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Objective and target audience

In this document we present a workflow for ensemble-based 4D seismic history matching.
Ensemble-based history matching has become standard for production data, but 4D seismic
data poses a number of additional challenges. One issue is that the amount of data is consid-
erably larger, but another, probably more complicating factor is that for utilizing the seismic
data, either the seismic data must be inverted to properties that is included in the reservoir
simulation model, or a seismic response must be modeled, given the current estimate of the
reservoir properties. This leads to a number of choices on how to utilize the information
of the 4D seismic data. We will discuss this, as well as point to approaches for handling
large amounts of data in ensemble-based history matching. The developed approach has been
applied on the Norne field and is currently being evaluated at the Ekofisk field.

This document is primarily addressed to reservoir engineers and researchers that are work-
ing on history matching 4D seismic data, but it might also be of interest to those working with
4D seismic data from a geophysical perspective. After all, 4D seismic history matching should
be viewed as an interdisciplinary subject. Although, our focus has been on ensemble-based
history matching, some of the choices that have to be made in utilizing 4D seismic data is
independent of the actual method used for history matching.

Introduction

Although history matching of production data is a common standard in the industry, and
there exist a large amount of 4D seismic data, utilizing the 4D seismic data for history
matching is not considered as a standard workflow [25]. The 4D seismic data is mostly
used for interpretation to find regions of the reservoir where changes in the pressure or fluid
content have occurred. However, this means that data sets that would have a large degree of
complementary information to the production data are not utilized to improve the reservoir
models, and thereby contribute to improved reservoir forecasting. However, utilizing 4D
seismic data for history matching has been a grand challenge, and developing methodology
for solving this challenge has been a major undertaking at the IOR centre for its full lifetime.
In this document, we will present major findings, and contributions in solving this challenge.

For testing the developed methodology, two fields have been selected. First we have worked
on the Norne field. It was decided in communication with Equinor that starting out with the
data set from Norne that was publicly available [22] was a suitable starting point. Most of
the development has been done based on this data set, including some additional information
from Equinor. As a second data set, a model of Ekofisk (provided by ConocoPhillips) has
been utilized. Although, it might have been advantageous to test the methodology on more
data sets, this has not been possible due to the overhead cost of getting started on working
with such large data sets.

Developing a workflow for 4D seismic history matching consists of a large number of
separate tasks, as we have illustrated in Figure 1. As we have considered history matching
utilizing production data a matured topic, the focus has been on handling seismic data (the
blocks “Rock physics model parameters”, “Sim2seis”, “Simulated seismic attributes” and
“Adjust parameters”). For the first three of the mentioned blocks an important decision that
has to be made is on which format the seismic data should be used. For the block “Adjust
parameters”, a particular challenge is how to address large amount of data while doing the
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Figure 1: Generic workflow for seismic history matching. (Adapted from [25].)

update part. Based on our previous experience, we have only considered ensemble-based
methods for updating the reservoir simulation model. This seems natural, as we would like
to change a large number of parameters in the model [24].

Methodological Approach

We have split the description of the methodology into several subsections in the document.
First we discuss how to handle the seismic data and the choices that must be done in that
respect in the two sections “Seismic data integration” and “Approach to integrate seismic
data”. For ensemble-based history matching generation of the initial ensemble is an impor-
tant part, and the section “Generation of initial ensemble” is devoted to that. Thereafter we
discuss how to handle the corresponding large data sets while adjusting the parameters (in
the ensemble-based approach) in the sections “Sparse data representation” and “Correlation-
based localization”, before we discuss about some available choices for ensemble-based meth-
ods for adjusting the parameters in the section “Ensemble methods”.

Seismic data types

When performing an assisted history matching using seismic data, we can integrate the seismic
data in various levels, i.e. (i) the seismic level, (ii) the elastic parameter level and (iii) the
simulation model level [25]. The amount of work for either on forward modeling or on real data
preparation depends on the level of data integration. For example, in the seismic domain level
no inversion of seismic data is required, rather observed seismic data are compared directly
with simulated seismic data. However, one needs to generate synthetic/simulated data which
could be a complex and time consuming process. Further, the quality of the simulated data
depends on various factors such as a good petro-elastic model (PEM) and/or sim2seis model
as well as the quality of the underlying reservoir or geological models. In the elastic parameter
level, the simulated elastic parameters from the reservoir model are compared with inverted
impedance or elastic parameters. Although the need for forward modeling is reduced, data
integration in this level is still challenging as the seismic inversion process can increase the
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uncertainty in the inverted seismic data. In the simulation model level, the seismic data are
inverted into reservoir parameters/states such as changes in pressure and saturation fields
and then directly compared with reservoir simulation outputs. This level does not require
any seismic forward modeling. However, the biggest challenge is the large uncertainty in the
inverted saturation and pressure fields from the seismic data.

Approach to integrate seismic data

In good practice, there is a need for ensuring the validity of both the modeling and the
inversion schemes to be able to compare at all these levels. First of all we need to ensure that
the modeling is consistently going from the reservoir model to the seismic data set taking
all relevant aspects into account. On the other hand, we should ensure that the inversion
scheme actually can go from seismic to the reservoir scale, which we are comparing on, in
a consistent way. In the end we should choose the dataset which contributes with highest
information content in our case.

Selection of one or more attributes for history matching should be based on a pre-
sensitivity analysis to decide how dynamic changes affect the potential attributes. Interpre-
tation and understanding of 4D seismic data further increases ones confidence on the selected
attribute. Extraction of a proper attribute depends on other factors too, for example, increase
of precision of the extracted attribute escalates both the demand for computational power
as well as the complexity of the seismic analysis. Further, the potential of the extracted
attributes is partially dependent on the goodness of corresponding simulated attributes, thus
on seismic and rock physics forward modeling. Therefore, deciding on attributes is somewhat
constrained by the availability of forward seismic modeling. For example, 2D map based
attribute is the most robust attribute to select, though, it doesn’t contain any vertical infor-
mation. On the other hand, 3D attribute contains vertical information, however might have
more challenges in up-scaling, interpolating between reservoir and seismic domain [25].

In most cases, even after performing proper inversion and forward modeling as good as
you can, there still remains discrepancies between modeled and read seismic data/attributes.
There could be many reasons for the deviations, such as structural discrepancy in the static
model, simplification in the PEM, bias in dynamic parts in the PEM, etc., [23]. Therefore,
there is always a need to scale/normalize both modeled and real field data at the final stage.
The scaling can be performed in various ways using mean, median or any percentile value.
Further, the most important data can be extracted by using a mask before scaling.

The process of creating a mask to put different weight on different aspects of the data
should be guided by domain understanding. Geophysicists should be able to provide in-
formation about which 4D seismic observations are significant and interpretable, and which
observations are more questionable, e.g. observations in regions with a poor signal-to-noise
ratio, seismic interference or processing issues. Reservoir engineers should be able to provide
information about significant well events within each survey interval, e.g. well start-up, shut-
down, significant changes in pressures and/or rates, breakthrough, etc. The mask approach
gives an option to put more weight on 4D effects that are significant and interpretable, e.g.
4D effects close to important wells. The cross-domain process resulting in a suitable mask/set
of masks will increase our confidence on the assimilated data further.

Before calibrating the model, one should check the adequacy of the model by comparing
actual observations with simulated data. This model diagnostic process would help us to
identify the source of deficiency in the model, such as identifying the source of conflict between
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the observed and simulated data, outliers etc. Here, an important question is what level
of simulated differences are required to produce a significant 4D effect, and whether the
model tends to over-predict or under-predict 4D effects. By checking whether the remaining
discrepancies between models and data are within the range explained by model parameter
variations, we can decide whether to accept or reject the model instead of performing the full
history matching and conclude about the inadequacy of the model [25].

Generation of initial ensemble

The initial ensemble should be generated based on the available information, which might be
from a number of sources, as interpreted seismic, information from wells, like core samples
and well testing, analog outcrops, and other information available. This information might be
summarized into a geostatistical model that ideally should be used for generating an ensemble
of models. For the two ensemble-based history matching studies presented later (Norne and
Ekofisk) the geostatistical model was not available, and the prior ensemble had to be based
on a provided model, that was used to give an initial mean of the ensemble. To create an
ensemble of models, the ensemble members was created by perturbing the mean model with
perturbations in the permeability and porosity fields using a variogram model. The generation
procedure is available at https://github.com/rolfjl/Norne-Initial-Ensemble.

An important question is whether the ensemble approach captures and preserves the geo-
logical interpretation of the reservoir. An example of significant geological information is the
location of faults, fracture corridors, channels, thief zones, etc. which may have a significant
impact on the fluid flow, e.g. by reducing the permeability (e.g. sealing fault) or enhancing it
(e.g. open faults / fractures). In many cases, 3D seismic attributes can be used to automat-
ically locate these features, but additional information is needed to determine appropriate
permeability levels for these features. If the initial ensemble is parametrized according to the
geological interpretation (features populated with either high or low permeability locally), the
assimilation process will typically not alter the location of the features. Hence, the geological
interpretation can be preserved. Using well information and seismic data to characterize faults
and fractures, which can be used as prior information in ensemble modeling, is discussed in
[2].

Sparse data representation

One feature of spatially distributed seismic data (e.g., AVA, impedance) is their huge vol-
umes. While seismic data provide valuable information for reservoir characterization, they
also impose numerical challenges, in terms of computational resources that are required to
handle such big datasets in ensemble-based history matching workflows.

To handle the issue of big seismic data, we adopt the concept of sparse data representation,
of which the main idea is to represent the original seismic data more tightly in another domain.
While in the literature there are different methods of implementing the idea of sparse data
representation, in our work [16, 17, 12, 13] we have focused on using discrete wavelet transform
(DWT), as this is a well developed method and computationally very efficient in large-scale
problems.

Figure 2 illustrates the procedure of sparse data representation through DWT. Given a
seismic dataset, which can be 2D, 3D, or even 4D, one first conducts a DWT to obtain a
set of wavelet coefficients, which are the representations of the original seismic data in the
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Figure 2: Procedure of sparse data representation through the discrete wavelet transform
(DWT), and the related noise estimation problem in the wavelet domain.

wavelet domain. For the purpose of sparse representation, we choose to only keep those
wavelet coefficients whose magnitudes are above certain threshold values, while setting to
zero the wavelet coefficients whose magnitudes are below the threshold values. During history
matching, we only use the kept leading wavelet coefficients as the observations. By doing so,
we can significantly reduce the size of observation data, which helps to substantially reduce
the consumption of computational resources.

The threshold values for sparse data representation are determined based on the estimated
noise levels of the wavelet coefficients. Based on the estimated noise levels, we can construct as
a by-product the observation error covariance matrix [14], which is a required input in order to
deploy an ensemble history matching algorithm. An additional remark is that the procedure
of sparse data representation is generic and flexible, and can be applied to handle different
types of seismic data (e.g., AVA, impedance), or even other types of spatially distributed
field datasets (e.g., electromagnetic data). As such, we also foresee the possibility to extend
the same procedure/history matching workflow to deal with geophysical inverse problems in
general.

Correlation-based localization

When applying an ensemble history matching algorithm to large-scale problems, it is common
to use a relatively small ensemble (of order 100) of reservoir models to reduce the compu-
tational cost. One consequence of a small ensemble size is that there would be substantial
sampling errors, which often deteriorates the performance of an ensemble history matching
algorithm. To tackle this problem, an auxiliary technique, called localization, is introduced.

In a conventional ensemble history matching workflow, a localization scheme uses the
distances between the physical locations of both observations and model variables to determine
whether an observation data point should be used to update a given model variable, or not.
This type of localization schemes is referred to as distance-based localization.

While distance-based localization has been shown to work well in many history matching
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problems, there are also certain noticed issues, including, e.g., the need for physical locations
of both observations and model variables to compute the distances, the difficulties to handle
observations that may have non-local influences on model update, the inconvenience to deal
with large field datasets, and the deficiency of ignoring the time-lapse effects of field data.

Some of the aforementioned issues may affect the applicability of distance-based localiza-
tion to seismic history matching problems. This is particularly true if we choose to represent
seismic data in the wavelet domain. In this case, the observations consist of a set of leading
wavelet coefficients, which do not possess clearly defined physical locations.

To circumvent the difficulties of distance-based localization, we have developed a new
type of methods [18, 15], in which, instead of relying on physical distances, it is the sample
correlations between the simulated observations and model variables that are adopted to
construct the localization scheme. For this reason, this new type of localization schemes
is referred to as correlation-based localization. As elaborated in [18, 15], correlation-based
localization is able to overcome the aforementioned issues that may arise in distance-based
localization, and its efficacy is demonstrated in a few field case studies [19, 20, 13].

Ensemble methods

In this section we give an overview of the most common ensemble methods used for assim-
ilating seismic data. The text in this section is based on a summary of the methodology
presented in Oliver et al. [25].

Currently the industry standard is use of iterative ensemble smoothers that assimilate
all available data for each iteration. The benefit compared to traditional Ensemble Kalman
Filters (EnKF) is that time consuming restarts of the flow simulator are avoided. For detailed
reviews of the traditional ensemble Kalman filter in reservoir engineering we refer to Aanonsen
et al. [1] and Oliver and Chen [24].

The most common objective function used for history matching is obtained from Bayes
rule for the computation of the posterior probability distribution for model parameters [32].
If the prior uncertainty in model parameters can be modeled adequately as multivariate
Gaussian with covariance Cm, and if the observation errors are additive and Gaussian, then
to compute the most probable vector of model parameters, mj for ensemble member j, one
need only solve for the minimizer of

J(mj) = ‖mj −mpr
j ‖

2
C−1

m
+ ‖dobsj − g(mj)‖2C−1

d

, j = 1, . . . N. (1)

In the above equation eachmpr
j represents an ensemble member from the prior distribution and

dobsj = dobs + εj are perturbed observations using samples εj from the data error distribution
N (0, Cd). The forward model g(m) maps model parameters to simulated data. An updated
ensemble (mj) of model realizations are computed by minimizing the objective function for
each ensemble member, although it it is known that, for a general non-linear observation
operator the distribution of samples obtained by minimization is only an approximation of
the posteriori distribution. A common feature when deriving the ensemble smoothers is use of
a first order Taylor approximation. An exception from this approach is a recently developed
ensemble subspace formulation [26, 9] of the Ensemble Randomized Maximum Likelihood
method (EnRML) [3]. In the subspace formulation approximations are justified using linear
regression.
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The Ensemble Smoother with Multiple Data Assimilation (ES-MDA) ES-MDA
was introduced in Emerick and Reynolds [7] as an approach to improve the traditional En-
semble Smoother (ES) [29] when working with non-linear problems. Instead of performing a
single update step, the algorithm assimilates the data NMDA times with inflated noise vari-
ance. In the linear Gaussian case, it is shown [7] that multiple data assimilation is equivalent
to the single ES data assimilation step. The algorithm is based on the fact that the likelihood
term in Bayes formula can, in the Gaussian case, be rewritten as a product of NMDA expo-
nential terms with inflated data covariance. The resulting update formula for each ensemble
member (j = 1, . . . , N) is then given by:

mi+1
j = mi

j + Si
m(Si

d)T (αiCd + Si
d(Si

d)T )−1(dobs +
√
αiεij − g(mi

j)), (2)

where i = 0, . . . , NMDA−1, and
∑NMDA−1

0 αi = 1. In the above equation we use the definitions:

Si
m = (N − 1)−

1
2 [mi

1 − m̄i, . . . ,mi
N − m̄i], (3)

Si
d = (N − 1)−

1
2 [g(mi

1)− ḡi, . . . , g(mi
N )− ḡi], (4)

and ḡi = N−1
∑N

1 g(mi
j).

The ES-MDA method was utilized for 4D seismic history matching of a heavy-oil turbidite
reservoir in Campos Basin [8] where results were compared to the results obtained using the
standard EnKF. The performance of the methodology was further analyzed in Emerick [6],
where the same field was investigated, but ES-MDA was compared to the standard ES. The
conclusions from the papers are that ES-MDA outperformed both the EnKF and the ES in
the joint assimilation of production and seismic data, but that the reduction in the ensemble
variance was excessive. There exist numerous other applications of ES-MDA for 4D seismic
history matching [e.g., 10, 5, 33]. In general, the mismatches to both seismic and production
data were reduced at reasonable computational expense.

The Ensemble Randomized Maximum Likelihood method (EnRML) EnRML [3]
searches for the minimum of the objective functions (Eq. 1) using an ensemble-based approxi-
mation of the Gauss-Newton method. It does not rely on a predefined number of assimilation
steps, and differs in that sense from the ES-MDA. The method does, however, require a con-
vergence criteria and the step length parameter is determined by standard line search. The
methodology was later improved using the Levenberg-Marquardt algorithm (LM-EnRML), for
better selection of the step size and faster convergence [4]. However, the original LM-EnRML
involves the inverse of the state covariance matrix (C̃i

mm), which is found to be sensitive to
the level of truncation in the singular value decomposition (see also the discussion below),
which has lead to the most widely used form of the LM-EnRML ignoring the updates from
the model mismatch term (C̃i

mm)−1(mi
j −m

pr
j ) (see Chen and Oliver [4] for details):

mi+1
j = mi

j + Si
m(Si

d)T [(1 + λi)Cd + Si
d(Si

d)T ]−1(dobsj − g(mi
j)). (5)

Here Sm and Sd are the same as for ES-MDA and given by Eqs. 3 and 4. The Levenberg-
Marquardt tuning parameter is denoted λi. For details regarding adaptive updates of λi we
refer to Chen and Oliver [4].
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A flavor of the EnRML is presented in Luo et al. [21]. In that work a Regularized
Levenberg-Marquardt algorithm is used to solve a Minimum Average Cost problem (RLM-
MAC). The two methods are compared in Luo et al. [21] and reports better performance for
the RLM-MAC algorithm, but as the authors clearly states, the conclusion may be different
if the methodologies are investigated on a broader set of experiments. The RLM-MAC was
used for sequential assimilation of first production data and then seismic data in a digital
twin experiment based on the Norne field [12]. That study showed that it was possible to
obtain good data match for both data types. In a subsequent study using real data from the
Norne field, Lorentzen et al. [13] showed that it is also possible to assimilate both data types
simultaneously, with reduction in mismatch for both production and seismic data.

Validation

Here we report several case studies, ranging from simple 2D synthetic to more complicated
3D real-field case studies, in which our proposed workflow (or part of it) was developed and
tested.

Synthetic studies in Norne and Brugge models

The concept of DWT based sparse data representation was first developed and tested in a
synthetic 2D Norne model [16]. In this study, amplitude versus angle (AVA) data was used
as the seismic attribute, and was history-matched by an iterative ES [21]. It was shown
that through DWT based sparse data representation, one can significantly reduce the data
size, while keeping the most important data features. In addition, adopting both AVA and
production data led to better history-matching performance than using either type of data
only. In a follow-up paper [17], the efficacy of DWT based sparse data representation pro-
cedure was further validated in a 3D Brugge benchmark case study, where the 4D seismic
history matching workflow of [16] was adopted, and the same conclusions as those in [16] were
obtained.

In [17], it was also reported that the iterative ES suffered from adverse effects of a relatively
small ensemble size. This led to subsequent developments of correlation-based localization
schemes [18, 15, 31]. As the origin of these developments, the 3D Brugge model with the
same settings as in [17] was among the selected case studies to demonstrate the performance
of correlation-based localization schemes, while a 3D Norne model was also adopted in a few
other studies [19, 12]. In all these case studies, correlation-based localization was observed to
perform well, help mitigate the aforementioned adverse effects, and work very efficiently for
field-scale reservoir models.

Real-field study using the Norne model

In [13] both production data and seismic data were assimilated simultaneously for the Norne
model. Angle-versus-offset data were inverted for acoustic impedance using a Bayesian ap-
proach. The data were further processed by taking the difference between the monitor surveys,
and the base survey. The resulting differences were averaged over reservoir formation layers.
Sparse representation based on truncation of wavelet coefficients were used, as described above
and in [16]. Further, issues related to limited ensemble size and erroneous covariance matrices
are handled using the localization technique based on correlations between model parameters
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and measurements, see [18]. This approach is flexible and can be applied to any data type,
and for global parameters. That is crucial for our application as the wavelet coefficients do
not have a spatial position and parameters such as those describing relative permeability
curves are global. It is not possible to apply traditional distance based localization for these
data and parameters. In addition, the correlation based localization method is easy to apply,
as very little manual work and user input are required. The method is also adaptive, and an
updated localization domain is computed every time model parameters are updated.

The results from this work show that we reduce the data mismatch for both production
and seismic data, see Figure 3. Inspection of the data match for individual wells also reveal
that the updated models outperform the manually history matched model. In addition, the
updated static petrophysical fields are geologically credible, and ensemble collapse of model
parameters is avoided. In addition to production forecasts, the updated models can be used
to simulate flow in unswept parts of the reservoir, and have potential for providing useful
information when planning infill wells or EOR strategies.

Figure 3: Data mismatch for production data (top) and seismic data (bottom). The Y-axis
is logarithmic. The red horizontal lines indicate the median, and the blue horizontal lines
indicate the 25th and 75th percentiles. The whiskers indicate the most extreme values. [13]

Real-field study using the Ekofisk model

For our second real field study, the Ekofisk reservoir model is considered. The field is a
compacting reservoir which further adds complexity in the history matching. Here, we have
considered time-lapse acoustic impedance data as the observation/ measurements in addition
to production data. Here, both the seismic and production data are assimilated simultane-
ously. Two life-of-field seismic (LOFS) data difference of 3 years interval is considered here
for the data assimilation. As the simulated acoustic impedance data does not fit well with
the inverted real field acoustic impedance in each grid block, we only consider data that are
close to the well location. Here, we define a well-mask that only extracts data near to the
well location masking the rest away from the wells. Further, our newly developed correlation
based localization technique [18] is used to mitigate ensemble collapse. The results from this
work show that the data mismatch for both production and seismic data reduce if we con-
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sider well-mask to extract seismic data rather using seismic data coming from all the reservoir
grids.

Conclusions and recommendations

A recommended practice has been presented for adding 4D seismic data in the history match-
ing workflow. The workflow has been illustrated on some synthetic cases as well as on a data
set from the Norne field. In addition, tests has been done on a data set from the Ekofisk field.
The workflow consists of a number of different steps, and techniques has been developed for
handling all of them. The Norne filed was successfully history matched, and it was possible
to improve the fit to both seismic and production data simultaneously. However, the ongo-
ing study on the Ekofisk field reveals that there are additional challenges that needs to be
addressed.

Handling the complex problem of history matching 4D seismic data has inspired the
developments of several tools described in this document. The concept of sparse data repre-
sentation inspired a few works later, including the work of [30] (who used dictionary learning
for sparse data representation), and that of [11] (who used convolutional neural network for
sparse representation). For the concept of correlation-based localization, it has also been used
to deal with a few other problems like CO2 monitoring, model error characterization through
a machine learning model [20] and correlation-based local analysis [31].

The history matched model will be used for further planning of the reservoir development,
including for important decisions as planning of new wells, decisions on using EOR based
methods for improved reservoir drainage. A report on the effect of the research funded by
Research Council of Norway (see [27, 28]) reported about better decision support by utilizing
ensemble-based methods which in certain cases could lead to faster reservoir drainage, or a
reduction in the number of drilled wells. It is tempting to believe that adding more information
into the process in terms of using 4D seismic data should give benefits, in terms of higher
economic return, and some of the decisions might also reduce the emissions of greenhouse
gases.

The presented workflow for 4D seismic history matching might not have reached its final
form, and further testing on a range of different fields is required. This testing would be
better done by the operators having access to all the data and information about the fields.
There is reason to believe that this testing will bring up new research questions that have
to be tackled. We find that handling seismic data is challenging, and there might be large
systematic deviations between the actual seismic data and those obtained by simulations with
the initial model. To handle this problem, we suggest to focus on matching key aspects of
e.g. acoustic impedance, time-shift and / or time strain.

Part of the developed methodology is now planned to be or being implemented in dif-
ferent places. For instance, correlation-based localization was implemented in a software
of USGS (https://pubs.er.usgs.gov/publication/tm7C26), and Equinor will implement
correlation-based local analysis in their ERT (ensemble reservoir tool) system.
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