreei
	Example-15: cotree
	Example-16: cotreei
	Bibliography

	Firing Sequence
	firingseq
	Example-17: Firing Sequence
	Bibliography

	Get Functions
	get_all_tokens
	get_color
	get_cost
	get_current_colors
	get_firingtime
	get_inputplace
	get_inputtrans
	get_outputplace
	get_outputtrans
	get_place
	get_priority
	get_tokCT
	get_token
	get_tokens
	get_trans
	nplaces
	nresources
	ntokens
	ntrans
	pname
	rname
	timesfired
	tname
	Example-18: get_cost
	Bibliography

	gpensim
	gpensim
	gpensim_ver
	Bibliography

	Graphs and Cycles
	convert_PN_V
	cycles
	prncycles
	stronglyconn
	prnscc
	Example-20: convert_PN_V
	Example-21: cycles
	Bibliography

	Initial Dynamics
	initialdynamics
	Bibliography

	Is Functions
	is_enabled
	is_eventgraph
	is_firing
	is_place
	is_stronglyconn
	is_trans
	Example-22: Is Functions
	Example-23: is_firing
	Bibliography

	Performance Metrics
	extractt
	mincyctime
	occupancy
	Example-24: mincyctime
	Bibliography

	Petri Net Structure
	createPDF
	matrixD
	pnstruct
	postset (new in version 11)
	preset (new in version 11)
	Example-25: createPDF
	Example-26: matrixD
	Example-27: preset and postset
	Bibliography

	Plotp
	plotp
	Example-28: plotp
	Bibliography

	PNCT Functions
	gpensim_2_PNCT
	Example-29: gpensim_2_PNCT
	Bibliography

	PNML-GPenSIM
	gpensim2pnml
	pnml2gpensim
	Example-30: pnml2gpensim
	Bibliography

	Print Colors
	print_colormap_for_place
	prncolormap
	prnfinalcolors
	prnfinalcolorsSummary
	 Example-31: Print token colors
	Bibliography

	Print State
	current_marking (new in version 11)
	initial_marking (new in version 11)
	final_marking (new in version 11)
	markings_string
	print_real_time_state_info
	 prnstate
	prnTransStatus (new in version 11)
	 prnVirtualState
	 Example-32: Print Markings
	 Example-33: Print State
	Bibliography

	Print State Space
	prnss
	 Example-34: prnss
	Bibliography

	Priority
	priorcomp
	priordec
	priorinc
	priorset
	Example-35: priorset and priorinc
	Example-36: priordec
	Bibliography

	Reachability Tree with Time and Cost
	cotreeCT (new in version 11)
	retree
	Example-37: cotreeTC
	Bibliography

	Resource Management
	availableInst
	availableRes
	release
	requestAR
	requestGR
	requestSR
	requestWA
	plotGC
	prnschedule
	Example-38: Resource Management
	Bibliography

	Structural-Invariants
	pinvariant
	siphons
	siphons_minimal
	tinvariant
	traps
	traps_minimal
	Example-39: siphons and traps
	Example-40: pinvariant and tinvariant
	Bibliography

	Timer
	compare_time
	current_clock
	current_time
	rt_clock_string
	Bibliography

	Token-Selection
	tokenAllColor
	tokenAny
	tokenAnyColor
	tokenColorless
	tokenEXColor
	tokenWOAllColor
	tokenWOAnyColor
	tokenWOEXColor
	tokIDs
	 tokenArrivedBetween
	 tokenArrivedEarly
	 tokenArrivedLate
	 tokenCheap
	 tokenCostBetween
	 tokenExpensive
	Example-41: Color-based Token Selection
	Example-42: Time-based Token Selection
	Example-43: Cost-based Token Selection
	Bibliography

	Utility-Functions
	arcweight (new in version 11)
	arcweightPT
	arcweightTP
	combinatorics
	dispMultipleCR
	dispSetOfPlaces
	dispSetOfTrans
	goodname
	pnclass
	randomgen
	prnerrormsg
	 search_names
	 string_HH_MM_SS
	 util_wakeup
	 wakeup
	Example-44: arcweight
	Example-45: pnclass
	Bibliography

	Appendix GPenSIM Compiler OPTIONS
	Bibliography

	Appendix Reserved Words in GPenSIM
	Bibliography

	Appendix GPenSIM Webpage
	Bibliography

	List of Figures
	List of Tables
	Index

