
 

Better prognostic markers for non-

muscle invasive papillary urothelial 

carcinomas 

by 

Vebjørn Kvikstad 

Thesis submitted in fulfilment of 

the requirements for the degree of 

PHILOSOPHIAE DOCTOR 

(PhD) 

 

Faculty of Science and Technology 

Department of Chemistry, Bioscience and Environmental Engineering 

2022 



University of Stavanger 

NO-4036 Stavanger 

NORWAY 

www.uis.no 

©2022 Vebjørn Kvikstad 

ISBN:978-82-8439-069-7
ISSN:1890-1387 

PhD: Thesis UiS No. 635 

http://www.uis.no/


Acknowledgements 

iii 

Acknowledgements 

First and foremost, I would like to thank Professor Emiel Janssen, my 

main supervisor. Emiel, I want to thank you for being positive and 

dedicated from the first day I announced my interest in research. Your 

optimism, knowledge and experience have been invaluable through this 

work. Your support and feedback through these years have broadened 

and deepened my understanding of cancer research, digital image 

analysis and molecular biology. You have given me not only the 

possibility to grow as a PhD-student, but broadened my horizons and 

taught me the importance of networking and connecting with others that 

share the same interest in bladder cancer. It is a pleasure to work with 

you. 

I am grateful to dr. Einar Gudlaugsson, my co-supervisor, for the support 

and encouragement through these years. Not only have you guided me 

through complex questions I might have had in the research process, but 

also you have been an inspiration and a great mentor in diagnostic 

pathology. 

I want to thank Melinda Lillesand for excellent cooperation on the 

papers, technical support and general encouragement. Without your help 

and positivity, this would not have been possible. 

A special thanks to Kjell H. Kjellevold, former head of department of 

Pathology at Stavanger University Hospital. You convinced me to come 

to Stavanger, even if there were limited skiing possibilities, and start my 

training in pathology, which I shall always be thankful for. Later on, you 

suggested to try research, and motivated me to aim for a PhD.  

I also want to thank Professor Jan Baak for invaluable help in writing the 

papers and general advice during the years of my research endeavours. 

Your experienced suggestions have been very much appreciated. I am 

also grateful for our inspiring talks. 



Acknowledgements 

iv 

I would like to thank Eliza Peixoto Albernaz, Emma Rewcastle, Bianca 

van Diermen-Hidle and Ivar Skaland for their contribution in this project. 

Christiaan de Jong and Tahlita C. M. Zuiverloon at department of 

Urology, Erasmus MC Rotterdam, thank you for your cooperation and 

hospitality. 

Thanks to Susanne Buhr-Wildhagen and the Department of Pathology at 

Stavanger University Hospital for giving me the opportunity to combine 

research with daily pathology practice. 

Finally, I want to thank my wife Claudia for all her patience and support. 

You have always been there for me through these years. And of course 

my son Erik, for making me smile and focus on other things in life



Summary 

 

v 

Summary 

Bladder cancer is a common type of cancer, especially among men in 

developed countries. Most cancers in the urinary bladder are papillary 

urothelial carcinomas. They are characterized by a high recurrence 

frequency (up to 70 %) after local resection. It is crucial for prognosis to 

discover these recurrent tumours at an early stage, especially before they 

become muscle-invasive. Reliable prognostic biomarkers for tumour 

recurrence and stage progression are lacking. This is why patients 

diagnosed with a non-muscle invasive bladder cancer follow extensive 

follow-up regimens with possible serious side effects and with high costs 

for the healthcare systems.  

WHO grade and tumour stage are two central biomarkers currently 

having great impact on both treatment decisions and follow-up regimens. 

However, there are concerns regarding the reproducibility of WHO 

grading, and stage classification is challenging in small and fragmented 

tumour material. In Paper I, we examined the reproducibility and the 

prognostic value of all the individual microscopic features making up the 

WHO grading system. Among thirteen extracted features there was 

considerable variation in both reproducibility and prognostic value. The 

only feature being both reasonably reproducible and statistically 

significant prognostic was cell polarity. We concluded that further 

validation studies are needed on these features, and that future grading 

systems should be based on well-defined features with true prognostic 

value. 

With the implementation of immunotherapy, there is increasing interest 

in tumour immune response and the tumour microenvironment. In a 

search for better prognostic biomarkers for tumour recurrence and stage 

progression, in Paper II, we investigated the prognostic value of tumour 

infiltrating immune cells (CD4, CD8, CD25 and CD138) and previously 

investigated cell proliferation markers (Ki-67, PPH3 and MAI). Low Ki-
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67 and tumour multifocality were associated with increased recurrence 

risk. Recurrence risk was not affected by the composition of immune 

cells. For stage progression, the only prognostic immune cell marker was 

CD25. High values for MAI was also strongly associated with stage 

progression. However, in a multivariate analysis, the most prognostic 

feature was a combination of MAI and CD25.  

BCG-instillations in the bladder are indicated in intermediate and high-

risk non-muscle invasive bladder cancer patients. This old-fashion 

immunotherapy has proved to reduce both recurrence- and progression-

risk, although it is frequently followed by unpleasant side-effects. As 

many as 30-50% of high-risk patients receiving BCG instillations, fail 

by develop high-grade recurrences. They do not only suffer from 

unnecessary side-effects, but will also have a delay in further treatment.  

Together with colleagues at three different Dutch hospitals, in Paper III, 

we looked at the prognostic and predictive value of T1-substaging. A T1-

tumour invades the lamina propria, and we wanted to separate those with 

micro- from those with extensive invasion. We found that BCG-failure 

was more common among patients with extensive invasion. 

Furthermore, T1-substaging was associated with both high-grade 

recurrence-free and progression-free survival. 

Finally, in Paper IV, we wanted to investigate the prognostic value of 

two classical immunohistochemical markers, p53 and CK20, and 

compare them with previously investigated proliferation markers. p53 is 

a surrogate marker for mutations in the gene TP53, considered to be a 

main characteristic for muscle-invasive tumours. CK20 is a surrogate 

marker for luminal tumours in the molecular classification of bladder 

cancer, and is frequently used to distinguish reactive urothelial changes 

from urothelial carcinoma in situ. We found both positivity for p53 and 

CK20 to be significantly associated with stage progression, although not 

performing better than WHO grade and stage. The proliferation marker 

MAI, had the highest prognostic value in our study. Any combination of 
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variables did not perform better in a multivariate analysis than MAI 

alone.
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1 Introduction 

1.1 Anatomy and physiology of the bladder 

The urinary bladder is located in the pelvis, resting on the pelvic floor. It 

has four corners, made up by the entrance of the two ureters at the upper 

back, the exit from the urethra in the bottom and the apex in front where 

the ligamentum umbilicale medianum (a remnant of the fetal urachus) 

connects with the bladder. The triangular area made up of the ureteral 

orifices and the urethra is called trigonum.  

The urinary bladder wall is composed of several well-defined 

layers; tunica mucosae, muscularis propria, and adventitia/serosa. The 

tunica mucosae includes the urothelium and the underlying lamina 

propria. The urothelium is a specialized epithelium, constructed to make 

a urine-blood barrier, and to also tolerate variable degrees of distention. 

The urothelium covers the urinary tract from the renal pelvis to the 

proximal urethra. The number of cell layers in the urothelium varies 

depending on location and degree of bladder distention. For the urinary 

bladder, it is mostly 4–6 cell layers thick. The cells lining the lumen, 

against the urine, are called umbrella cells. They are a bit larger than the 

other cells in the urothelium and have large amounts of eosinophilic 

cytoplasm. They are often bi-nucleated. When the bladder wall is 

stretched out, they are oriented along the mucosae. Under the umbrella 

cells, we find polygonal intermediate cells that do not have a specific 

orientation. At the bottom, resting on the basement membrane, 1–3 

layers of cells with oval nuclei can be found; these basal cells are oriented 
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perpendicular to the surface. 

 

Figure 1. Normal histology of the tunica mucosae. 

Image of tunica mucosae, showing the distinct layers of the urothelium. Contributed by the 

American Urological Association. Bolla SR, Odeluga N, Jetti R. Histology, Bladder. [Updated 

2020 Apr 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. 

Available from: https://www.ncbi.nlm.nih.gov/books/NBK540963/  

The lamina propria is a loose connective tissue containing blood 

and lymphatic vessels, and usually some discontinues bundles of smooth 

muscle called muscularis mucosae. The muscalaris propria, often 

referred to as the detrusor muscle, is a distinct layer of large smooth 

muscle bundles. The muscle fibres in these bundles are mostly 

disorganized and oriented in different directions, the exception is in the 

area close to the internal sphincter, where the fibres are organized in 

specific directions. The outermost layer is the tunica adventitia, made up 

of loose connective tissue. The adventitia surrounds the bladder, except 

at the superior surface where it is covered by serosa. 
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Figure 2. Composition of the urinary bladder wall. 

Schematic drawing of the urinary bladder and its different layers. Chan et al. The Current Use 

of Stem Cells in Bladder Tissue Regeneration and Bioengineering. Biomedicines 2017. DOI 

10.3390/biomedicines5010004. This article is distributed under the terms of the Creative 

Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc-

nd/4.0/).  

 

The bladder receives urine from the kidneys via the ureters. The 

urine is stored in the bladder until it leaves through the urethra. The 

bladder capacity is usually 400–500 ml. When the bladder is filled up, 

the walls are distended and the luminal pressure increases. When the 

pressure reaches around 25 mm Hg, it triggers micturition. Receptors in 

the bladder wall are signalling via afferent nerve fibres to the medulla 

spinalis, and via efferent parasympathetic nerve fibres directly back to 

the bladder wall for contraction. This reflex is under complex control of 

centres in the brain, especially areas in the cerebral cortex, the pontine 

micturition centre, hypothalamus, and the periaqueductal grey substance 

(PAG). These centres in the brain makes voiding under voluntarily 

regulation, partly by coordination with the internal and external urethral 

sphincter. 
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1.2 Epidemiology and etiology of urothelial 

bladder cancer 

Bladder cancer is the 10th most common cancer globally, with an 

estimated 549,000 new cases in 2018. The incidence is almost four times 

higher in men, making bladder cancer the 6th most common cancer in 

men, and the ninth leading cause of cancer death in men worldwide (1). 

The incidence is highest in southern and western Europe, North America, 

and Australia. The prevalence is estimated to be six times higher in 

developed countries compared to developing countries (2). In men in 

Norway, bladder cancer is the fourth most frequent cancer type. The 

male to female ratio for diagnosis of bladder cancer in Norway in the 

year 2019 was 3.3. The median age for primary diagnosis is 73 years old 

(3).  

 

Figure 3. The most frequent types of cancer in Norway by sex, 2015 – 2019. 

Cancer in the urinary tract is the fourth most frequent cancer in men. The figure is taken from the 

Cancer Registry of Norway. Cancer in Norway 2019 - Cancer incidence, mortality, survival and 

prevalence in Norway. Oslo: Cancer Registry of Norway, 2020. 

Around 70–80 % of primary urothelial bladder cancer is non-

muscle invasive (pTa, pT1, or pTis) at the time of diagnosis. Among 

these, 50–70 % will experience recurrence, and 15–25 % will progress 

to muscle-invasive disease (2, 4). Since non-muscle invasive bladder 
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cancer has a high recurrence rate, the follow-up is extensive, partly with 

regularly invasive procedures like cystoscopies, to detect new tumours. 

Detection of progression is essential for prognosis, and will often lead to 

even more invasive and expensive treatment. This is why bladder cancer 

is the most expensive cancer per patient in the United States (5). The 

total costs are estimated to 3.6 billion euro per year in the US and 5 

billion euro per year in the European Union (6). 

As described above, men are diagnosed more frequently with 

urothelial bladder cancer than women are. This holds true even after 

adjusting for differences in smoking habits. Studies are lacking regarding 

adjustments for occupational exposure. Differences in metabolism and 

detoxification of carcinogens, are postulated as explanations for the 

gender-based differences. For example, the sex-based difference in 

expression of isoforms of 5`-diphosphoglucuronosyltransferase (UGT) 

in the liver. UGT is involved in the metabolism of aromatic amines, 

which are important carcinogens in tobacco. Direct carcinogenic effects 

of androgens and/or protective effects of oestrogen/progesterone could 

also explain the sex-based differences in incidence of urothelial bladder 

cancer (7). Despite higher incidence among men, women often seem to 

have a higher stage at presentation at diagnosis. This can at least partly 

be explained by delayed referral to haematuria investigation, as women 

are more likely to be diagnosed with a urinary tract infection. After 

adjusting for disease stage, women still tend to have a worse prognosis 

than men, and the reason(s) underlying this difference remain uncertain 

and debated. At the molecular level, women are overrepresented with 

basal tumours. 

The most important risk factor for bladder cancer is tobacco 

smoking. Tobacco contains multiple carcinogens, including aromatic 

amines and N-nitroso compounds, that damage DNA. One meta-analysis 

estimated the relative risk to be 3.47, when comparing current with never 

smokers (8). Quitting smoking at time of diagnosis has been shown to 

reduce the risk of recurrence in non-muscle invasive bladder cancer (9). 
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There is also an association between smoking opium and risk of bladder 

cancer (10). Smoking cannabis has not shown an increased risk (11). 

Occupational exposure to carcinogens contributes to 5–6 % of 

bladder cancers (12). Workers in the rubber, metal, and dye industries 

are particularly high risk for developing bladder cancer. Typical 

chemical compounds associated with occupational exposure are 2-

naphtylamine (dyes like congo red and prodan), 4-aminobiphenyl (a 

rubber anti-oxidant and an intermediate in dye industry), toluene (an 

aromatic amine), 4,4-methylenebis (2-chloroaniline) (aromatic amine 

used in polyurethane production), metal working fluids (liquids cooling 

or lubricating metal machine pieces), polyaromatic hydrocarbons (PAH), 

perchloroethylene and diesel exhaust. Individuals’ susceptibility to 

develop bladder cancer when exposed to such carcinogens is variable. At 

least part of this variation can be attributed to genetic polymorphisms in 

detoxifying genes. Abnormalities in these genes cause longer exposure 

to the toxic agents. The three most relevant genes for bladder cancer 

appear to be GSTM1, UGT1A, and NAT2 (13, 14). Polymorphisms in 

the genes NAT2 and UGT1A have been shown to be the most important 

for modifying the effect of smoking (15). 

Dietary factors do not appear to contribute significantly to the risk 

of developing bladder cancer. Neither does alcohol consumption, which 

does not show an obvious association with bladder cancer risk (16). 

Arsenic in soil and drinking water is a well-known risk factor (17), 

probably also in low concentrations (< 100 µg/l) (18). Arsenic in 

drinking water is a serious environmental problem in parts of 

Bangladesh, India, China, and Hungary (4). 

Multiple studies have revealed increased risk of bladder cancer 

after radiotherapy in the treatment of other malignancies in the pelvis. A 

meta-analysis that examined the risk for developing bladder cancer after 

radiation of the prostate, found a hazard ratio of 1.67 (19). Another 

retrospective study found that patients with carcinoma of the prostate 
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receiving radiotherapy had a relative risk of 1.7 for developing a second 

malignancy in the bladder (20). These patients were more prone to 

developing non-urothelial bladder cancers and urothelial carcinoma in 

situ.  

Lynch syndrome is a hereditary cancer syndrome causing 

increased risk of cancer, especially cancer of the colon and rectum. 

Lynch syndrome patients also have a predisposition for developing 

cancers in the urinary tract, and for unknown reasons, especially in the 

upper urinary tract (21). Costello syndrome is a very rare genetic disease 

caused by germline mutations in the HRAS gene. The syndrome is 

characterized by developmental abnormalities and a propensity to 

develop benign and malignant tumours—including urothelial 

carcinomas—at a young age (22). 

The parasite, Schistosoma haematobium, enters the body through 

infested water. It is most prevalent in Africa and the Middle East. The 

parasite penetrates the skin and continues to live in blood vessels. Female 

worms lay eggs, some which may be excreted through the urine and 

faeces. Other eggs of this parasite may get trapped in internal organs. 

Eggs of Schistosoma haematobium may reside in lamina propria and 

muscularis propria of the urinary bladder. Here, they initiate chronic 

inflammation and fibrosis, which might further develop into urothelial 

hyperplasia and squamous metaplasia. Ultimately, this leads to increased 

risk of bladder cancer. Schistosoma-associated bladder cancer has a 

higher proportion of squamous- and adenocarcinoma, than traditional 

bladder cancer (23).  

 

1.3 Classification of bladder cancer 

Although all tissue components of the bladder can give rise to 

malignancies, it is notable that more than 90% of bladder cancers are 
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urothelial carcinomas. Most of the remaining cancers are also epithelial, 

like squamous cell carcinoma (3%), adenocarcinoma (0.5–2%) and 

neuroendocrine carcinoma (<1%). Other malignancies include 

mesenchymal tumours, melanocytic tumours, tumours of the Müllerian 

type, and hematopoietic/lymphoid tumours (4, 24).  

According to the WHO Classification of Tumours of the Urinary 

System and Male Genital Organs from 2016, urothelial tumours can be 

divided into non-invasive urothelial lesions and infiltrating urothelial 

carcinomas. Among the non-invasive lesions, papillary urothelial 

carcinomas and urothelial carcinoma in situ are considered malignant, 

even though they do not necessarily infiltrate the basement membrane. 

Papillary urothelial carcinomas are defined by neoplastic urothelium 

covering a fibrovascular stalk. This urothelium shows variable degrees 

of atypia, a key factor in tumour grading. To be qualified as real papillae, 

one should observe secondary branches or a complexity giving rise to 

“detached” islands of stroma covered by urothelium. This important 

feature distinguishes papillary neoplasias from papillary hyperplasia/ 

urothelial proliferation of uncertain malignant potential. The latter can 

also harbour cytological atypia, but will then usually be referred to as 

dysplasia or urothelial carcinoma in situ with papillary formations. The 

papillary urothelial neoplasm of low malignant potential (PUNLMP) 

previously belonged to the papillary urothelial carcinomas grade 1 

(WHO73), but is no longer considered a carcinoma. These neoplasias 

have no obvious cellular atypia other than perhaps some, slightly and 

homogenously enlarged nuclei. Urothelial carcinoma in situ (CIS) is 

defined by a flat urothelial lesion of variable thickness, devoid of 

papillary structures, containing cytologically malignant cells (4). 

 Tumours that invade the muscularis propria, have a poor 

prognosis. This is therefore a critical diagnostic characteristic which is 

important in treatment decision-making. For practical reasons, urothelial 

carcinomas have been traditionally divided into non-muscle invasive 

(NMIBC) and muscle invasive bladder cancer (MIBC). Previously the 
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non-muscle invasive cancers were referred to as “superficial,” but this 

term is no longer recommended. As indicated by the title, this thesis is 

mainly focusing on non-muscle invasive tumours, but will also address 

general aspects of urothelial carcinoma of the bladder. 

 

 

Figure 4. Histology of papillary urothelial carcinoma 

Image of a low grade papillary urothelial carcinoma, from our cohort at Stavanger University 

Hospital. The section is stained with Haematoxylin Eosin Saffron (HES). The image illustrates 

fibrovascular stalks covered by neoplastic urothelium of varying thickness. 

 

1.4 WHO Grading 

The first widely accepted grading system for papillary urothelial 

carcinomas was introduced by the World Health Organisation (WHO) in 

1973 (25). This grading system is still in clinical use, often reported 

together with the newer version from WHO 2004. The latter was only 

slightly modified in the WHO “Blue book” from 2016 (26). The WHO 

grading system from 2004/ 2016 is based on guidelines emerging from a 

WHO/ISUP (International Society of Urological Pathology) consensus 

conference in 1998 (27). The European Association of Urology 
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guidelines provide treatment and follow-up recommendations based on 

both grading systems (28). The Norwegian guidelines, describe both 

systems without recommending either of them specifically (29). 

 According to the WHO grading system from 1973, tumours can 

be classified into three groups, Grade 1, 2, and 3, based on the degree of 

cellular anaplasia. Grade 1 tumours show the lowest degree of cellular 

anaplasia compatible with malignancy. Grade 3 tumours show the 

highest degree of cellular anaplasia. Grade 2 tumours lie somewhere in 

between (25). The system relies on the subjective impression of the 

pathologist, as more detailed grading criteria are not provided.  

 The WHO grading system from 1973 has been criticized because 

of low reproducibility and the fact that many tumours ended up in the 

middle group, grade 2. This resulted in the development of new grading 

systems, finally ending up with the WHO 2004/2016 system. In this 

system, the malignant papillary neoplasms from the WHO 1973 grading 

system, were divided into three categories: “Papillary Urothelial 

Neoplasia of Low Malignant Potential” (PUNLMP), low grade papillary 

urothelial carcinoma, and high grade papillary urothelial carcinoma. 

Consequently, the most benign-looking tumours avoided the 

“carcinoma” label. PUNLMP is described as a papillary lesion covered 

by a thicker and usually more cellular urothelium. Polarity is not lost, 

and no architectural disturbances are apparent. The nuclei are 

homogeneous, and at most, slightly enlarged. They have a finely granular 

chromatin pattern, and do not present scattered hyperchromatic nuclei as 

might appear in low-grade urothelial carcinomas. Mitoses are rare, and 

when present, are basally located. Several publications show the same 

prognosis for PUNLMP as for low-grade urothelial carcinomas (30-32), 

making the future for this designation uncertain. This is reflected by 

decreasing use of the PUNLMP diagnostic label in the last decade. 

Hentschel et al. showed a dramatic reduction in the proportion of 

PUNLMP diagnoses in a large European/Canadian cohort, from its 

introduction in 1998 to 2018, falling from 31.3% to 1.1% (32). 
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 Low grade papillary urothelial carcinomas are supposed to 

maintain a relatively orderly appearance at low or medium magnification 

(100x or 200x). Looking closer at higher magnification, some loss of 

polarity and mild nuclear irregularity and pleomorphism are evident. 

Scattered hyperchromatic nuclei can also be seen. Mitoses may be 

present and may occasionally be found in locations away from the basal 

lamina. Atypical mitoses are usually not seen.  

High grade papillary urothelial carcinomas give an impression of 

disorder, both regarding architectural and cytologic features, at medium 

magnification. Architectural features include how the cells are oriented 

in relation to each other and to the basal lamina. Cytologic features 

include nuclear shape, size, and patterns of chromatin structure and 

distribution. Irregular and prominent nucleoli might be seen. Mitoses are 

typically frequent, with some of these being even atypical. High grade 

tumours often have fused papilla, giving an impression of greater 

solidity.  

Tumours are graded based on the most anaplastic area. No 

consensus exists regarding the minimum size or proportion of such an 

area. Heterogeneity of morphologic grade is not uncommon. Cheng et al. 

investigated heterogeneity in urothelial carcinomas and prognostic 

correlation (33). In their cohort, 32% of tumours could be assigned both 

a primary and a secondary grade. In this study, combining primary and 

secondary grade increased the prognostic accuracy.  

 

Although both WHO 1973 and WHO 2004/2016 guidelines 

include three groups, these groups cannot be readily mapped onto each 

other. The WHO 1973 guidelines regarding grade 1 include all PUNLMP 

and some low-grade carcinomas. The WHO 2004/2016 guidelines 

related to high grade tumours include all WHO 1973 grade 3 and most 

grade 2 tumours (34).  
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Figure 5. The relationship between WHO 1973 and WHO 2004/ 2016 

Reprinted from European Urology, Lopez-Beltran A, Montironi R, Non-Invasive 

Urothelial Neoplasms: According to the Most Recent WHO Classification, pages 170 – 176, 

Copyright 2004, with permission from Elsevier.  

 

Grading in general is considered one of the most important 

prognostic factors for NMIBC and has a major impact on treatment and 

follow-up regimes. It was previously regarded as prognostic regarding 

both recurrence and progression (34, 35). In a newly published, large, 

retrospective study including 5145 patients with pTa/pT1tumours, both 

grading systems were prognostic regarding disease progression, but 

neither of them was prognostic for recurrence (36). In this study, 

progression to MIBC was found in 1.4%, 5.6%, and 18.8% of grade 1, 

grade 2, and grade 3 patients, respectively. For low grade and high grade 

NMIBC, the progression rates were 2.6% and 13.7%, respectively.  

 Concerns regarding reproducibility of the different grading 

systems have been raised for decades. More detailed grading descriptions 

in the WHO 2004/2016 system were aimed at improving reproducibility. 
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However, several publications on this subject failed to show any 

significant improvement in reproducibility (37-39). A previous 

publication from our research group by Mangrud et al., confirmed the 

lack of significant improvement in grading reproducibility (40). In a 

review from 2017, Sokoup et al. concluded that the WHO 2004/2016 

guidelines were marginally better concerning reproducibility, but could 

not confirm that this system decisively “outperformed” the WHO 1973 

system (35). For the WHO 1973 classification system, the interobserver 

agreement according to Sokoup et al. ranged from 38%–89% (kappa 

values 0.003 to 0.68). For the WHO 2004/2016 system, the agreement 

ranged from 43%–100% (kappa values 0.17–0.70).  

 

1.5 Variants of urothelial carcinoma 

Both the papillary urothelial carcinoma and the flat urothelial carcinoma 

in situ can at some point start to infiltrate into the muscularis propria. 

Most tumours are considered conventional urothelial carcinomas, but 

some show a divergent differentiation, like squamous (20–40%), 

glandular (6–18%) and trophoblast differentiation (28–35%) (41). As 

long as part of the tumour has a urothelial morphology, it will be 

classified as a urothelial carcinoma. Divergent differentiation has no 

clinical consequence, as prognosis is the same as for a pure conventional 

urothelial carcinoma.  

 

Infiltrating urothelial carcinomas 

Conventional urothelial carcinoma 

Urothelial carcinoma with divergent differentiation 

Squamous differentiation 

Glandular differentiation 

Trophoblast differentiation 

Urothelial carcinoma with variant histology 

Nested urothelial carcinoma 

Microcystic urothelial carcinoma 

Micropapillary urothelial carcinoma 
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Lymphoepithelioma-like urothelial carcinoma 

Plasmacytoid urothelial carcinoma 

Sarcomatoid urothelial carcinoma 

Giant cell urothelial carcinoma 

Poorly differentiated urothelial carcinoma 

Lipid-rich urothelial carcinoma 

Clear cell urothelial carcinoma 

 

Table 1. Overview of types of infiltrating urothelial carcinomas (41). 

It has been recognized that some infiltrating urothelial carcinomas 

have other distinct morphological characteristics, which we refer to as 

variant histology (4, 41, 42). These are listed in Table 2. Although nested 

and microcystic tumours generally have low grade atypia, they often 

present as high-stage tumours. When corrected for TNM stage, they still 

have the same prognosis as conventional urothelial carcinomas. Nested 

carcinomas are characterized by crowded growth of tumour cells in small 

nests. The nests can be somewhat irregular and confluent. As they have 

very little cytological atypia, these tumours can be difficult to distinguish 

from florid von Brunn nests, although nested carcinomas often have a 

more infiltrating growth pattern in the invasive front. Microcystic 

urothelial carcinoma form oval infiltrating cysts, lined by bland 

urothelium with little atypia. They can be confused with cystitis cystica 

or cystitis glandularis.  

The lymphoepithelioma-like urothelial carcinoma is rare and has a 

morphology reminiscent of the lymphoepithelioma of the nasopharynx. 

Typically, they grow in sheets with a syncytial appearance. The tumour 

cells have pleomorphic nuclei with prominent nucleoli. In the 

background one can observe a high number of mixed inflammatory cells. 

The prognosis of this tumour type is controversial (43). 

Micropapillary, plasmacytoid, and sarcomatoid variants are 

associated with poor prognosis. Patients with a micropapillary urothelial 

carcinoma pT1, might benefit from early cystectomy (44). 

Microscopically, they are characterized by small nests of tumour cells 
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within lacunae. The nests usually do not contain fibrovascular cores. The 

plasmacytoid variant of urothelial carcinoma consists of infiltrating 

tumour cells resembling plasma cells or monocytes. The cells are 

typically dyscohesive, lacking immunohistochemical staining for E-

cadherin. Sometimes these tumours contain vacuolated cells with the 

appearance of signet-ring cells. The sarcomatoid variant shows both 

epithelial and mesenchymal differentiation. Morphologically, they may 

resemble a sarcoma, still exhibiting positivity for cytokeratins via 

immunohistochemistry (45).  

Giant cell urothelial carcinoma, lipid-rich urothelial carcinoma, 

and poorly differentiated carcinomas are rare, but generally associated 

with a poor outcome. Giant cell urothelial carcinomas are characterized 

by pleomorphic giant cells. Lipid-rich urothelial carcinomas are 

recognized by one or more lipid vacuoles in the tumour cells 

compressing a peripheral nucleus. Poorly differentiated tumours are 

tumours with mixed morphology, and include sarcomatoid, giant cell, 

and undifferentiated carcinomas. Finally, the clear cell urothelial 

carcinoma contains glycogen vacuoles in the cytoplasm, positive for 

staining with periodic acid Schiff (PAS), and not resistant to diastase. 

These tumours are also rare. Prognostic significance of these different 

types of histology is presently still unclear (41). 

 

1.6 Molecular alterations in bladder cancer 

Bladder cancer in general has a high mutational burden. Only melanoma 

and lung cancer have a higher average number of mutations per million 

base pairs (46). Most somatic mutations involved in tumorigenesis are in 

genes coding for transmembrane receptors, proteins in signalling 

pathways, cell cycle regulators, or proteins implicated in DNA damage 

repair. Other frequently occurring mutations in bladder cancer are in 

genes involved in chromatin regulation (47). Chromosomal alterations 
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are common in invasive urothelial carcinomas. These tumours are often 

genomically unstable, and harbor deletions that result in loss of 

important tumour suppressor genes. 

 As carcinogens are present in the urine, the complete mucosal 

surface is exposed. DNA damage can potentially occur at different sites, 

and not all of them will be repaired. One would therefore expect common 

molecular alterations spread along the mucosal surface, even in areas 

where there is no visible tumour. This effect, referred to as the “Field 

effect”, increases cancer risk at other locations in the urinary tract once 

a primary cancer diagnosis is made. One such early event in 

carcinogenesis, also found in surrounding normal looking mucosa, is the 

occurrence of deletions in chromosome 9. This is a common finding in 

both non-invasive and muscle-invasive urothelial carcinomas. Both loss 

of the short and long arms of chromosome 9 have been described. On the 

short arm, 9p, tumour suppressor genes like CDKN2A are located. 

CDK2NA encodes proteins like p14 and p16, both inhibitors of the cell 

cycle. The long arm, 9q, harbour the TSC gene, a negative regulator of 

the PI3K/ AKT/ mTOR pathway, which is important in regulation of cell 

growth, proliferation, and survival. Alterations in chromosome 9 are 

regarded as among the earliest events in the development of urothelial 

bladder cancer (48, 49).  

 Traditionally, two major developmental tracks have been 

identified for urothelial carcinomas (47, 50, 51). They are referred to as 

papillary and solid (non-papillary) tumours. Some overlaps exist 

between these two pathways. Most of the non-invasive papillary 

urothelial carcinomas develop through hyperplasia. These are tumours 

with a high recurrence tendency. They usually do not infiltrate, but can 

gain additional molecular alterations and then convert to high-grade 

invading lesions. Tumours in the papillary group typically show 

activating mutations in the gene for Fibroblast Growth Factor Receptor 

3 (FGFR3). FGFR3 is a receptor tyrosine kinase that regulates both the 

MAP kinase/ERK pathway and the PI3K/AKT/mTOR pathway. Both 
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these pathways are involved in cell proliferation. The presence of 

FGFR3 mutations is correlated with both grade and stage. One study by 

Hernandez et al. found FGFR3 mutations in 77% of what they call low 

malignant lesions. FGFR3 mutations were also found in 61% and 58% 

of pTaG1 and pTaG2 tumours, respectively. By contrast, only 17% of 

pT1G3 tumours had FGFR3 mutation (52). Tumours evolving through 

this “papillary” track are also overrepresented with activating mutations 

in the PIK3CA gene. This gene codes for a subunit of the enzyme 

phosphatidyl 3-kinase (PI3K), mediating signals from the 

transmembrane receptor. Mutations in the PIK3CA gene often coexist 

with mutations in FGFR3. Mutations in PIK3CA are correlated with both 

low grade and low stage (53). Non-invasive papillary tumours are 

characterized by the presence of wild-type TP53 and are usually 

genomically stable. Mutations in CDKNA1, RB1, ERCC2, ERBB3, and 

FBXW7 are generally not seen in non-invasive cancers, but are observed 

in >10% of the muscle-invasive tumours (54). 

 

Figure 6. Schematic depicting the PI3K/AKT/mTOR and the MAP kinase/ERK pathways.  
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The illustration shows signalling cascades and complex interactions. Receptor tyrosine kinases 

(RTK), like ERBB2, ERBB3, FGFR1, FGFR3, and EGFR are often mutated in bladder cancer. 

FGFR3 is frequently mutated in tumours in the so-called papillary pathway. Activating mutations 

in the PIK3CA gene—the gene encoding the catalytic subunit p110—results in activation of 

AKT, ultimately leading to increased proliferation. Mutations in PIK3CA are also frequently seen 

in non-invasive urothelial carcinoma, often in combination with activating FGFR3 mutations. In 

many muscle-invasive carcinomas, the pathway inhibitor PTEN has lost its function. The RTKs 

activate the MAP kinase/ERK pathway via RAS. Proteins typically activated in bladder cancer 

are depicted in red, those typically inactivated are depicted in green. Reprinted by permission 

from Springer Nature Customer Service Centre GmbH: Nature reviews cancer. Molecular 

biology of bladder cancer: new insights into pathogenesis and clinical diversity. Knowles MA et 

al. Copyright 2015. 

 

Most muscle-invasive urothelial carcinomas (solid/non-

papillary) develop de novo or through carcinoma in situ (CIS). Tumours 

following this second track are characterized by loss of function of TP53 

or RB1, either because of mutations or by copy number alterations. 

Robertson et al. found TP53 mutations in 48% of muscle-invasive 

urothelial carcinomas (55). In low grade non-invasive papillary tumours, 

the proportions of tumours with TP53 mutations vary from 0 to 14% 

(56). TP53 is a gene coding for the tumour suppressor protein p53. The 

p53 protein inhibits cell cycle progression from G1 to S, and regulates 

expression of other genes involved in cell cycle arrest, apoptosis, 

senescence, DNA repair, and changes in metabolism. Loss of 

heterozygosity for the gene PTEN, usually by a deletion of part of 

chromosome 10, is much more common in muscle-invasive disease (57). 

It is postulated that PTEN regulates invasion (58). PTEN is a tumour 

suppressor gene with an inhibitory effect on the PI3K/AKT/mTOR 

pathway. Other typical alterations along the track towards muscle-

invasive disease are activating mutations in the receptor tyrosine kinases 

ERBB1 (EGFR), ERBB2 (HER2/neu), and ERBB3, as well as 

inactivating mutations in chromatin remodelling genes such as KDM6A, 

MLL2, and ARID1A. Finally, these aggressive tumours often are more 

genomically unstable, and deletions of chromosome arms 8p, 2q, and 5q 

are frequently observed (51).  
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Figure 7. The “two-track model” of urothelial carcinoma development. 

Illustration showing the proposed main tracks in the development of urothelial carcinoma. Blue 

colour indicates the “papillary” pathway and purple indicates the non-papillary/solid pathway. 

Recently identified molecular subtypes indicate many sub-pathways in each main track. 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Nature reviews 

cancer. Molecular biology of bladder cancer: new insights into pathogenesis and clinical 

diversity. Knowles MA et al. Copyright 2015.  

 

There are several known molecular alterations that are commonly found 

in urothelial bladder cancer, independent of the main development track 

followed. Mutations in the promoter of the telomerase reverse 

transcriptase (TERT) gene are the most frequently described mutations 

in bladder cancer (59). TERT promotor mutations have no prognostic 

significance, and probably represent an early step in tumorigenesis. 

TERT contributes to elongation of telomeres on the chromosome ends, 

thereby preventing cellular senescence. Mutations involving the MAP-

kinase pathway, which promotes proliferation and survival, are found in 

all stages as well, but they are less common (60). Among these are 

mutations in BRAF, HRAS, KRAS, and NRAS.  

 Cancer genome sequencing in humans has revealed distinct 

mutational patterns, referred to as mutation signatures. Some of these 
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signatures are linked to specific exogenous or endogenous mutagens. 

The endogenous protein family of cytidine deaminases, APOBEC 

(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like), 

has been shown to be such a mutagenic source (61, 62). They have a role 

in mRNA editing and innate immunity against viruses. The APOBEC 

catalytic unit converts cytosine bases to uracil. Uncontrolled activity of 

APOBEC seems to induce mutations in DNA. Bladder cancer, together 

with breast, lung, head/neck and cervical cancers, are enriched in such 

mutations. Shi et al. established a panel of 44 hotspot mutations 

associated with bladder cancer (63). One of the most frequent FGFR3 

mutations—Serine249Cystidine—is probably APOBEC-mediated (64). 

Hedegaard et al. showed that the level of APOBEC signature 

mutagenesis is correlated with the expression of APOBEC3A and 

APOBEC3B (65).  

 

 

Figure 8. Frequencies of FGFR3, RAS, PIK3CA mutations and p53 overexpression 

(indicating mutation) according to stage.  

FGFR3, HRAS, KRAS, NRAS, and PIK3CA Mutations in Bladder Cancer and Their Potential as 

Biomarkers for Surveillance and Therapy. Kompier et al. PLOS One 2010. DOI 

10.1371/journal.pone.0013821. This article is distributed under the terms of the Creative 

Commons Attribution License.  
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1.7 Molecular classification of bladder cancer 

Urothelial carcinomas have diverse clinical behaviours. Several different 

molecular classification proposals that attempt to categorize tumours 

based on similarities in molecular alterations, exist. These classification 

systems aim to improve the prediction of treatment response and 

prognosis in general. New high-throughput techniques for RNA 

sequencing have made extensive gene expression profiling possible. 

Other multi-parametric systems combine gene expression profiling with 

known genome alterations, protein analysis, and other clinical data. 

During the last decade several molecular classification systems for 

bladder cancer have been proposed based on different analytical 

techniques and approaches.  

 The first molecular taxonomy for urothelial carcinoma was 

presented by Sjödahl et al. in 2012, The Lund University Classification 

(66). Gene expression analysis of 308 tumours, including supervised 

analysis of 13,953 genes, yielded 5 major molecular subtypes: Urobasal 

A, Genomically unstable, Infiltrated type, Urobasal B, and squamous cell 

carcinoma (SCC)-like. The clusters were identified using hierarchical 

clustering analysis. The molecular subtypes showed different survival 

patterns—the Urobasal A subtype had the best prognosis, the 

Genomically unstable and the infiltrated type had an intermediate 

prognosis, while the Urobasal B and the SCC-like subtypes had the 

poorest prognosis. 
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Figure 9. The Lund University Classification and disease-specific survival.  

Kaplan-Meier survival curves for the different bladder cancer subtypes: (A) including patients of 

all grades and stages, (B) including patients with grade 3 tumours only. Reprinted by permission 

from Clinical Cancer Research. A Molecular Taxonomy for Urothelial Carcinoma, Sjödahl et al, 

Copyright 2012.  

 

 Based on genes with coordinated expression and known biologic 

function, an immunohistochemical validation for selected gene products 

was performed (66). Pronounced differences and clustering in expression 

of cell cycle regulatory proteins was noted. The Urobasal A tumours 

tended to express genes involved in early cell cycle regulation. On the 

other hand, the Genomically unstable and SCC-like subtypes tended to 

express genes involved in late cell cycle regulation. Furthermore, the 

different molecular subtypes can be distinguished by different 

cytokeratin signatures. Urobasal A and Genomically unstable tumours 

mostly expressed cytokeratins like CK8/18, CK7/19, and CK20. By 

contrast, both Urobasal B and SCC-like tumours expressed 

CK5/13/15/17, which are typically expressed in basal and intermediate 

urothelial cells. Sjödahl et al. observed that the Urobasal A tumours 

maintained the tissue stratification found in normal urothelium to some 
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extent, giving this group the designation Urobasal A. The SCC-like 

tumours are characterized by expression of cytokeratins associated with 

squamous/keratinized phenotypes—namely, CK6/14/16. Pathological 

re-evaluation of these tumours in most cases showed squamous 

differentiation—therefore the name squamous cell carcinoma-like 

(SCC-like). Supplementary mutation analysis revealed higher FGFR3 

mutation frequencies in Urobasal A compared to Genomically unstable 

tumours (55% vs. 7%). The frequency of TP53 mutations was higher in 

Genomically unstable tumours compared to Urobasal A tumours (48% 

vs 11%). Since tumours of the former subtype tended to have rearranged 

genomes, they were designate “Genomically unstable.” Finally, the 

molecular subgroups expressed different cell adhesion gene signatures, 

like claudins (tight junction-associated genes), with higher expression in 

Urobasal A and Genomically unstable tumours compared to SCC-like 

and Urobasal B. The Urobasal B subtype is considered to be a progressed 

version of Urobasal A. They have many similarities, like a high 

proportion of FGFR3 mutation, but additionally show frequent 

mutations in TP53 and express cytokeratins similar to those in the SCC-

like subtype. The infiltrated type probably represents a heterogeneous 

group of tumours having in common a gene expression profile 

characterized by the infiltration of immune cells. In 2017, Sjödahl et al, 

investigated a cohort with muscle invasive urothelial bladder cancer 

only. Based on gene expression profiling in this cohort they slightly 

modified the classification system, establishing the groups Urothelial 

like (formerly Urobasal), Genomically unstable, epithelial-infiltrated, 

SCC-like/mesenchymal infiltrated, SCCL/Uro B and small-cell/ 

neuroendocrine-like (67). These groups did not correlate with 

immunohistochemical phenotyping.  

 In 2014, Damrauer et al, from the University of North Carolina 

(UNC), looked for intrinsic molecular subtypes of urothelial bladder 

cancer, in a cohort of muscle-invasive disease (68). By gene expression 

profiling, they identified two subtypes, “luminal” and “basal-like”. 
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Basal-like tumours had significantly worse prognosis than the luminal 

tumours. These subtypes largely reflected the subtypes already described 

for breast cancer (69). In bladder cancer, luminal and basal-like tumours 

represented different stages of urothelial differentiation. The basal-like 

tumours expressed high levels of markers for basal urothelial cells, like 

CK14, CK5, CK6B, and CD44. By contrast, luminal tumours expressed 

markers associated with urothelial differentiation—like CK20 and 

uroplakins—that are typically expressed in urothelial umbrella cells. 

Furthermore, the two subtypes showed differences in genetic alterations: 

while luminal tumours had higher frequencies of FGFR3 mutations, the 

basal-like tumours had a higher frequency of alterations in the RB1 

pathway. Damrauer et al. created a panel of 47 genes (BASE47) for 

molecular classification of luminal and basal-like urothelial bladder 

cancer. They also tested it on a dataset of non-muscle invasive tumours. 

Some of the tumours fell into the basal-like subgroup. This indicates that 

the UNC classification might also work for non-muscle invasive 

tumours. In breast cancer, a “claudin-low” subtype has been previously  

identified (70). In 2016, the research group that originally described the 

claudin-low breast cancer subtype discovered a similar “claudin-low” 

subtype in muscle-invasive urothelial bladder cancer (71). In this system, 

10% of urothelial bladder cancers were identified as “claudin-low.” 

Interestingly, all these “claudin-low” tumours were previously identified 

as belonging to the basal-like subtype. The claudin-low tumours had the 

same prognosis as basal-like tumours, and expressed immune-related 

genes (including proinflammatory cytokines) at high levels, combined 

with a high level of expression of immunosuppressive genes, specifically 

PD-L1. Their gene expression profile suggests that these tumours are 

heavily infiltrated by immune cells. 

 At the same time Choi et al, from MD Anderson Cancer Center 

(MDA), Houston, Texas, presented a similar classification system (72). 

Choi et al. were also inspired by molecular subtyping in breast cancer, 

and found similar results for muscle-invasive bladder cancer. Based on 
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whole genome mRNA expression profiling and hierarchical clustering 

analyses, they reported three urothelial bladder cancer subgroups: basal, 

luminal, and p53-like. The basal tumours were enriched with basal 

biomarkers, in the same way as basal breast cancers (CD44, CK5, CK6, 

CK14, and P-cadherin), the luminal tumours are characterized by the 

same markers as for luminal breast cancer (CD24, FOXA1, GATA3, 

ERBB2, ERBB3, XBP1, and CK20). p53-like tumours also expressed 

luminal markers, but in addition, showed an activated wild-type TP53 

gene expression signature. The TP53 mutation frequency was the same 

for all the three subtypes. As for the UNC classification system, the basal 

tumours were associated with shorter disease specific and overall 

survival. 

 

Figure 10. Basal and luminal markers. 

Immunohistochemistry for basal (CK5/6, CD44) and Luminal (CK20) markers in representative 

basal and luminal tumours defined by gene expression profiling. Reprinted from Cancer Cell, 

Volume 25, Choi et al, Identification of Distinct Basal and Luminal Subtypes of Muscle-Invasive 

Bladder Cancer with Different Sensitivities to Frontline Chemotherapy, pages 152 – 165, 

Copyright (2014), with permission from Elsevier.  
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 Figure 11. MD Anderson Molecular classification of urothelial bladder cancers 

and survival analyses. 

Kaplan-Meier plots showing overall survival and disease-specific survival for the 3 tumour 

subtypes. Reprinted from Cancer Cell, Volume 25, Choi et al, Identification of Distinct Basal 

and Luminal Subtypes of Muscle-Invasive Bladder Cancer with Different Sensitivities to 

Frontline Chemotherapy, pages 152 – 165, Copyright (2014), with permission from Elsevier.  

 

The basal tumours are characterized by squamous features, 

similar to the SCC-like tumours, from the Lund classification system. 

The MD Anderson tumours classified as luminal corresponded well to 

the Lund Urobasal A tumours. Choi et al. found that the transcription 

factor p63 was important in controlling the expression of basal genes 

(72). Correspondingly, the transcription factor PPARcontrolled the 

luminal gene expression signature.  

 The MD Anderson classification system was validated in a meta-

analysis from 2016 that confirmed the intrinsic molecular subtypes 

luminal and basal (73). The p53-like subtype was relegated to a subtype 

under luminal and basal. The meta-analysis included two cohorts with a 

significant number of non-muscle invasive tumours, confirming the 

existence of luminal and basal subtypes in non-muscle invasive disease. 
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The gene expression subtypes were correlated with 

immunohistochemical phenotypes. Selected markers for basal and 

luminal tumours were investigated, aiming to find widely available 

markers for diagnostic use. Suggested markers for differential use were 

(a) CK5/6 and CK14 for basal tumours, and (b) GATA3, CK20, and 

uroplakin 2 for luminal tumours, although the markers showed some 

tendency to overlap. The best combination uncovered in this study was 

GATA3 and CK5/6, reaching an impressive accuracy of 91% (73).  

The publicly available The Cancer Genome Atlas (TCGA) 

cohort, made it possible to investigate genomic alterations in urothelial 

bladder cancers, and correlate the results with the tumours’ intrinsic 

molecular subtypes. In this cohort, the mutational burden and the overall 

mutational landscape were comparable for luminal and basal tumours 

(73). One could identify some genes that were more frequently mutated 

in specific molecular subtypes: FGFR3, ELF3, CDKN1A, and TSC1 

were more frequently mutated in luminal tumours, whereas TP53, RB1, 

and NFE2L2 were more frequently mutated in basal tumours. 
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Figure 12. Basal and luminal markers, their proportion of positivity in basal, luminal and 

double negative urothelial bladder tumours. 

A: Diagram showing proportion of positive basal, luminal or double negative tumours for the 

different well known expression markers. B: Representative luminal and basal tumours with 

their immunohistochemical phenotype. Dadhania et al. Meta-Analysis of the Luminal and Basal 

Subtypes of Bladder Cancer and the Identification of Signature Immunohistochemical Markers 

for Clinical Use. EBioMedicine 2016. DOI 10.1016/j.ebiom.2016.08.036. This article is 

distributed under the terms of the Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by-nc-nd/4.0/).   
 

 

In 2014, TCGA Research Network also published a classification 

system based on mRNA and miRNA expression profiling, protein data, 

and cluster analysis (47). They proposed four clusters, I–IV for muscle-

invasive disease. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 13. Expression characteristics of bladder cancer, according to TCGA.  

The figure shows z-normalized data for expression characteristics. In (a), FGFR3 alterations 

are presented, together with papillary histology. The presented miRNAs downregulate FGFR3 

expression. (b) shows basal and stem cell markers, including squamous features. (c) presents 

markers for urothelial differentiation and (d) shows ERBB2 characteristics and oestrogen 

receptor beta expression. The Cancer Genome Atlas Research Network. Comprehensive 

molecular characterization of urothelial bladder carcinoma. Nature 2014.v DOI 

10.1038/nature12965 (https://creativecommons.org/licenses/by-nc-sa/3.0/).  

 

Cluster I was characterized by activation of FGFR3, either by mutation, 

amplification, or otherwise elevated expression (lower level of inhibiting 

miRNAs). They also had typical papillary histology. Both cluster I and 

II had high levels of ERBB2 and oestrogen receptor beta expression. 

Cluster III corresponded to the basal markers in breast cancer. Also, the 

https://creativecommons.org/licenses/by-nc-sa/3.0/
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TCGA research network associated the expression of these markers with 

histological squamous features. 

 

Figure 14. Interrelationship between the first proposed molecular classification systems 

(74). 

Reprinted from European Urology, Vol 68, Aine et. al, On Molecular Classification of Bladder 

Cancer: Out of One, Many, pages 921 – 923, Copyright (2015), with permission from Elsevier. 

  

 With the exception of the work from Lund University (66), most 

research on urothelial bladder cancer has been performed on cohorts 

consisting of muscle-invasive disease only. In 2016, Hedegaard et al. 

carried out whole transcriptome RNA sequencing analysis on a cohort of 

non-muscle invasive urothelial carcinomas (65). They identified three 

classes of tumours: class 1, 2, and 3. Class 2 tumours had the poorest 

prognosis, with the shortest progression-free survival. Class 1 tumours 

were characterized by a relatively good prognosis, and class 3 tumours 

happened to be somewhere in between. Class 1 tumours showed high 

expression of early cell cycle genes, like the Urobasal A tumours in the 

Lund taxonomy, while class 2 tumours showed high expression of late 

cell cycle genes, corresponding to the genomically unstable and SCC-

like tumours. Both class 1 and 2 showed high expression of uroplakins, 

indicating luminal differentiation. High expression of CK5, CK15, and 

CD44— markers of undifferentiated/basal cells—was observed in class 

3 tumours. Class 1 and class 2 showed luminal characteristics, while 
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class 3 showed basal-like features. Although both classes (1 and 2) have 

luminal characteristics, class 2 tumours were more clinically aggressive 

than class 1 tumours. Hedegaard et al. performed whole genome 

mutation analysis on the same cohort and found that mutations in genes 

involved in DNA damage response, mutations in the MAP kinase/ERK 

pathway and in ERBB family genes, where associated with class 2 

tumours. Furthermore, the APOBEC-related mutational signature was 

mostly seen in class 2 tumours. Most importantly, this study supports the 

use of molecular classification in non-muscle invasive bladder cancer. 

 The existence of different, although somewhat overlapping, 

molecular classification systems impede their clinical use and limit their 

utility. Therefore, a consensus molecular classification of muscle-

invasive bladder cancer was published in 2020 (75). The transcriptomic 

profiles from 1750 muscle-invasive bladder cancers, from 18 different 

and independent datasets, were classified according to six different 

previously described molecular classification systems (Lund, MDA, 

UNC, TCGA, as described here, but also two proposals not further 

mentioned here, Baylor and Cartes d’Identite des tumeurs). Based on 

statistical algorithms six classes/subtypes are proposed; luminal 

papillary (LumP), luminal non-specified (LumNS), luminal unstable 

(LumU), stroma-rich, basal/squamous (Ba/Sq) and neuroendocrine-like 

(NE-like). All three luminal classes overexpressed markers for urothelial 

differentiation, and Ba/Sq and NE-like tumours overexpressed markers 

for basal/squamous and neuroendocrine differentiation, respectively. 

LumP typically showed papillary histology and overexpression of 

FGFR3. LumNS were luminal tumours with stromal and immune cell 

expression signatures. Histologically, they seem associated with 

micropapillary variant. LumU had an expression profile consistent with 

high cell cycle activity. They were associated with mutations in TP53 

and ERCC2. Stroma-rich tumours were characterized by less urothelial 

differentiation and a gene expression signature in the direction of smooth 

muscle, fibroblast and myofibroblast, in addition to immune cell 
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infiltration. Ba/Sq tumours, in addition to showing basal/squamous 

differentiation, were associated with TP53 and RB1 mutations. EGFR 

activity was increased in Ba/Sq tumours, which also expressed immune 

cell infiltration signature. NE-like tumours typically showed TP53 and 

RB1 inactivation at the same time. In a multivariate Cox regression 

model, the luminal tumours were not statistically different from each 

other with regard to overall survival. Patients with Ba/Sq tumours had a 

worse prognosis and those with NE-like tumours had the worst 

prognosis. Interestingly, the Ba/Sq type was overrepresented in women. 

Both Ba/Sq and NE-like tumours seemed to benefit from neoadjuvant 

chemotherapy. 

 The above-mentioned, consensus classification system has not 

been validated for non-muscle invasive tumours yet. For muscle-

invasive disease however, this is a step towards further clinical trials 

leading to effective targeted therapy for bladder cancer. 
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Figure 15. Summary of the main characteristics of the consensus classes of urothelial 

bladder cancers. 

The figure is taken from Kamoun et al (75). This article is distributed under the terms of the 

Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/). 

 

1.8 Prognosis and prognostic markers 

The overall 5-year relative survival rate for bladder cancer is estimated 

at 77%. Tumour stage, usually according to the American Joint 

Committee on Cancer (AJCC) staging manual (the TNM system) (76), 

has great impact on choice of treatment and patient prognosis. For pTa 

and pTis the 5-year relative survival rate is around 90%. For pT1 and 

pT2 disease, the survival rates are 79% and 68%, respectively. pT4 

disease has a low survival rate of only 12% (68, 77).  

 

https://creativecommons.org/licenses/by/4.0/
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Figure 16. The current TNM staging system for bladder cancer, according to AJCC 

staging manual 8th edition. 

Magers et al. Staging of bladder cancer. Histopathology 2018. Doi: 10.1111/his.13734. 

This article is distributed under the terms of the Creative Commons Attribution 3.0 

International License (https://creativecommons.org/licenses/by-nc/3.0/). 

 

 Distinguishing between pTa and pT1 can be difficult. The 

material is often fragmented, and orientation might be difficult. Trauma 

artefacts, especially heating damage, makes the histopathological 

evaluation even harder. Tangential sectioning and benign von Brunn 

nests, as well as stroma reactions to tumour, can further complicate this 

evaluation. Bol et al. found a considerable inter-observer variability in 

staging Ta and T1 tumours. They found an 80% agreement among 

reviewers in a cohort of 130 patients with NMIBC. Of the 65 original T1 

tumours, 35 were down-staged and 8 were up-staged by the reviewers 

(78). 

There is no official consensus with regard to substaging of pT1 

tumours. Despite this, separating patients having a small focus with 

lamina propria invasion, from those with extensive invasion, is strongly 

recommended, as these features are assumed to differentially impact 

patient prognosis (4). One suggested method is to distinguish pT1 

tumours into micro-invasive (pT1m) and extensive-invasive (pT1e) 

categories (79). pT1m is then defined by a single focus of invasion, 0.5 

mm or less in maximum extension. Tumours having more than one focus 

of infiltration or a single focus extending beyond 0.5 mm are defined as 

pT1e. van Rhijn et al. found a significantly higher progression-free 

survival for pT1m, with a 5-year and 10-year progression-free survival 

at 83% and 57%, respectively. This was compared to pT1e having 

corresponding 5-year and 10-year progression-free survival of 55% and 

27%, respectively. 

https://doi.org/10.1111/his.13734
https://creativecommons.org/licenses/by-nc/3.0/


Introduction 

36 

 

Figure 17. T1 substaging (pT1m vs pT1e) and progression-free survival. 

Kaplan-Meier curves for progression-free survival comparing pT1m and pT1e in a cohort 

including 164 primary pT1 bladder cancer patients. Reprinted from European Urology, Vol 61, 

van Rhijn et al, A New and Highly Prognostic System to Discern T1 Bladder Cancer Substage, 

Copyright 2012, with permission from Elsevier. 

Another proposal for substaging pT1 is to relate invasive border 

to the muscularis mucosae, and if not present, use the venous plexus as 

a substitute. This is challenging as the muscularis mucosae is 

discontinuous and sometimes absent. The location of the venous plexus 

varies, sometimes above and sometimes below the muscularis mucosae. 

Finally, measuring linear depth of invasion from the basal lamina is 

suggested, although different publications recommend different cut-off 

values (80). 

As for many other malignancies, tumour grading, based on 

degree of anaplasia, is an important prognostic factor for urothelial 
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carcinomas. Grading is essential in risk stratification models (see below). 

For more detailed description of grading, see “1.4 WHO grading.”  

Several urothelial carcinomas of variant histology are associated 

with a worse prognosis, see section 1.5 “Variants of urothelial 

carcinoma” above. The micropapillary, plasmacytoid, and sarcomatoid 

variants in particular, are considered to be more clinically aggressive. 

The Giant cell, poorly differentiated and lipid-rich subtypes are also 

associated with poor clinical outcomes.  

In 2006, the European Organization for Research and Treatment 

of Cancer (EORTC) presented a scoring model for determining the 1-

year and 5-year risk of recurrence and progression to muscle-invasive 

disease, for NMIBC (81). This calculation model is based upon a 

retrospective analysis of 2596 NMIBC patients, and takes into account 

the WHO 1973 grading system, and the five most prognostic factors in 

the cohort regarding recurrence and progression (number of tumours, 

tumour size, prior recurrence rate, T-category, concomitant CIS).   

On behalf of the European Association of Urology (EAU), 

Sylvester et al. published an updated scoring model in 2021 for risk of 

progression (EAU NMIBC 2021 scoring model) (31). The aim was to 

include the WHO 2004/2016 grading system, while still retaining the 

option of using the WHO 1973 grading system. In this retrospective 

study, 3401 patients were included. The number of tumours and tumour 

size were analysed as in the original scoring system from EORTC 2006. 

When using the WHO 2004/2016 grading system, PUNLMP and low 

grade carcinomas were grouped together. Age was included in the 

analysis and reintroduced in this scoring system. All prognostic variables 

were analysed using multivariable Cox regression and weighted again. 

The scoring model created by Sylvester et al. created four risk groups, 

now included in the EAU guidelines: low, intermediate, high, and very 

high risk.  
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Table 2. Weights for the prognostic factors in the EAU NMIBC 2021 scoring model. 

The table shows weights for the prognostic factors used to calculate the progression score and 

the progression risk group. Patients with CIS ending in the intermediate risk group were 

reclassified as high risk. Reprinted from European Urology, Vol 79, Sylvester et al, European 

Association of Urology (EAU) Prognostic Factor Risk Groups for Non–muscle-invasive Bladder 

Cancer (NMIBC) Incorporating the WHO 2004/2016 and WHO 1973 Classification Systems for 

Grade: An Update from the EAU NMIBC Guidelines Panel, with permission from Elsevier. 

  

EAU NMIBC Prognostic factor risk 
groups 

 

Low risk  Primary, single Ta/T1, LG/ 
G1, < 3 cm and < 70 years 
(without CIS) 

 Primary Ta, LG/ G1 and 
maximum one additional 
clinical risk factor (without 
CIS) 

Intermediate risk  Patients without CIS, not 
included in any other risk 
group 

High risk  T1, HG/G3 (without CIS), not 
included in the Very high risk 
group 

 All CIS, not included in the 
Very high risk group 

 Ta LG/ G2 or T1 G1, and 3 
additional clinical risk factor 
(without CIS) 

 Ta HG/ G3 or T1 LG, and 2 
additional clinical risk factors 
(without CIS) 

 T1 G2 and 1 additional 
clinical risk factor (without 
CIS) 

Very high risk  Ta HG/ G3, CIS and 3 
additional clinical risk factors 
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 T1 G2, CIS and at least 2 
additional clinical risk factors 

 T1 HG/ G3, CIS and at least 1 
additional clinical risk factor 

 T1 HG/ G3, 3 additional 
clinical risk factors (without 
CIS) 

 

Table 3. The clinical composition of the EAU NMIBC prognostic factor risk groups 

The table helps to classify patients into the right EAU NMIBC prognostic factor risk group. 

Additional clinical risk factors are age > 70, multiple tumours, and tumour size >3 cm. Those 

with CIS in prostatic urethra, some variant histology (micropapillary, plasmacytoid, sarcomatoid 

and small cell neuroendocrine carcinoma) as well as those with pT1 and lympho-vascular 

invasion, should be classified as very high risk. Patients with recurrent tumours are also not 

included in the table and should be classified as intermediate, high, or very high risk depending 

on their other prognostic factors (31). 

Before the introduction of EAU NMIBC prognostic factor risk 

groups in 2021, the high risk group included a subgroup called “highest 

risk”. This term is retained in the EAU guidelines, partly overlapping 

with the new very high risk group (28). Patients defined as having 

“highest risk” of progression includes: 

 T1 HG/G3 and CIS in bladder and/ or urethra 

 T1 HG/G3 and/ or multiple and/ or large (> 3 cm) and/ or 

recurrent 

 T1 HG/G3 with aggressive variant histology 

 T1 HG/G3 with lymphovascular invasion 

Lympho-vascular invasion (LVI) is an important way of systemic 

spread and metastasis from malignant disease. LVI in urothelial 

carcinoma is not included in the most frequently used prognostic 

calculators, but in the EAU NMIBC 2021 scoring model, pT1 tumours 

with LVI are suggested to be classified as very high risk. A meta-analysis 

by Kim et al. found that LVI in transurethral resection of bladder tumour 

(TURBT) was associated with pathologic upstaging (OR 2.2) (82). They 
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also found significant influence on both recurrence-free and progression-

free survival (HR 1.47, 95% CI 1.24-1.74, and HR 2.28, 95% CI 1.45-

3.58, respectively), as well as disease specific survival (HR 1.35, 95% 

CI 1.01-1.81). 

Several other biomarkers, although not in routine clinical use, 

have shown prognostic utility as well. Mitotic frequency and location are 

part of the standard evaluation when grading urothelial carcinomas. As 

noted earlier, histological grading has raised significant concerns 

regarding low reproducibility. This has led to a search for more 

objectively quantifiable and reproducible prognostic markers. 

Formalized and validated methods for quantification of mitosis, like 

Mitotic Activity Index (MAI), is such a variable. MAI is calculated by 

counting obvious mitosis at x 400 magnification in consecutive fields of 

vision in a total area of 1.59 mm2 (83). Other proliferation markers 

involve the use of immunohistochemistry to detect antigens involved in 

cell cycle. The antigen Ki67 is a nuclear antigen present during most of 

the cell cycle (G1, S, G2 and M phase). It is not present in non-

proliferating cells (G0). Phosphohistone H3 (PPH3) is a nuclear antigen 

only present in late G2 and M phase of the cell cycle. PPH3 is therefore 

more specific for measuring mitotic activity. Bol et al. analysed the 

prognostic value of proliferation in NMIBC (84). In a univariate analysis, 

they found the strongest prognostic predictors for progression to be Ki67, 

MAI, and the mean area of the ten largest nuclei (MNA10). These 

markers performed better than WHO grading and other more traditional 

prognostic markers. Ki67 and MNA10 were calculated by the QPRODIT 

version 6.1 image analysis system, making them reproducible. In a 

multivariate analysis the strongest predictors were the combinations 

MNA10/ Ki67 and MNA10/ MAI (Fig 18). Also van Rhijn et al. found 

Ki67 to be a significant prognostic marker (85). They suggested a 

molecular grading system combining Ki67 and FGFR3 mutation 

analysis. In a cohort consisting of pT1 tumours only (n=309), Ki67 was 

the only marker predicting progression-free survival in a multivariable 
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analysis (86). Mangrud et al. investigated all the proliferation markers 

(MAI, Ki67, and PPH3) and compared them to WHO73 and WHO 

2004/2016 grades (87). All three proliferation markers and both the 

WHO 1973 and WHO 2004/2016 grading systems were significantly 

prognostic for progression. In their study, MAI appeared to be the best 

prognostic marker with a HR = 16.5 (95% CI 3.6–75.3).  

 

Figure 18. MNA10, Ki67 and progression in high-risk patients. 

Scatter plot of MNA10 and Ki67 in high-risk patients (n=74), in a cohort from Bol et al. All 

progression cases had MNA10 > 170 µm2 and Ki67 > 25 %. Reprinted from Urology, vol 60, 

Bol et al, Prognostic value of proliferative activity and nuclear morphometry for progression in 

TaT1 urothelial cell carcinomas of the urinary bladder, Copyright 2002, with permission from 

Elsevier. 

 

Several other groups have investigated immunohistochemical 

markers and prognosis as well. Cytokeratin 20 (CK20) is a cytoskeleton-

associated intermediate protein filament found in epithelial cells, mainly 

in the genitourinary and gastrointestinal tract. It has been used as a 



Introduction 

43 

marker for urothelial differentiation and lately, as a surrogate marker in 

molecular classification of bladder cancer. For a long time, it has been 

used by surgical pathologists to separate reactive urothelial changes from 

CIS (88). In normal urothelium, CK20 is expressed by umbrella cells. In 

CIS, the expression is extended to deeper layers of the urothelium (89, 

90). In papillary urothelial carcinomas, abnormal CK20 expression has 

not been shown to predict progression. A few publications have shown 

an association between abnormal CK20 and recurrence (86, 91, 92). 

Although not found significant for prognosis, Desai et al. found a 

significantly higher proportion of tumours with abnormal CK20 

expression among high-grade tumours compared to low-grade tumours 

(91). Notably, 30% of high-grade tumours did not show abnormal CK20 

reaction. It is widely agreed that CK20 has no role in grading of papillary 

urothelial carcinomas. 

As TP53 mutations in urothelial carcinoma are associated with 

aggressive muscle-invasive tumours, immunohistochemistry for the p53 

nuclear antigen has been investigated as a possible prognostic marker. 

Mutated p53 has a much longer half-life, as wild-type p53 is quite 

unstable. This causes mutated p53 to accumulate in the nucleus. Strong 

nuclear positivity for p53 on immunohistochemistry therefore indicates 

a possible mutation. This method is routinely used for determining the 

p53 mutation status in serous ovarian carcinoma. Several publications 

confirm the use of p53 immunohistochemical staining as an appropriate 

surrogate marker also in urothelial carcinomas (93, 94).  There are some 

publications showing worse outcomes for tumours with p53 

overexpression (95, 96), but several others failed to find any prognostic 

value (84, 86). 

Even though evidence is increasing, molecular characteristics 

and molecular subclassification of bladder cancer are not in routine 

clinical use for prognostic purposes yet. Non-muscle invasive and 

muscle invasive tumours have different molecular characteristics (see 

“1.6 Molecular alterations in bladder cancer”).  Different proposals for a 
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molecular classification system have defined tumour subgroups with 

very different outcomes (see “1.7 Molecular classification of urothelial 

carcinoma”). In the Lund University Classification system, the Urobasal 

A tumours had the best prognosis in disease-specific survival, while the 

genomically unstable and the infiltrated tumours had an intermediate 

prognosis, and Urobasal B and SCC-like had the worst prognosis (66). 

For the classification systems from UNC and MD Anderson, the basal-

like and the basal tumours, respectively, were both associated with a 

shorter disease-specific survival (68, 72). Moreover, both these tumour 

subgroups showed features overlapping with the features of Urobasal B 

and SCC-like tumours. In the proposal from Hedegaard et al. based on 

NMIBC only, patients with class 1 tumours had the best prognosis, those 

with class 3 tumours had an intermediate prognosis, and patients with 

class 2 tumours had the worst prognosis (shortest progression-free 

survival). Both class 1 and 2 tumours had luminal characteristics, while 

class 3 tumours showed basal features. Class 1 tumours best matched 

Urobasal A, while class 2 tumours had characteristics similar to those of 

the Genomically unstable subgroup. In the most recent consensus 

classification, Ba/Sq and NE-like had the worst prognoses (75). 

 

1.9 Immune response on tumour 

In recent years, the tumour microenvironment has gained increasing 

interest especially after the introduction of immune checkpoint inhibitors 

(ICI). The immune response against tumour cells has been studied for 

many years, both as a prognostic and as a predictive marker. Tumour 

cells gain mutations and present new and not “self-recognizable” 

antigens on the cell surface, initiating an immune response. Tumour cells 

and locally situated immune cells attract lymphocytes via cytokines and 

chemokines. The most important immune cells that fight against tumour 

cells are T-cells (CD3+ cells). Several subpopulations of T-cells can be 

identified and the immune response depend on a finely-tuned balance 
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between the different subsets of cells. When studying the presence of 

tumour infiltrating lymphocytes (TILs) in the tumour microenvironment, 

this heterogeneity of immune cells has to be taken into consideration. 

The most frequently described immune cells in publications on TILs are 

cytotoxic T cells (CD8+) and T helper cells (CD4+), the latter including 

an important subgroup called T regulatory cells (Tregs, 

FOXP3+/CD25+) (97). 

 Cytotoxic CD8+ T cells are effector lymphocytes involved in 

destroying tumour cells. Their presence correlates with a better 

prognosis in several malignancies (98, 99). For urothelial carcinoma 

however, several publications show conflicting results: Lui et al. 

investigated TILs in both MIBC (n=49) and NMIBC (n=53) and found 

increased overall survival in the group of high CD8+ for NMIBC only 

(100). Sharma et al. found better disease-free survival in MIBC with high 

CD8+ expression, but lack of significance for NMIBC (101). The 

counting methods employed in these studies were also different: Liu et 

al. counted cells in the invasive front, while Sharma et al. counted both 

in the stroma and in the tumour nests. Others also looked at muscle-

invasive cancers and found a better disease-free and overall survival in 

those with high CD8+ count (102, 103). Wahlin et al. found increased 

time to recurrence in CD8+-high MIBC after cystectomy (104). Zhang 

et al. analysed CD8+ lymphocytes in both organ-confined (n=75) and 

non-organ confined (n=51) bladder cancer (105). In organ-confined 

bladder cancer, CD8+ was significant associated with poorer overall 

survival, while in non-organ confined disease, CD8+ expression 

correlated with better overall survival. Finally, Horn et al. could not find 

any correlation between CD8+ TILs and outcome in a cohort of 149 

invasive bladder cancers treated with cystectomy (106). There are also a 

few publications on CD4+ lymphocytes in bladder cancer. Zhang et al. 

presented a cohort including 131 NMIBC patients, in which CD4+ was 

associated with reduced overall survival (107). 
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 Regulatory T-cells (Tregs) are important in maintaining self-

tolerance in the human body. In the tumour microenvironment, these 

cells generally decrease the anti-tumour immune response. Their exact 

mechanism is still poorly understood. It seems like Tregs are a 

heterogenous group of cells, either changing phenotype dependent on 

context or being distinct determined subtypes (108). Tregs in the tumour 

microenvironment are thought to limit the effect of ICI. Their presence 

has been shown to correlate with poorer prognosis in several 

malignancies (109). Existing publications regarding Tregs in bladder 

cancer show conflicting results. Miyake et al. found an association 

between high Treg count and reduced recurrence-free survival in 

NMIBC after receiving BCG instillation  (110). Winerdal et al. found 

longer progression-free survival in tumours with high Treg counts in a 

cohort of invasive bladder cancer patients who underwent cystectomy, 

although the included number of patients was low (n=37) (111). Another 

study by Parodi et al. showed reduced recurrence risk when the intra-

tumoral ratio of Effector T-cell/Treg was greater than 1. This study 

included all stages, but also suffered from a small sample size (n=28) 

(112). As mentioned, Horn et al. did not find any significant association 

between CD8+ and prognosis, but while analysing the ratio of FOXP3+ 

cells/CD8+ cells, they found a significantly shorter overall survival and 

time to cancer-specific death in those with higher FOXP3+ cells/ CD8+ 

ratios (106).  

 A recent review by Miyake et al., regarding the prognostic value 

of TILs in urothelial carcinoma, states that a conclusion cannot be drawn 

yet (113). Existing publications in the field are difficult to compare as 

the counting of immune cells are performed in different locations, some 

in both tumour and stroma, some in tumour only, and yet others in the 

invasive front. Counting methods and scoring systems also differ, 

making head-to-head comparisons impossible. In addition, the patient 

cohorts differ widely in stage: some studies include NMIBC only while 

others include both NMIBC and MIBC. For a final conclusion regarding 
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this topic, more validation studies in more homogenous and standardized 

patient cohorts are needed.  

  

1.10 Symptoms and diagnostics 

The cardinal clinical sign of bladder cancer is hematuria, either micro- 

or macrohematuria. Bladder cancer can also present with irritative 

symptoms, like pollakisuria, dysuria, and urgency. Irritative symptoms 

are mostly associated with CIS. Voiding problems because of tumour 

blockage may also happen.  

 With a few exceptions, macroscopic hematuria should initiate 

further investigations to rule out cancer in the urinary tract (28, 29). The 

diagnostic approach for patients with microscopic hematuria depends on 

age, risk factors, and symptoms. The main investigation to look for 

tumours in the urinary bladder is cystoscopy. Tissue samples are taken 

from tumours and other suspicious lesions in the mucosa. This is the 

basis for a histological diagnosis. When a high grade or invasive tumour 

is detected, computer tomography (CT) with contrast is indicated. Such 

a CT should be taken from the urinary tract and thorax, because a CT can 

reveal tumours in the upper urinary tract in case no tumour is detected in 

the bladder on cystoscopy. Magnetic resonance tomography (MRI) is not 

routine, but can replace CT on special indications. MRI is more suitable 

for local tumour staging in the pelvis. 

Urinary cytology can be a useful supplement to cystoscopy if no 

tumour is found. Cytology is also the method of choice if one suspects 

the presence of CIS. This method has a high sensitivity for detecting high 

grade lesions, but a low sensitivity for detecting low grade lesions. 

Different kinds of molecular tests using urine have been developed. They 

generally have a higher sensitivity than urinary cytology, but their 
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specificity is often lower. None of them are currently in routinely clinical 

use in Norway. 

 

1.11 Current treatment guidelines for NMIBC 

NMIBC is normally treated with trans-urethral resection of the bladder 

(TURB) in order to remove all the tumour tissue. In the case of 

uncertainty about completeness of the TURB, the presence of T1-tumors 

or the lack of muscularis propria in the resection, a re-TURB is 

recommended 2 - 6 weeks later (29). A significant proportion of patients 

will have residual tumour in the re-TURB (114), either because of 

incomplete first resection or recurrence of a new tumour. A single post-

operative instillation of chemotherapy in the bladder, like Mitomycin C, 

is recommended for all NMIBC as this has shown to reduce the 

recurrence rate (OR=0.61) (115). 

Because of the high recurrence rate in NMIBC, adjuvant therapy 

is usually necessary. Treatment decisions related to adjuvant therapy are 

generally based on the previously described risk-groups in the EAU 

guidelines. In recurrent and small low-grade tumours (intermediate risk), 

regular chemotherapy instillations according to protocols can be an 

option. Usually, six weekly instillations of Mitomycin C are 

administered, followed by one instillation per month. Duration of this 

treatment is up to one year. Such regimes can also replace Bacillus 

Calmette-Guerin (BCG) instillations in cases with intolerable adverse 

events. BCG is regarded as first option in intermediate and high-risk 

patients after TURB. 

 Radical cystectomy is suggested for NMIBC in those categorized 

as very high risk (see “1.8 Prognosis and prognostic markers”), or those 

included in the older term “highest risk”. According to the EAU 

guidelines radical cystectomy is also strongly recommended for BCG 
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unresponsive tumours, broadly defined as any recurrent high grade 

tumour during or after BCG therapy (28). Treatment options, regarding 

risks and benefits, should always be discussed with the patient. 

 

1.12 BCG instillation in bladder cancer 

The instillation of BCG into the urinary bladder is an anti-cancer 

immunotherapy, first published by Morales et al. in 1976 (116). An 

attenuated live strain of Mycobacterium bovis is suspended in 50 ml 

saline and injected, via a catheter, into the urinary bladder. The BCG 

treatment starts with an induction schedule consisting of one weekly 

instillation for six weeks. This is followed by a maintenance schedule, 

usually consisting of repeated cycles of one weekly instillation for three 

weeks for a period of 1–3 years. As BCG instillations often are 

accompanied by bothersome side effects, the duration of maintenance 

treatment has been debated. A randomised controlled trial by the 

EORTC, published in 2013 (117), compared maintenance therapy for 1 

and 3 years. In the intermediate risk group there were no differences, but 

in the high-risk group a 3-year schedule reduced recurrence risk 

compared to a one-year schedule (HR=1.61, 95% CI: 1.13–2.30). The 

two additional years of instillations did not significantly affect risk of 

progression.  

Several meta-analyses have shown that BCG instillations reduce 

the risk of both recurrence and progression in NMIBC patients treated 

by TUR-BT (118-121). Malmström et al. performed a meta-analysis 

including 2820 NMIBC patients, comparing recurrence rates in those 

treated with regular Mitomycin C instillations and those receiving BCG 

therapy with maintenance (118). They found a 32% risk reduction after 

BCG with maintenance compared to Mitomycin C. Two other meta-

analyses investigating BCG effect on progression, found significantly 

reduced progression risk in those receiving BCG (OR=0.66; 95% CI: 
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0.47–0.94, and OR 0.73; p=0.001). However, the effect was only 

significant after BCG maintenance therapy for at least one year (120, 

121). Several different BCG strains exist and little is known about 

whether there are differences in efficiency among the strains. However, 

a meta-analysis from 2017 by Boehm et al. found no significant 

superiority of any strain compared to the others (122). They also 

demonstrated a significantly reduced risk of recurrence compared to 

chemotherapy instillation. 

Although the BCG-therapy has been used for decades, the exact 

immunological mechanism behind the treatment effect is not yet fully 

understood (123, 124). BCG in the bladder lumen will attach to urothelial 

tumour cells, probably with help of the glycoprotein fibronectin in the 

extracellular matrix. Normal urothelial cells are to some extent protected 

from BCG by a negatively charged layer of glycosaminoglycans, 

covering the mucosa. Following attachment, BCG enters the cells, more 

readily the poorly differentiated tumour cells (125). As tissue destruction 

ensues, tissue macrophages will also incorporate BCG. Both tumour 

cells and the professional antigen presenting cells will process antigens 

and present them through MHC molecules on the cell surface. The 

infected cells will release cytokines attracting neutrophils and 

mononuclear inflammatory cells (126). Among these are CD4+ and 

CD8+ T-cells. The presence of cytokines generally seen in a Th1-

response, like IL-2, IL-12, IFN-γ and TNF, are associated with BCG-

responsiveness, while those involved in a Th2-response are associated 

with non-responsiveness to BCG (127). It is not known whether the BCG 

induced inflammation involves a directly specific anti-tumour activity or 

whether the general inflammation is responsible for the anti-tumour 

mechanism. Both CD4+ and CD8+ T-cells are assumed to be important 

in the initiated immune response (128). As previously mentioned, 

Miyake et al. found an association between high Treg count and reduced 

recurrence-free survival in NMIBC after receiving BCG instillation 

(110). Pichler et al. found prolonged recurrence-free survival in patients 



Introduction 

51 

with high CD4+ count in the tumour microenvironment. Again, a high 

count of Tregs was inversely correlated with recurrence-free survival. 

They concluded that the tumour microenvironment is important for the 

therapeutic response to BCG treatment (129). 

BCG-instillations are frequently accompanied with side effects, 

most of them mild irritative symptoms such as dysuria, frequency of 

voiding and hematuria. In a randomised controlled phase 3 trial, on 

behalf of EORTC, Brausi et al. registered side effects in 69.5% of the 

cohort (n=1316). Local side effects were reported in 62.8% while 30.6% 

reported systemic side effects (130). Systemic side effects included fever 

(8%) and general malaise (15.5%). In this publication 7.8% stopped 

treatment because of side effects. In another study by Lamn et al., only 

16% completed the maintenance therapy schedule due to side effects 

(131). BCG infection is also a potential risk, as BCG consists of living 

attenuated Mycobacterium bovis; luckily the risk is only small [ca 1%, 

and mostly limited to the genitourinary tract (132)]. Among those 

suffering from BCG infection 30.3% had lung infections. To reduce the 

risk for BCG-infection, instillation should not be performed after 

traumatic catheterization or the first two weeks after TURB, as the 

urothelial barrier is broken. It should also be used with caution in 

immunocompromised patients. Adverse reactions to BCG is most 

frequent during induction and the first six months of maintenance 

therapy (133). 

 

1.13 NMIBC follow-up 

Patients with NMIBC have a high recurrence risk. As mentioned under 

“1.2 Epidemiology and etiology of urothelial bladder cancer” 50–70% 

will have recurrence and 15–25% will progress to MIBC. Early detection 

of recurrent tumours is important as a new TURB and adjuvant 

instillations can be sufficient treatment if tumours are discovered before 
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they start to invade the m. propria. Cystoscopy is the gold standard in 

detecting new tumours in the bladder. For all patients the first control 

cystoscopy is recommended 3 months after TURB (28, 29). New 

tumours at this point is an independent prognostic marker for future 

recurrence and progression risk (134). Further surveillance with repeated 

cystoscopies depend on EAU risk group. The extensive follow-up 

regime in NMIBC patients, frequently life-long, explains the high costs 

for the health care systems. The following table outlines the Norwegian 

follow-up guidelines. 

 

Table 4. EAU NMIBC prognostic factor risk group and the corresponding follow-up 

regimes. 

The table is taken from the national Norwegian guidelines (29).  
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2 Aims of the thesis 

Up to 70% of NMIBC will have recurrence, and up to 25% will 

experience progression to MIBC. Extensive follow-up, with high costs 

to the society and representing an additional burden to the patients, is 

considered necessary. Both treatment decisions and follow-up regimes 

are mainly decided based upon WHO grade and TNM stage. It is well 

known that WHO grading has issues with low reproducibility and that 

pathological staging can be challenging (35, 40, 78). This thesis aims to 

contribute to improved grading and to find new and better prognostic/ 

predictive histopathological biomarkers for non-muscle invasive 

papillary urothelial carcinomas. 

 

Aims for Paper I 

Investigate the reproducibility and the prognostic value of the individual 

histopathological features making up the WHO grading systems.  

 

Aims for Paper II 

To study the prognostic value of subsets of tumour infiltrating 

lymphocytes and plasma cells, and compare them with previously 

investigated proliferation markers. 

 

Aims for Paper III 

Study the prognostic and predictive value of T1 substaging in bladder 

cancer patients who fulfilled BCG induction treatment. 
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Aims for Paper IV 

Investigate the prognostic value of CK20 and p53 

immunohistochemistry, and compare them with previously investigated 

proliferation markers. 
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3 Methodology 

3.1 Patient material 

The patient cohorts for papers I, II, and IV consists of patients diagnosed 

with a primary non-muscle invasive papillary urothelial carcinoma in the 

urinary bladder (NMIBC) at department of pathology at Stavanger 

University Hospital. Paper I and II includes patients diagnosed between 

01.01.2002 and 01.01.2007. Paper IV is based on an extended cohort, 

involving patients diagnosed between 01.01.2002 and 01.01.2011. Paper 

III includes primary high risk NMIBC patients from three different 

Dutch hospitals in the period 2000–2017 (Erasmus MC; Franciscus 

Gasthuis & Vlietland and Amphia) and Stavanger University Hospital 

2002–2010.  

Before the start of the studies, the research was approved by The 

Norwegian Regional Ethical Committee (REK Vest, #106/09). Informed 

consent was not obtained from the patients, as the tissues already were 

resected for diagnostic and treatment purposes. All patients were offered 

the opportunity to reserve themselves from participation before the start 

of the study. This was in agreement with conditions stated by REK Vest. 

In addition, Paper III was approved by the Erasmus MC Medical Ethics 

Committee (MEC-2018-1097). 

 

Paper I: 

All patients diagnosed with a primary NMIBC at Department of 

Pathology at Stavanger University Hospital, were identified from the 

beginning of 2002 to the end of 2006 (n=249). Clinical information was 

extracted from the medical records at Stavanger University Hospital. All 

patients with a history of extra-vesical urothelial carcinoma were 

excluded from the database. Nine patients appeared to have either MIBC 

or metastatic disease at time of diagnosis, and were excluded. Further 11 

was lost to follow-up. Finally, 36 cases were excluded because of 

insufficient material, thermal damage or poor tissue quality. The final 
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cohort included 185 patients. Among these 13 (7%) progressed to a 

higher stage. All those with progression and 25 randomly selected   

individuals without progression were selected from the original cohort. 

In total 38 cases were included. The selected 25 without progression 

were not statistically different regarding age, sex, grade, recurrence or 

follow-up time, compared to the remaining 172 cases not selected. 

 

Paper II: 

In paper II we used the same cohort as for paper I, consisting of 185 

cases. Two cases had insufficient material for immunohistochemical 

analysis and were excluded; thus, the remaining 183 cases were used for 

progression analysis. For analysis of recurrence, the criteria were slightly 

different. We wanted to investigate the tendency for a new tumour to 

develop locally in the urinary bladder. In the recurrence cohort the 

patients were followed until last registered cystoscopy or cystectomy. 

Minimum follow-up time was set to 3 months. Consequently 6 more 

cases were lost to follow-up for recurrence analysis, as they either 

underwent cystectomy or were not followed by cystoscopies (most of 

them because of comorbidity). This is why the paper distinguished 

between a progression cohort including 183 cases, and a recurrence 

cohort including 177 patients. 

 

Paper III: 

Originally, the cohort from the four different hospitals consisted of 535 

primary high-risk NMIBC patients, all of them receiving at least five 

induction instillations of BCG treatment. After a central review, 26 cases 

were excluded either because of poor specimen quality or because of 

changed risk group. Among the remaining 509 cases, 264 were T1 

disease, eligible for sub-staging analysis. From the extended Stavanger 

cohort (2002–2010), 63 cases met the inclusion criteria and 39 of these 

cases were T1 disease suitable for analysis of T1 sub-staging. 
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Paper IV: 

After Paper I and II, our database was extended. By using the same 

approach as described for Paper I, we extended the database of primary 

NMIBC, diagnosed at Stavanger University Hospital, to the end of 2010. 

After excluding an additional four cases with extra-vesical urothelial 

carcinoma, three cases with insufficient quality, and one because of short 

follow-up time, we ended up with 349 cases. Additionally, in the period 

2002–2010, 7 cases of primary carcinoma in situ (pTis) were identified. 

Among the 349 cases of papillary urothelial carcinoma, 26 (7.4%) 

progressed to a higher stage. There was one case with progression among 

the seven cases with pTis only. As for paper II, in paper IV we set stricter 

follow-up criteria for recurrence analysis. The recurrence cohort in paper 

IV was limited to 337 cases. 

 

3.2 Histology  

All analyses were performed on formalin fixed paraffin embedded 

(FFPE) tumour tissue, archived at Department of Pathology at Stavanger 

University Hospital. Tumour tissue was originally received for 

diagnostic purposes. FFPE blocks were cut into 4 µm thick sections and 

stained with Haematoxylin Eosin Saffron (HES). HES-stained sections 

made the basis for diagnosis, pathologic staging, and grading, as well as 

mitotic counting. All slides from all the specimens, both primary and 

recurrent tumours, were reviewed, by two pathologists, to confirm 

diagnosis, grade (both WHO1973 and WHO2004/2016) and stage.  

 Cases included in Paper I, were additionally given a grade for 

each of the histopathological features making up the WHO grading 

systems. These microscopic features were extracted from textbooks in 

urological pathology. Three pathologists with experience in urological 

pathology performed feature grading independently, without knowledge 

of previous diagnostics, prognostic information, or the other 

pathologists’ evaluation. Finally, a consensus grade for each feature in 
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each case was created using a multi-headed microscope. The 

histopathological features and the descriptions for each of them are 

shown in Table 5. 

 

 WHO73 WHO04 

 Grade 1 Grade 2 Grade 3 Low 

grade 

High 

grade 

Architecture      

Papillae Delicate Varies Broad, 

varies 

Slender Broad 

Superficial 

layer 

Usually 

present 

Usually 

present 

Partially or 

completely 

lost 

Usually 

present 

Partially or 

completely 

lost 

Papillary 

fusion 

Some Varies Common Some Varies 

Nuclear arrangement 

Polarity Preserved Moderate 

loss 

Lost Preserved

, mod. 

loss 

Lost 

Maturation Normal Some  Lost Preserved

, mod. 

loss 

Lost 

Cohesion Normal Some Lost Some Lost 

Proliferation      

Mitotic figures Rare, 

basal 

Lower 

half 

Common, 

atypical 

Rare Common 

Nuclear 

atypia 

     

Nuclear 

enlargement 

Mild Mild Varies Mild Varies 

Nuclear shape Uniform Moderate 

variation 

Pleomorphi

c 

Moderate 

variation 

Pleomorphi

c 

Nuclear 

hyperchromasi

a 

Mild Moderate Varies Mild to 

moderate 

Varies 

Chromatin 

pattern 

Finely 

granular 

Granular Coarse Fine Coarse 

Nucleoli Occasion

al 

Occasion

al 

Common Occasion

al 

Common 

Giant nuclei No No Yes No Yes 
 

Table 5. Histopathological features and their descriptions according to WHO grade. 
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Showing histopathological features and the corresponding description for each WHO grade, 

extracted from textbooks in urological pathology.  

 

3.3 Immunohistochemistry  

Immunohistochemistry was performed to investigate the presence of 

specific antigens in the tumour tissue. For paper II, Ki-67, PPH3, CD4, 

CD8, CD25 and CD138 were investigated. For paper IV CK20 and p53 

were included as well. Consecutive 4 µm thick sections for 

immunohistochemistry were mounted onto Superfrost Plus slides. The 

slides were dried overnight, deparaffinised with xylene and then 

rehydrated with solutions of decreasing alcohol concentrations. Then a 

heat-mediated antigen retrieval system, using TRIS (10 mM) - EDTA (1 

mM) antigen retrieval buffer (pH 9), was applied on the sections. 

Endogenous peroxidase activity was inactivated by incubation in a 

peroxidase-blocking reagent (DAKO S2001) for 10 minutes. 

Immunostaining was performed using an autostainer (DAKO, Glostrup, 

Denmark). Antibody diluents for primary and secondary antibodies were 

used, and the immune-complex was visualized by 3,3`-diaminobenzidine 

(DAB) chromogen with haematoxylin as a counterstain.  

 

3.4 Mitotic activity index (MAI)  

Calculation of MAI was performed according to the previously 

published protocol (83, 84). The least differentiated area on the HES-

stained slide was marked. In the selected area, x fields of vision (FOV) 

with a 40x objective were scanned for mitotic figures until a total area of 

1.59 mm2 was reached. All obvious mitoses were counted (prophase, 

metaphase, anaphase, and telophase). Each FOV included at least 75% 

tumour tissue.  
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Counting of immunohistochemically PPH3 (phosphohistone H3) 

positive cells was performed following the same MAI procedure. For this 

count, the area giving the impression of highest number of PPH3 positive 

cells on low magnification was marked. 

 

3.5 Quantitative image analysis 

To minimalize interobserver variability, the semi-automatic interactive 

computerized system QPRODIT, version 6.1, (Leica, Cambridge, UK) 

was used to count Ki67 and immune cell markers (CD4, CD8, CD25, 

and CD138). QPRODIT was also used for quantitation of MNA10 (mean 

nuclear area of the ten largest nuclei).  

 The area of interest marked by the observer is electronically 

demarked. For calculation of Ki67, the system randomly selects 200–300 

FOV in the demarcated area. The FOVs corresponds to 400x 

magnification (40 x objective, numerical aperture 0.75) and is shown on 

a monitor. In each FOV a 2-line grid is projected, and one standard 

endpoint was used for counting. As this endpoint was projected over a 

tumour cell it was evaluated as positive or negative by the observer. 

Based on this procedure a percentage of Ki-67 positive cells was 

achieved. 

 For calculation of immune cell markers, 150 FOVs were 

randomly selected in the electronically demarcated area. For this 

procedure, a 6-line grid was used. Five standard endpoints were 

evaluated for each FOV. Each cell pointed out was evaluated as positive 

or negative, and a percentage of positive cells for that specific immune 

cell marker was achieved. 

 For MNA10, the demarcated area was scanned manually at low 

magnification for the largest nuclei. The 20 subjectively largest nuclei 

were projected on the monitor on high magnification (1000 x) and 

outlined by the mouse for automatic area measurement. The mean 

nuclear area of the 10 largest nuclei was calculated (83). 
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3.6 Digital image analysis 

For counting p53-positive nuclei, a fully automatic digital image analysis 

software, Visiopharm®, was used. Whole-slide images with p53 

immunohistochemical staining were scanned at 400 x magnification, 

using a 3D Histech Panoramic Scan II (3DHistech, Budapest, Hungary). 

The images were uploaded to the image analysis software, which 

performed automatic tissue and nuclei detection. A cut-off value 

indicating a positive nucleus was established. The pixel value for DAB 

was set to 80, corresponding to a strong and obvious positive nuclear 

staining. The application identified three hotspots of p53-positive nuclei 

on the whole-slide image, each with an area of 3.5 mm2. The average 

percentage of p53-positive nuclei in the three hotspots was calculated. 

The threshold for a p53-positive tumour was set to > 15%, matching the 

75-percentile in the cohort and thresholds used in other publications on 

the topic (95, 96). 

 

3.7 Immunoreactive score (IRS) 

Standardized scoring systems for immunohistochemical markers are 

lacking. There are a few semi-quantitative scoring systems, translating 

subjective impression by the pathologist into data amenable to statistical 

analysis. A common characteristic of these semi-quantitative systems is 

that they combine several ordinal variables into a single score (135). IRS 

is one of the few semi-quantitative systems widely accepted and 

recommended (136). In IRS, a score for percentage positive tumour cells 

(0–4) is multiplied with a score for staining intensity (0-3). The IRS will 

accordingly range from 0–12.  
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Percent positive tumour cells 

(X) 

Staining intensity (Y) 

0: No positive cells 0: No staining 

1: < 10 % 1: Mild 

2: 10 - 50 % 2: Moderate 

3: 51 – 80 % 3: Intense 

4: > 80 %  

 

Table 6. The immunoreactive score (IRS).  

IRS is the score for percentage positive tumour cells (X) multiplied by the score for staining 

intensity (Y), IRS = X x Y. 

 

In Paper IV IRS was used to assess immunohistochemistry for 

CK20 in tumour cells. As no standard cut-off value for positive vs. 

negative exists, we considered IRS > 3 as positive (based on a median 

IRS score = 4). Two individuals performed IRS on all the cases 

independently. In cases with a difference in IRS > 3, a consensus score 

was achieved using a multi-head microscope. 

 

3.8 Statistical analyses 

Paper I: 

The statistical analyses in this paper were performed in R version 3.4.0. 

We wanted to investigate the reproducibility and the prognostic value of 

all the microscopic histopathological features behind grading. In this 

study we used three raters. For each feature there were two or three 

ordinal categories. The well-known Cohens Kappa is neither suitable for 

ordinal data, nor is it appropriate for more than two raters. For handling 

ordinal data and three raters, we found Gwet’s Agreement Coefficient 

(AC) 1/2 most suitable (137). Gwet’s AC1 was used for features with 
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two categories and the weighted Gwet`s AC2 was used for features with 

three categories. We also calculated the weighted Fleiss’ Kappa for 

reference, but emphasized Gwet`s AC1/2 as Fleiss’ Kappa is vulnerable 

for skewed marginal distributions. The coefficients express the 

proportion of agreement, after agreement by chance is removed. Several 

benchmark scales have been developed for guidance. They were 

originally meant for kappa values, but are currently used for guidance 

with other agreement coefficients as well. According to Altman`s kappa 

benchmark scale, a coefficient > 0.60 represents good agreement (138). 

  

Kappa value Strength of Agreement 

< 0.20 Poor 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80 Good 

> 0.80 Very Good 
 

Table 7. Altman`s Kappa benchmark scale 

The scale was originally meant for kappa values, but is used for other agreement coefficients as 

well (138).  

 

 Prognostic value was estimated by the Area Under Curve (AUC) 

of the receiver operating characteristics (ROC) function. We calculated 

95% confidence intervals. For a feature to be statistically significant for 

progression, the 95% confidence interval for the AUC could not overlap 

0.5. 

 

Paper II: 

For statistical analyses, SPSS version 21 (SPSS Inc., Chicago, IL, USA), 

and MedCalc Statistical Software version 19.1 (MedCalc Software BV, 

Ostend, Belgium) were used. All continuous variables were 

dichotomized. For the proliferation markers (Ki67, PPH3, MAI) and 

MNA10, previously published thresholds were used (84, 87). For the 

immune cell markers (CD4, CD8, CD25 and CD138), the median value 

was used. Endpoints in this study were recurrence-free and progression-
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free survival. Differences in survival distributions between the groups 

were investigated with Log Rank test, and Kaplan Meier curves were 

generated. Further analyses of the variables were performed using 

univariate and multivariate Cox regression analyses. Hazard ratio with 

95% confidence interval was calculated. 

 

Paper III: 

For this paper, the statistical analyses were performed in R version 4.0 

(Vienna, Austria). Endpoints in this study were High grade recurrence-

free survival, progression-free survival and disease-specific survival. 

The non-parametric test, Chi Square test, was performed to see if T1-

substaging was associated with BCG-failure. Survival distribution 

analyses with Log Rank test were performed, and Kaplan Meier curves 

were generated. Clinical and pathological parameters were further 

analysed with both uni- and multivariate Cox regression analyses. 

 

Paper IV: 

All the statistical analysis in this paper were performed by using IBM 

SPSS Statistics 26, (IBM Corp, Armonk, NY). Continuous variables 

were dichotomised in the same manner as in Paper II, using previously 

published thresholds. Recurrence-free survival and progression-free 

survival were the endpoints. Log Rank test investigated the differences 

in survival distribution for the independent categorical variables, and 

Kaplan Meier curves were generated. Finally we performed univariate 

and multivariate Cox regression analysis, including Hazard ratio with 

95% confidence interval.
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4 Summary of the papers 

4.1 Paper I Prognostic value and 

reproducibility of different microscopic 

characteristics in the WHO grading systems 

for pTa and pT1 urinary bladder urothelial 

carcinomas 

Grading is one of the main prognostic factors for papillary urothelial 

carcinomas, essential for decision making in follow-up and treatment of 

NMIBC. Currently, both the WHO grading system from 1973 (WHO73) 

and the WHO grading system from 2004 (WHO04) are used. WHO04 

was introduced mainly to improve reproducibility. However, both 

grading systems are criticized for high inter-observer variability. 

WHO73 divides the tumour into grade 1, 2 and 3. WHO04 uses the terms 

“Papillary urothelial neoplasia of low malignant potential” (PUNLMP) 

as well as low- and high-grade carcinomas. Grading is based on degree 

of anaplasia. Several histopathological features are included in the 

evaluation. Paper I investigates the reproducibility and prognostic value 

of each of the underlying morphologic features evaluated by a 

pathologist while grading. At the Department of Pathology, Stavanger 

University Hospital, in the period 01.01.2002–31.12.2006, 185 primary 

NMIBC patients met our inclusion criteria. In this cohort, 13 patients 

progressed to a higher stage within 5 years. These 13 cases, together with 

25 randomly selected control cases without progression, were further 

analysed in this study. From textbooks in urological pathology, 13 

morphological microscopic features were extracted: Papillae 

architecture, superficial layer, papillary fusion, nuclear polarity, cell 

maturation, cohesion, mitoses, nuclear enlargement, nuclear shape, 

nuclear hyperchromasia, chromatin pattern, nucleoli, and giant nuclei. 

All cases were reviewed by three pathologists and scored for each of 

these microscopic features, according to both WHO73 and WHO04. 
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Finally, a consensus grade was obtained. Reproducibility was calculated 

by Gwet`s agreement coefficient, and prognostic value regarding 

progression was estimated by Area Under Curve (AUC) of the receiver 

operating characteristic function (ROC). The features varied 

considerably when it comes to both reproducibility and prognostic value. 

The most reproducible features, with Gwet`s agreement coefficient > 

0.60, were papillary architecture, nuclear polarity, cellular maturation, 

nuclear enlargement and giant nuclei. The significantly prognostic 

features observed were: nucleoli, papillary fusion, and nuclear polarity.  

Conclusion: The histopathological features behind the different WHO 

grading systems vary considerably when it comes to reproducibility and 

prognostic value. Nuclear polarity was the only morphological feature 

which was both reasonably reproducible and had significant prognostic 

value. 

 

4.2 Paper II Mitotic activity index and CD25+ 

lymphocytes predict risk of stage progression 

in non-muscle invasive bladder cancer 

WHO grade and TNM stage are currently the most emphasized 

prognostic factors for NMIBC, largely deciding follow-up and treatment 

regimes. Grading is encumbered with suboptimal reproducibility, and 

TNM staging can be challenging in TURB material. In a search for better 

prognostic markers, we wanted to investigate the independent prognostic 

value of proliferation markers, mean nuclear area of the ten largest nuclei 

(MNA10) and the composition of tumour infiltrating immune cells 

(CD4+, CD8+, CD25+ and CD138+). Included in the study were 183 

patients diagnosed with a primary NMIBC at Stavanger University 

Hospital in the period 01.01.2002–31.12.2006. To investigate for 

recurrence, we only included patients (a) whose urinary bladder was 

retained for at least three months after primary diagnosis, and (b) who 

followed the regular protocol for cystoscopies. These inclusion criteria 
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yielded 177 patients for recurrence analysis. All cases were reviewed for 

grade (both WHO73 and WHO04) and stage. Calculation of mitotic 

activity index (MAI) and MNA10 were performed on original sections 

stained with Haematoxylin Eosin Saffron (HES). Immunohistochemical 

staining for the proliferation markers Ki67 and PPH3, as well as immune 

cell markers CD4, CD8, CD25 and CD138, were performed on 

consecutive sections. In the calculation of KI67, MNA10, and immune 

cell markers, a semi-automated interactive image analysis system 

(QPRODIT) was used. Estimation of MAI and PPH3 was performed 

according to a previously described protocol (83, 84). Recurrence of 

bladder tumour more than 3 months after primary diagnosis occurred in 

105 patients. Progression to MIBC occurred in 13 patients. All 

independent variables were dichotomized and survival analysis were 

performed. In recurrence analysis, only multifocality and Ki67 were 

prognostic. Surprisingly, those with low Ki67 showed shorter 

recurrence-free survival. Grade, stage, and all proliferation markers were 

associated with increased progression risk. Among the immune cell 

markers only CD25 was prognostic, with a high count associated with 

shorter progression-free survival. In a multivariate analysis, the 

combination of MAI and CD25+ was the most prognostic. 

Conclusion: Mitotic activity index combined with CD25+ lymphocytes 

are the strongest prognostic factor predicting progression in our cohort 

of primary non-muscle invasive bladder cancer patients. 

 

4.3 Paper III T1 Substaging of Non-muscle 

Invasive Bladder Cancer is Associated with 

Bacillus Calmette-Guerin Failure and 

Improves Patient Stratification at Diagnosis 

Regular BCG instillations according to protocol is first treatment option 

in intermediate and high-risk NMIBC, after TURB. As many as 30–50% 

of high-risk NMIBC recur after adjuvant BCG instillation and develop 
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high grade or muscle invasive disease. Delayed radical cystectomy is 

correlated with worse overall survival. High-risk patients classified as 

“highest risk” of progression, according to the EAU guidelines, are 

recommended for radical cystectomy, although this carries the risk of 

overtreatment. This publication investigates the predictive and 

prognostic value of T1 substaging, aiming to improve risk stratification 

and treatment decision making. Primary high-risk NMIBC patients 

receiving at least 5 induction instillations, from three Dutch and one 

Norwegian hospital, were included in the study. All tumours were 

centrally reviewed and T1 substaging was performed. T1 tumours were 

divided into microinvasive (T1m) and extensive invasive (T1e). 

Microinvasion was defined as only one invasive focus not exceeding 0.5 

mm. BCG failure was defined as a biopsy-proven T1 HG recurrence after 

5/6 induction instillations, HG recurrence after adequate BCG 

instillation (5/6 induction instillations plus 2/3 maintenance 

instillations), or recurring muscle invasive disease. A total number of 264 

patients were T1, 27% T1m and 73% T1e. Median follow-up was 68 

months. BCG failure was more frequent among T1e than T1m, 41% vs 

21% (p=0.002). The 3-year high grade recurrence-free survival for T1e 

and T1m were 64% and 83%, respectively (p=0.004). In multivariate 

analysis, T1 substaging was an independent predictor of both high-grade 

recurrence-free and progression-free survival. Patients within the highest 

risk subgroup showed significantly better progression-free survival if 

T1m compared to T1e (p=0.038). 

Conclusion: T1 substaging is predictive for BCG-failure. In patients 

with highest risk of progression, T1 substaging seems to improve risk 

stratification and might aid in therapy decision making.  
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4.4 Paper IV Proliferation and 

immunohistochemistry for p53 and CK20 in 

predicting prognosis of non-muscle invasive 

papillary urothelial carcinomas 

Reliable and reproducible prognostic markers for NMIBC are lacking. 

We have previously shown that proliferation markers (Ki-67, PPH3, 

MAI) are better prognostic markers for stage progression than WHO 

grading. We wanted to validate our statement in an extended cohort, and 

also include two classical immunohistochemical markers, p53 and 

CK20. Immunohistochemistry for p53 is a surrogate marker for 

mutations in TP53, a molecular characteristic for MIBC. CK20, a 

cytoskeleton-associated intermediate protein filament, is frequently used 

for distinguishing urothelial carcinoma in situ from reactive urothelial 

changes. CK20 is also proposed as a surrogate marker for luminal 

urothelial carcinomas. We included 349 patients diagnosed with primary 

papillary NMIBC at Stavanger University hospital in the period 

01.01.2002 to 01.01.2011. For recurrence analyses, we only included  

patients who retained their bladder for at least three months after primary 

diagnosis, and followed regular cystoscopies according to protocol. This 

yielded 337 patients for recurrence analysis. WHO grade and TNM stage 

were reviewed for all cases. Immunohistochemistry for Ki-67, PPH3, 

p53 and CK20 were performed on consecutive tissue sections. Mitotic 

activity index (MAI) and PPH3 were calculated according to previously 

described and validated protocols. Ki-67 was calculated by a 

computerized semi-automated image analysis system (QPRODIT). The 

proliferation markers were dichotomised using previously published 

thresholds. P53 immunohistochemically stained sections were scanned 

at 400x magnification and uploaded to the digital image analysis 

program Visiopharm®. A calculation of p53 positive cells was fully 

automated, after a DAB deconvolution pixel value was set. A p53 

positive tumour was defined by an average >15% positive cells in three 

hotspots. CK20 was evaluated using the semi-quantitative 
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immunoreactive score (IRS). A positive tumour was defined by an IRS 

>3. Tumour recurrence occurred in 167 out of 337.  Out of 349 patients, 

26 experienced stage progression. High age and tumour multifocality 

were associated with shorter recurrence-free survival. High Ki-67 was 

barely associated with longer recurrence-free survival. All variables, 

except gender, were statistically significant for stage progression. 

Among the investigated variables, MAI had the highest hazard ratio (HR 

9.1, CI 3.8 – 22.3), being the only marker exceeding the prognostic value 

of stage (HR 6.2, CI 2.8 – 13.7) and WHO (2004/2016) grade (HR 4.9, 

2.0 – 12.2).   

Conclusion: There are few reliable biomarkers for tumour recurrence in 

NMIBC. MAI is the strongest prognostic biomarker for stage 

progression in our analysis. The immunohistochemical markers p53 and 

CK20 are significant associated with stage progression, but they are not 

performing better than the currently used prognostic markers WHO 

grade and tumour stage.



Discussion 

71 

5 Discussion 

5.1 Patient material and definitions 

Our cohort, first from 2002–2007 and later from 2002–2011, is based on 

a population of around 350,000 inhabitants. The complete region is 

served by Stavanger University hospital (SUH). There are a few private 

clinics, but they all refer patients with newly diagnosed urothelial 

carcinomas to SUH. All NMIBC patients have their follow-up at, or in 

close cooperation, with SUH. All tissue removed for diagnostic or 

treatment purposes are therefore sent to the Department of Pathology at 

SUH. This makes the cohort a genuine population-based one, and ideal 

for research on prognostic factors. The population is representative of a 

western society, including patients from both urban and rural areas. 

 The research on bladder cancer at Department of Pathology at 

SUH is focused on NMIBC. As mentioned in the introduction, 70–80% 

of all urothelial cancer are NMIBC at the time of first diagnosis. Huge 

resources are spent on follow-up of these patients, aiming for early 

detection of recurrences and progression. Progression to MIBC marks a 

change in treatment protocol and prognostic view. Therefor NMIBC is a 

natural category for research on prognostic factors. 

 Our research focus has been on urothelial carcinomas of the 

urinary bladder. A significant number of urothelial carcinomas are extra-

vesical, most of them from the upper urinary tract (ureter and renal pelvis 

– UTUC). Although they share some common genomic alterations, they 

have been shown to be a unique entity, also at the molecular level (139). 

A question that appeared was how to handle those patients with a 

recurrent extra-vesical urothelial carcinoma, or those having a previous 

extra-vesical urothelial carcinoma at time of diagnosis of a primary 

urothelial carcinoma. Since it was impossible to say if they represented 

the same disease or not, we decided to exclude all patients with extra-

vesical urothelial carcinoma in their medical records. The only cases we 
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included in the cohort were those with urothelial carcinoma in the 

collicular area of prostatic urethra. Biopsies from this location are 

frequently taken, either because of tumour in the bladder neck region or 

clinical suspicion of CIS in urethra, or before a cystectomy as part of the 

preparation process. Primary carcinomas in the urethra are rare, annual 

age-adjusted incidence rate among men in the United States is estimated 

to 4.3 per million (140). 

 The most interesting endpoint in Paper II and IV is progression-

free survival. In the general literature, the definition of progression in 

NMIBC varies. Some publications define “Progression” as all 

progression in TNM stage, others only include progression to MIBC (at 

least T2). The distinction between Ta/T1 vs T2 (NMIBC vs MIBC) is 

clinically the most important distinction. We will claim that a change 

from Ta to T1 is of similar importance biologically. This event marks a 

change in the ability of tumour tissue to invade, and possibly metastasize. 

In paper II we defined “Progression” as a progression to MIBC. In paper 

IV we decided to also include cases progressing from Ta to T1.  

 Another issue regarding the dataset are criteria for follow-up. 

While investigating “Progression”, we decided to also include 

metastases which appear after cystectomy. For “Recurrence”, we 

decided to investigate the tendency of tumours to recur in the bladder 

only. Recurrent tumours elsewhere in the body, for instance after 

cystectomy, were not considered interesting in this setting. Also, other 

differences regarding “Progression” and “recurrence” appeared. To be 

able to discover recurrent, small, low-grade tumours, regular follow-up 

with cystoscopy according to protocol is necessary. The same strict 

criteria do not seem necessary to discover progressing tumours, as most 

of them will be clinically evident at some point, independent of follow-

up regime. Consequently, in our dataset, follow-up time for 

“Recurrence” and “Progression” are registered differently. Time to 

recurrence was calculated from date of primary diagnosis until last 

registered cystoscopy or cystectomy. Time to progression was counted 
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from date of primary diagnosis until death, last known contact if they 

moved or until our last check in the medical journal (30.06.2016). This 

strategy resulted in two slightly different cohorts in our publications 

(Paper II and IV), as a minimum follow-up time was set to 3 months. 

 

5.2 Study design and other considerations 

The study design in our research is retrospective. Information on 

diagnosis and prognosis was available in the medical records. For 

extracting data related to patients’ clinical variables, we relied on 

detailed notes in the medical records. Variables like tumour size, and to 

some degree multifocality, were not sufficiently registered, making them 

unsuitable for statistical analyses. Also, factors like smoking habits and 

occupation were not sufficiently registered. Compared to prospective 

analysis, with the retrospective design, we have less control over factors 

that make the cohort heterogeneous and might have influence on 

outcome.   

 A limitation of our cohort is the limited number of patients with 

progression. In the final cohort that included patients from 2002–2011, 

we identified 26 (7.4%) with stage progression, and 21 (5.9%) with 

progression to MIBC. Although this progression rate is lower than that 

reported in most publications, we did find publications that reported 

comparable rates (141). We are cognizant that a higher proportion of 

cases with disease progression in our cohort would have strengthened 

our statistical analyses. As such, significant results from our papers need 

to be validated in several independent cohorts before adoption in routine 

clinical use. 

Patients included in our cohort were treated according to 

Norwegian national guidelines. Most high-risk patients received 

instillation therapy with BCG, a few also received regular instillations 
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with chemotherapy. Many of the included patients received optimized 

follow-up and treatment. This may have contributed to lower number of 

patients with progression in our cohort. As both follow-up and treatment 

depended on risk group, established prognostic variables like grade and 

stage may have been weakened in our results compared to their “true” 

prognostic value. Another issue is the phenomenon re-TURB. According 

to national and EAU guidelines (28, 29) a second TURB is indicated 

during the weeks following primary surgery if uncertainty about 

resection completeness exists, or if there is a lack of identified m. propria 

in the resection material or if the resected tumour is a T1 tumour. In our 

data registration, TURB and re-TURB, if performed, are grouped 

together. In most cases tumour tissue in TURB and re-TURB represent 

the same tumour. The highest grade and stage were registered. Date of 

first diagnosis, either on biopsy or TURB, was registered. We did not 

adjust our analyses based on whether a re-TURB was performed. In 

publications involving large cohorts by Sylvester et al. (n=3401) and 

Gontero et al. (n=2451), a re-TURB did not affect progression risk (31, 

142). 

One of the main issues with WHO grading system is the lacking 

reproducibility, emphasized in Paper I. Our effort has been focused on 

establishing reproducible and better prognostic markers for NMIBC. In 

Paper II and IV we used the semiautomatic interactive quantitative image 

analysis system (QPRODIT). Although far more reproducible, some 

interobserver variability still persisted. For each cell pointed out, the 

observer needed to decide whether it was a tumour cell or not, and 

whether the cell was immunohistochemically positive or negative. 

Usually this is an easy exercise, but different shades of brown colour can 

make interpretation hard. In Paper IV, for estimation of p53, we used a 

fully automated digital image analysis system (Visiopharm®). The 

threshold for positivity was set subjectively, based on experience with 

immunohistochemistry interpretation, but all the analyses were 
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performed automatically. In future work, we will preferably use digital 

image analysis for fast, easy, and reproducible results.  

 In Paper II, the patient’s immune response, and subsets of 

immune cells, were investigated in the most anaplastic area. Other 

publications in this field differ in analysing immune cells in urothelial 

tumour tissue only, stroma only, or both. We counted positive cells in 

tumour tissue, consisting of atypical urothelium, fibrovascular stalks, 

and invaded stroma. This was done for simplicity, as discerning invading 

urothelial tissue from the stroma embedding it, seemed difficult and 

arbitrary. This separation would be especially problematic in cases with 

invading single cells or strands of cells, like in the diffuse variant of 

urothelial carcinoma. In our experience, stromal areas tend to have 

higher density of immune cells than pure urothelial regions. 

Additionally, the cell density in the stroma is lower, compared to the 

crowded urothelium. This could bias the results, with higher proportion 

of immune cells in cases where the demarcated area contained a higher 

proportion of stroma. As the amount of urothelium in most cases is 

overwhelming, we believe that this issue had minimal influence on the 

results.  

Immunohistochemical staining for CK20 and p53 were 

performed in Paper IV. CK20 is validated as a surrogate marker for 

luminal carcinomas, and p53 positivity as a surrogate marker for TP53 

mutations. Ideally, we would have implemented a basal marker as well, 

preferentially CK5/6. This was not done because of limited resources, 

but will be considered in the future.   

Originally, we planned to create an image atlas for direct 

comparison, as a support tool for pathologists to use while grading. The 

idea was to improve reproducibility. Such an atlas could have been 

implemented in a software for digital pathology. Example images of each 

grade, emphasizing different histopathological features, could then be 

easily displayed on a screen next to an image of the case to be graded. 
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We spent time on finding cases representing good examples for each 

grade and feature mentioned in Paper I. An atlas together with a scoring 

system was established and tested on residents and pathologists at 

Department of Pathology at SUH. Unfortunately, it did not achieve any 

better results than current grading. We decided not to move on with this 

concept. 
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6 Future Directions 

6.1 Digital pathology and artificial intelligence 

Pathology is in the beginning of a digital revolution. Slides for 

microscopy are being scanned, digitized, and displayed as whole slide 

images (WSI). Virtual microscopy is on its way to replace conventional 

microscopy. With this change in pathology, new challenges and 

opportunities appear. Storing of WSIs demands enormous amounts of 

storing capacity. Legal and ethical aspects, as well as economic issues 

also make the introduction of digital pathology complicated. If we can 

overcome these obstacles the digitization process holds a promise of 

many new advantages. The WSIs can be available on several working 

stations, and the WSIs can be shared for second opinion over remote 

distances in seconds. The pathologist can annotate regions of special 

interest and measure structures and distances digitally (143, 144). 

 Digital pathology opens the opportunity for digital image 

analysis and computer aided diagnosis (CAD) systems. This has the 

potential to eliminate subjectivity and minimize variability. Applications 

are already available to perform tasks especially prone to high inter- and 

intra-observer variability. Typically, this involves estimation of 

proportion of tumour cells or proportion of cells with positive 

immunohistochemistry.  We took advantage of such a CAD system in 

Paper IV while estimating the proportion of p53-positive cells. For 

instance, such systems can be routinely used for  estimation of oestrogen 

and progesterone receptor in breast cancer, and for estimation of Ki67 in 

carcinoid tumours (145). 

 With the implementation of deep learning in pathology, even 

more complicated tasks can be performed automatically. These methods 

are criticized for reaching conclusions without outlining their way of 

analysing, hence the designation “black box”. With deep learning, 

patterns can be recognized and analysed. Regions of interest can be 
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pointed out, and diagnosis suggestions can be presented to the 

pathologist. Personally, I believe, that artificial intelligence will work 

together with the pathologist, increasing accuracy and consistency, 

rather than replacing the pathologist completely. So far, several 

publications on deep learning applied on WSI of bladder cancer exist. 

Peng-Nien Yin et al. used different machine learning techniques to 

differentiate Ta and T1 urothelial carcinomas on HE-stained slides (146). 

By combining six classic machine learning techniques, and applying 

them to three defined features related to invasion (desmoplastic reaction, 

more pink cytoplasm, retraction artefacts), an impressive accuracy of 91 

-96% was achieved. Using a deep learning model (model based on 

convolutional neural networks) an accuracy of 84% was achieved. 

Jansen et al. used deep learning to automatically extract urothelium in 

the images of NMIBC to be presented for a classification network 

performing grading according to WHO04 (147). Three pathologists 

performed individual and consensus grading on all 328 cases. In this 

publication, the agreement between the pathologists ranged from fair to 

moderate (kappa values 0.35–0.52). The agreement between the 

automatic grading and the consensus grading was moderate (kappa value 

0.48). The deep learning-based grading system correctly graded 76% of 

the low grade and 71% of high-grade tumours, compared to the 

consensus grading by the pathologists. The authors concluded that deep 

learning can be used in grading of urothelial carcinomas. 

 In cooperation with Department of Electrical Engineering and 

Computer science, at the University of Stavanger, we applied deep 

learning models on WSIs from our cohort of NMIBC patients from 

2002–2011. Different models were developed to extract urothelial tissue 

in the WSI. The best models differentiated tissue types with high 

precision (F1 score 0.986) (Appendix 2). Furthermore, grading models 

based on deep learning were developed. Compared to a urological 

pathologist as gold standard, the best model achieved an F1 score of 0.91 

for both low grade and high-grade tumours (Appendix 4). This model 
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creates a heat map for grading, highlighting the areas with the highest 

grade on each WSI. This function can aid pathologists in working more 

efficiently by leading attention to the most diagnostically relevant areas 

in the image. 

 Digital pathology and the introduction of artificial intelligence 

are promising aids that will help move towards more objective and 

standardized measures, and more confident diagnostics. In addition to 

make existing markers more reliable, the new computational techniques 

may aid in future research on new prognostic markers.  

 

6.2 Next generation sequencing (NGS) 

With the introduction of NGS, DNA sequencing has become time- and 

cost effective. Selected parts of the genome can be sequenced for 

mutations in hours. Mapping of clinically relevant tumour mutations 

make the basis for individual tailored cancer treatment. Targeted therapy 

can be administered based on molecular alterations, also to some extent, 

irrespective of organ of origin. For locally advanced or metastatic 

urothelial carcinomas with mutations in FGFR2/3, or those progressing 

on traditional platinum-based chemotherapy, treatment with a FGFR-

inhibitor (erdafitinib) is FDA approved. Drugs targeting the signalling 

pathway PI3K/AKT/mTOR, the ERBB-receptor, as well as chromatin 

remodelling genes, are under investigation. 

 In this thesis, current knowledge regarding molecular alterations 

in bladder cancer are outlined in “1.6 Molecular alterations in bladder 

cancer”. As mentioned here, urothelial carcinomas generally have a high 

mutational burden. Although the main pathways and common mutations 

for urothelial carcinomas are described, we believe that there is still 

clinically relevant knowledge to be discovered. In future work, we would 

like to perform mutational analysis on a panel of 52 known cancer genes, 
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using NGS (Oncomine focus assay by Thermo Fisher), and compare the 

mutational profile with outcome and other prognostic markers 

investigated in this thesis. 

 

6.3 Imaging mass cytometry 

In our investigation of bladder cancer so far, we have investigated for 

proteins in the tumour by performing standard immunohistochemistry, 

using enzyme-labelled antibodies. One section from the block was cut 

per protein investigated. In future work we are planning to perform 

multiplex immunohistochemistry on our material by using the Hyperion 

imaging system. This system is based on the cytometry by time of flight 

(CyTOF) technology, enabling the simultaneous investigation of up to 

37 proteins at a subcellular level. By using this technology, we will save 

tumour tissue, that sometimes are limited, e.g., in small biopsies. The 

metal isotope labels exploited in this system make it possible to see the 

presence of several antigens in the same cell. This is valuable 

information, especially while investigating subsets of immune cells in 

the tumour microenvironment.  
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Abstract: Globally there has been an enormous increase in bladder cancer incidents the past decades. Correct prognosis
of recurrence and progression is essential to avoid under- or over-treatment of the patient, as well as unnec-
essary suffering and cost. To diagnose the cancer grade and stage, pathologists study the histological images.
However, this is a time-consuming process and reproducibility among pathologists is low. A first stage for an
automated diagnosis system can be to identify the diagnostical relevant areas in the histological whole-slide
images (WSI), segmenting cell tissue from damaged areas, blood, background, etc. In this work, a method
for automatic classification of urothelial carcinoma into six different classes is proposed. The method is based
on convolutional neural networks (CNN), firstly trained unsupervised using unlabelled images by utilising an
autoencoder (AE). A smaller set of labelled images are used to train the final fully-connected layers from the
low dimensional latent vector of the AE, providing an output as a probability score for each of the six classes,
suitable for automatically defining regions of interests in WSI. For evaluation, each tile is classified as the class
with the highest probability score. The model achieved an average F1-score of 93.4% over all six classes.

1 INTRODUCTION

Globally, bladder cancer resulted in 123,400 deaths in
1990, and in 2010 this number was 170,700 which is
an increase of 38,3% taking population growth into
consideration (Lozano et al., 2012). The majority
of bladder cancer incidents are urothelial carcinoma
with a representation as high as 90% in some regions
(Eble et al., 2004). For patients diagnosed with blad-
der cancer, 50-70% will experience one or more re-
currences, and 10-30% will have disease progression
to a higher stage (Mangrud, 2014). Patient treatment,
follow-up and calculating the risk of recurrence and
disease progression depend primarily on the histolog-
ical grade and stage of cancer. Correct prognosis of
recurrence and progression is essential to avoid under-
or over-treatment of the patient, as well as unneces-
sary suffering and cost.

With the introduction of digital pathology, some
computer-aided tools to assist pathologists have been
introduced, but still the assessment of histopatholog-
ical images to diagnose, grade and stage cancer is
mainly done manually. This is a time-consuming

process and reproducibility among pathologists is in
some cases low, for example within the prognostic
classification of urinary bladder cancer. Automatic
extraction of the relevant areas in large whole-slide
images (WSI) would be an important first step where
the results could be used in automated diagnostic and
prognostic classification tools.

During the biopsy, parts of the tissue get both
physical- and heating-damage, and thus can not be
used as relevant diagnostic information. The WSI
also contains stroma- and muscle-tissue as well as ar-
eas of blood. In this paper we consider the task of
automatic classification of tiles in WSI into the six
different classes; urothelium, stroma, damaged tissue,
muscle, blood and background. Examples from each
class are shown in Figure 1. The system uses the au-
tomatic classification tool to produce heat maps from
the model’s output. Such heat maps can provide use-
ful information to help the pathologist to focus on the
diagnostic important part of the large WSI during vi-
sual inspection. In addition, the heat maps are also
suitable as input for automatic region of interest (ROI)
extraction of relevant areas in the WSI, which can fur-



Figure 1: Example tiles from each class. A) Urothelium, B) Stroma, C) Damaged tissue, D) Muscle tissue, E) Blood, and F)
Background.

ther be used in automated diagnostic and prognostic
classification tools.

1.1 Previous Work

In recent literature, some methods for automatic tis-
sue classification have been suggested. However,
most previous works have focused on classifying only
two classes, a binary problem set to differentiate be-
tween cancer-patches and non-cancer patches.

Recent literature shows good results for binary tis-
sue classification using convolutional neural networks
(CNN). Wang et al. (2016) won both competitions of
the Camelyon16 grand challenge for automated de-
tection of metastatic breast cancer in WSI. As part
of their model, GoogLeNet was utilised to do patch
classification. The model was trained to discriminate
between positive and negative patches and achieved
an accuracy of 98.4%.

Some attempts of multiclass tissue classification
can be found in recent years. Araujo et al. classified
patches of breast cancer into four classes using con-
volutional neural networks (Araújo et al., 2017). The
best patch-wise accuracy for four classes was 66.7%.
When the task was simplified as a two-classes prob-
lem, non-carcinoma vs carcinoma, the accuracy was
improved to 77.6%. The work of Kather et al. (2016)
uses a combination of several hand-crafted feature
methods to classify different types of tissue in col-

orectal cancer, performing tests on both a two-class
and eight-class problem. They achieved the best re-
sult on the two-class problem with a tumour-stroma
separation accuracy of 98.6%, while the multiclass
problem achieved an accuracy of 87.4%.

To the author’s knowledge, there are no published
results on multiclass classification on WSI of bladder
cancer.

Some few and recent work on ROI detection can
be found. ROI detection has been done by multi-scale
real-time coarse-to-fine topology preserving segmen-
tation (CTFTPS) by utilising superpixel clustering
technique (Li and Huang, 2015; Yao et al., 2015).
A RAPID (Regular and Adaptive Prediction-Induced
Detection) segmentation method for ROI detection in
large WSI is presented by Sulimowicz and Ahmad
(2017) while using the multi-scale CTFTPS technique
as a baseline. An SVM was utilised to classify the
detected regions as ROI vs non-ROI. For this task,
the classifier achieved an F1-score of 89.8% for the
RAPID method, and 91.2% for the optimised multi-
scale CTFTPS method.

Deep CNN has shown to provide state of the
art results in many computer vision tasks in recent
years (LeCun et al., 2015) and has also found its way
into medical image assessment tasks. In this work,
a method for automatic classification of WSI from
urothelial carcinoma into six different classes is pro-
posed. The method is based on CNN, firstly trained
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Figure 2: Overview of the CNN-model. First, the unlabelled dataset is used to train the encoder-decoder model. Then the
labelled dataset is used to train the encoder-classifier model. Finally, the trained encoder-classifier model are used to classify
new WSI into probability maps. These probability maps are further postprocessed to produce the heat maps.

unsupervised, using large unlabelled image sets by
utilising an autoencoder (AE). A set of labelled im-
ages are used to train the final fully-connected layers
from the low dimensional latent vector of the AE, pro-
viding an output as a probability score for each of the
six classes, suitable for automatically defining ROI in
WSI. A visualisation of the system is depicted in Fig-
ure 2.

The novelty of the work lies both in the specific
application of urinary bladder WSI and in the method
development, more specifically in a combination of
using CNN, learned in a semi-supervised way, for the
application of automatic region of interest extraction
in WSI by multiclass tissue classification, tested on
urinary bladder cancer.

2 DATA MATERIAL

The data material used in this paper consists of
histopathological images from patients with primary
bladder cancer, collected in the period 2002-2011 at
the University Hospital of Stavanger in Norway. The
biopsies are formalin fixed and paraffin embedded, 4
µm slides are cut and stained with Hematoxylin Eosin
Saffron (HES). All slides are diagnosed and graded
according to WHO73 and WHO04, cancer stage (Tis,
Ta or T1) and follow-up data on recurrence and dis-
ease progression are recorded.

The slides are then scanned using a Leica SCN400

histological slide scanner to produce a digital histo-
logical image. The images are in Leicas data format
called SCN and to be able to process these images
the Vips library (Martinez and Cupitt, 2005) has been
used, which is specially designed for image process-
ing of large images.

3 PROPOSED METHOD

An overview of the proposed method can be seen in
Figure 2. The different parts will be explained in this
section.

3.1 Preprocessing

Each WSI is sliced into smaller non-overlapping tiles
of size 128x128 pixels, extracted at 400x magnifica-
tion level. The background takes up as much as 70-
80% of the WSI and is detected and discarded auto-
matically by computing the histogram of the tile and
setting a fixed threshold value. This removes tiles
consisting of grey background, however, if the back-
ground tile contains small parts of debris, tissue or
similar it is not discarded. Examples of tiles belong-
ing to this class are illustrated in Figure 1-F.

The histological images are split into three
datasets. First, an unlabelled dataset is created in
the manner explained above where the extracted tiles
have no label associated with it. In total 48 WSI all



from different patients were preprocessed resulting in
7,130,527 unlabelled tiles after the pure background
tiles are excluded. This set, called train-ae, is utilised
as training data for the AE-model.

Secondly, a labelled training dataset is created. A
pathologist has manually annotated carefully selected
regions in the WSI. The tiles in the regions are pre-
processed by evaluating the histogram to be sure not
to include background or boundaries and given a la-
bel corresponding to its class. The number of patients
and tiles produced are listed as train-set1 in Table 1.

Lastly, a labelled test set is created to assess the
performance of the classifier. The set is created in
the same manner as the labelled training set, but
on separate WSI which has not been used in either
the unlabelled or labelled datasets to avoid cross-
contamination between training and test data. The
dataset is listed as test-set in Table 1.

The texture of urothelium tissue will change for
the different cancer grades, and thus it is vital to in-
clude a wide variety of samples for this class. The
other five classes, however, will not change as a func-
tion of cancer grade and may include fewer samples.
Another issue is that the occurrence of some classes is
more sparse in the WSI, making it difficult to extract a
large amount of it. A disadvantage of these two issues
is a significant deviation in the number of samples in
two of the classes, stroma and muscle tissue, as seen
in train-set1 in Table 1.

To compensate for the class-imbalance in train-
set1, data augmentation techniques have been utilised.
Tiles in the muscle and stroma class are extracted with
50% overlap, to produce more data from the same re-
gions. These extracted tiles are further augmented by
randomly flipping and rotating them to create new
data. These techniques result in a more balanced
dataset, which is listed in Table 1 as train-set2. This
dataset is used to train the classifier in the presented
experiments. The augmentation techniques were not
performed on the test-set, resulting in an unbalanced
test set. In this case, accuracy as a performance met-
ric could be misleading. Instead, precision, recall and
F1-score are used to evaluate the performance.

Table 1: The resulting labelled datasets after preprocessing.
Results show the total number of tiles extracted for each
class, and the number of WSI used are shown in parenthese.

Train-set1 Train-set2 Test-set
Urothelium 25,635 (25) 25,635 (25) 3,612 (3)
Stroma 4,329 (4) 25,974 (4) 505 (1)
Damaged 30,714 (8) 30,714 (8) 2,679 (1)
Muscle 2,002 (3) 23,949 (3) 475 (1)
Blood 19,071 (4) 19,071 (4) 692 (1)
Background 20,000 (2) 20,000 (2) 500 (1)

3.2 CNN-Model

The system consists of an autoencoder model which
is trained on the unlabelled dataset train-ae. The au-
toencoder consists of two main parts; the encoder
and the decoder. The encoder will transform the in-
put tile into a latent vector of much lower dimension.
A small latent space is chosen which will force the
network to extract the essential features of the image
and preserve these in the vector. The decoder will
use the features stored in the latent vector and recon-
struct the input. During training, the network com-
pares the reduced mean of the squared difference be-
tween the input image and reconstructed output im-
age as given by the loss function ∑(input−out put)2.
The AE function is described in details in (Baldi,
2012). The encoder consists of two convolutional-,
two max-pooling- and four dropout-layers, as well as
three fully-connected layers as seen in Figure 2. The
decoder consists of the same layers, but in reverse or-
der and uses unpooling and deconvolutional layers in-
stead.

After training, the encoder has learned to extract
the features of the input tile, which are now stored
in the latent vector. To do classification, the decoder
part is discarded and exchanged with a classifier. The
classifier consists of three fully-connected layers con-
nected to the output of the encoder. This encoder-
classifier model constitutes the proposed CNN-model
and is trained on the labelled training dataset train-
set2 and evaluated on the test-set.

For initialisation of the system, the bias is set to
zero, and the weights are taken from a truncated nor-
mal distribution. The convolutional layers use a fil-
ter kernel of 3x3 and a stride of 1, whereas the max-
pooling layers use a filter kernel of 2x2 with a stride
of 2. The number of feature maps is used to control
the size of the latent vector space and is experimented
on as described in section 4. The parameters of the
network are optimised using the Adam optimiser with
a mini-batch of size 128. For the activation function
between layers, the Rectified linear unit (ReLU) acti-
vation function is used. For the last layer, the Softmax
activation function is utilised. This will output a true
probability distribution, meaning each output lays in
the interval 0 to 1 and all outputs combined sums up
to one. Dropout is a technique where randomly se-
lected nodes are set to zero during training to provide
regularisation to the network. The portion of nodes
set to zero is specified by the dropout rate as a per-
centage. During evaluation of the network, dropout is
disabled.

The histological images are in Leicas data format
called SCN and to be able to process these images



the Vips library (Martinez and Cupitt, 2005) has been
used. This is a library specially designed for image
processing of large images. The model is written in
Python 3.5 using the Tensorflow 1.7 machine learn-
ing library (Abadi et al., 2016). For evaluation of
the model, the Scikit-learn metric package (Pedregosa
et al., 2011) is used which computes precision, recall
and F1-score of each class in addition to an average
total score.

The model is used to predict the class of each tile
in a WSI. The probability for each class provided by
the model can be rearranged as probability maps, one
for each class, and will visualise the location in the
histological image where each class is present. An
overview of this process is presented in Figure 2.

4 EXPERIMENTS AND RESULTS

Two experiments were conducted, the first to find the
best combination of architecture and hyperparameters
and the second to verify its performance and use the
final model on WSI.

4.1 Experiment 1: Architecture and
Hyperparameters

To find a suitable architecture and appropriate hyper-
parameters, a large grid search was conducted. To
reduce both computational time and search space, a
preliminary search was set up with some limitations.
A reduced version of the train-ae dataset was used
to decrease the processing time, and each model was
only trained for 50 epochs.

The encoder-decoder model was tested with two
different sizes of the latent vector, which was altered
by changing the number of feature maps in the con-
volutional layers. Latent vectors of size 512 and 1024
were tested. A learning rate of 10-3 and 10-4 was
tested as well as dropout rates of 0%, 10% and 20%.
Each of these combinations was tested on network
configuration consisting of two, four and six convo-
lutional layers in the autoencoder.

In the encoder-classifier model, the classifier con-
sists of three dense layers. The first layer after the en-
coder was tested with 256, 512 and 1024 neurons, and
the second layer with 128, 256 and 512 neurons. The
number of neurons in the output layer is bounded to
the number of classes. This results in 9 different con-
figurations for the classifier layers. Each of these con-
figurations was tested with a learning rate of 10-3, 10-4

and 10-5. There are no dropout layers in the classifier
itself, but changing the dropout rate will affect how

the encoder codes the input tile into the latent vec-
tor. The encoder-classifier was therefore also tested
with the same dropout rates as above. The model was
tested both with and without freezing the pre-trained
encoder-layers to see how it affected the result.

The prediction accuracy on the test-set was used
to compare the performance of the different hyperpa-
rameter combinations. Hyperparameters that showed
poor performance on several models were excluded to
narrow down the search space.

The experiments showed an overall best result us-
ing an encoder-decoder structure with two convolu-
tional layers with a latent vector of 1024 neurons
trained with 10-4 learning rate and 10% dropout rate.
The results further showed best performance while
not freezing the encoder part of the encoder-classifier
model. A classifier with 256 neurons in the first layer
and 512 in the second layer was favourable, trained
using a learning rate of 10-5 and 10% dropout rate.
These hyperparameters and settings will be used as
the resulting model of this experiment. The model is
depicted in Figure 2.

4.2 Experiment 2: Training, Testing
and using the Resulting Model

The resulting architecture after the first experiment
was trained once more, this time on the full dataset.
First, the autoencoder was trained on the unlabelled
dataset train-ae for 100 epochs, then the encoder-
classifier was fine-tuned on the augmented labelled
dataset train-set2 for another 600 epochs. Since ex-
periment 1 showed best results when the encoder was
not frozen during fine-tuning, both the encoder and
classifier was trained during this step. Evaluation us-
ing the Scikit-learn metric package on the test-set was
performed every 5th epoch. The model achieved the
best result after 540 epochs of training with an aver-
age F1-score of 93.4% over all six classes. The pre-
cision, recall and F1-score of each class is shown in
Table 2.

Table 2: Detailed classification results from the model
trained using 10% dropout rate.

Class Precision Recall F1-Score
Urothelium 0.924 0.952 0.938
Stroma 0.897 0.929 0.913
Damaged 0.925 0.927 0.926
Muscle 0.980 0.714 0.826
Blood 0.996 0.991 0.994
Background 0.990 0.988 0.989
Average total 0.936 0.935 0.934

The overall results in Table 2 are good. However,



there are some observations.
In train-set2, which is used to train the classifier,

the classes of blood and background have the fewest
number of samples. However, these are the classes
which perform best. This is probably because these
classes have the least within-class variance, e.g. most
of the tiles have a similar visual appearance.

Urothelium and damaged tissue both perform
well, even though these classes have a substantial vi-
sual variance in the form of colour and texture in the
tiles. The dataset for these classes contains the most
number of patients (25 and 8 patients, respectively),
and therefore contains the most diverse samples in the
dataset, contributing to the good results.

The precision of stroma and recall of muscle is
not performing as good as the rest. The dataset for
these classes contains few patients and are also the
two classes which needed augmentation due to small
amounts of available data. The low recall of muscle
tissue indicates that a large proportion of the muscle
tiles are misclassified as other classes, most proba-
bly urothelium, stroma and damaged tissue (due to the
high precision of blood and background, these are not
likely to include many misclassified tiles). It is im-
portant to note that the muscle class achieves a very
good precision score, and stroma has an acceptable
good recall score.

4.3 Heat Maps

The resulting model was utilised to classify entire
whole-slide images. Each tile in the WSI was classi-
fied and the percentage for each class recorded. These
were then combined to create the probability maps.
These maps were then post-processed in MATLAB by
applying a Gaussian filter kernel with a standard devi-
ation of σ = 0.6 to smooth the images. After filtering,
a thresholding operation was performed on the image
with a limit of 0.8, setting all predictions below this
threshold to zero. This ensures that only predictions
of 0.8 or higher are visible in the final heat maps.

Figure 3 shows three example WSI with their
corresponding heat maps. By visual inspection per-
formed by pathologists, this is considered to look very
promising. However, a quantitative measure for the
WSI ROI extraction is lacking since we do not have
complete WSI manually labelled into the six classes
at the current time.

5 CONCLUSION

This paper proposes a method for automatic classi-
fication of tile-segments of histopathological WSI of

urinary bladder cancer into six different classes us-
ing a CNN-based model. An encoder-decoder struc-
ture is trained on a large set of unlabelled data. After
training, the encoder part of the autoencoder acts as a
feature extractor making low dimensional latent vec-
tors. An encoder-classifier structure is then fine-tuned
on a set of labelled tiles. The finished model is able
to classify input tiles from the WSI into the classes
urothelium, stroma, damaged tissue, muscle, blood
and background. The best model achieved an average
F1-score of 93.4% over all the six classes, an overall
good result. However, future work will include an ef-
fort to improve the classifier. Other methods such as
a multiscale approach are considered.

The model is further used to classify entire WSI
to produce heat maps, which visualises each of the
classes and their location in the image. These maps
can provide useful information to the pathologist dur-
ing visual inspection. Future work consists of using
the above model as an ROI extractor of relevant tissue
in the WSI to make a dataset suitable as training data
for a diagnostic and prognostic classification model.
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Appendices 

I: Multiclass tissue classification of whole-slide histological images using convolutional 

neural networks. 

 

II: Multiscale deep neural networks for multiclass tissue 

classification of histological whole-slide images.  
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Abstract

Correct treatment of urothelial carcinoma patients is dependent on accurate grading and
staging of the cancer tumour. This is determined manually by a pathologist by examin-
ing the histological whole-slide images (WSI). The large size of these images makes this a
time-consuming and challenging task. The WSI contain a variety of tissue types, and a
method for defining diagnostic relevant regions would have several advantages for visual-
ization as well as further input to automated diagnosis systems. We propose an automatic
multiscale method for classification of tiles from WSI of urothelial carcinoma patients into
six classes. Three architectures based on convolutional neural network (CNN) were tested:
MONO-CNN (400x), DI-CNN (100x/400x) and TRI-CNN (25x/100x/400x). The prelim-
inary results show that the two multiscale models performed significantly better than the
mono-scale model, achieving an F1-score of 0.986, substantiating that utilising multiple
scales in the model aids the classification accuracy.

1. Introduction

Bladder cancer is the 10th most common cancer type worldwide (Bray et al., 2018). More
than 90% of bladder cancer cases are urothelial carcinomas which has a particular high
recurrence (50-70%) and progression rate (10-30%), making correct treatment and follow-up
vital for survivability. Treatment is dependent on the cancer grade and stage, determined
manually by an expert pathologist examining the histological whole-slide images (WSI).
This is a time-consuming and challenging task, and studies have shown that it may have a
low reproducibility in some cases, such as grading of urothelial carcinoma (Mangrud, 2014).

Examination of the WSI is challenging because of the large size of the image, which
contains several different tissue types, where only some are useful for diagnostic information.
An automatic tool for identification of such regions would be beneficial for both guiding a
pathologist to the useful areas of the large WSI during examination, and for ROI extraction
of useful tissue for a computer aided diagnostic solution. In this paper we present an
automatic method for classification of tiles from WSI of urothelial carcinoma patients into
the classes: urothelium, stroma, muscle, damaged tissue, blood and background. The tiles
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are extracted at different magnification levels, to combine and utilise information at different
scales in a similar fashion to that of a pathologist.

Multiscale approaches to tile-based classification have previously been done on other
cancer types. In the work of Li et al. (2017) a multiscale U-Net was proposed for segmen-
tation of histological images from radical prostatectomies to classify tiles into four classes.
Tiles of size 100x100, 200x200 and 400x400 pixels were all extracted from histological images
at 200x magnification. Features from the different tiles were then concatenated and used
as input to the multiscale U-net. The model achieved a mean Jaccard index of 65.8% over
the four classes. In Sirinukunwattana et al. (2018) a comparison of five single-scale and five
multiscale architectures were tested on two datasets. Their best model (G) was a multiscale
model which achieved an average F1-score of 0.782±0.07 across four classes of prostate can-
cer and 0.538±0.08 across four classes of breast cancer. Their result supports the claim that
incorporating a larger visual context improves the results. In Wetteland et al. (2019) we
presented a method based on deep convolutional neural networks (CNN) for classifying tiles
of urothelial carcinoma WSI into the six classes mentioned above. This was a single-scale
approach where all tiles were extracted from the full resolution image of 400x magnification.
The method got an F1-score of 0.934±0.061.

2. Data Material

The data material consists of Hematoxylin Eosin Saffron (HES) stained WSI from patients
diagnosed with primary papillary urothelial carcinoma, collected at the University Hospital
of Stavanger, Norway. An expert pathologist has carefully annotated 239 selected regions
from 50 WSI from 32 unique patients, where each region includes one of the five foreground
classes. Regions belonging to the background class was annotated on seven randomly se-
lected patients.

Tiles were extracted from these regions at 25x, 100x and 400x magnification in such a
manner that the centre pixel is the same in all three tiles. All tiles have the same size of
128x128x3 pixels. Tiles belonging to the test set was extracted from patients not present
in the training data. The remaining data was augmented to balance the dataset and was
further randomly shuffled and split into 85% training and 15% validation data. A random
seed was set to ensure that the shuffling was the same for each model. The final datasets
consist of 128K training tiles, 23K validation tiles and 11K test tiles.

3. Method and Results

This paper compares three architectures referred to as the MONO-, DI- and TRI-CNN
model. The three architectures have one (400x), two (100x, 400x) and three (25x, 100x,
400x) inputs, respectively. Each input is fed into a pre-trained VGG16 network (Simonyan and Zisserman,
2014) which acts as a feature extractor. The fully-connected (FC) layers of VGG16 are re-
placed with a classification network consisting of two FC-layers, each followed by a dropout
layer, and a final softmax layer with one output node for each of the six classes. The
DI-CNN and TRI-CNN models have two and three parallel VGG16 branches, respectively,
which are concatenated before entering the classification network.
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The FC-layers were tested with 512, 1024, 1536, 2048 and 4096 neurons, and dropout
rates of 0, 0.3 and 0.5. This 15-model hyperparameter search was conducted on each of
the three architectures, resulting in 45 models. These 45 models were run three consecutive
times and averaged together for a more accurate result. Each model was trained using
early stopping, stopping the model if validation loss did not decrease within 30 epochs. All
model selections were based on the validation set performance. After training, the weight
parameters from the epoch which performed best on the validation dataset were restored,
and a final evaluation of the model was performed on the test dataset. The VGG16 networks
had their weight parameters frozen during training. The model was written in Python 3.5
using the Keras machine learning library (Chollet et al., 2015).

Table 1 shows the hyperparameters for the best performing models and their average
result from the three consecutive runs. The MONO-CNN model achieves a result similar to
that of the autoencoder. The two multiscale models perform equally and significantly better
than the mono-scale models. The multiscale models also have a lower standard deviation on
all metrics. Since both multiscale models achieve the same result, one could argue that the
simplest model of the two should be chosen. In that case, DI-CNN with its 36M parameters
is a simpler model than TRI-CNN which has 47M parameters in total. DI-CNN also have
a marginally lower standard deviation than TRI-CNN.

Table 1: Models evaluated on the test set. F1-Score is presented as the total average and
standard deviation calculated across all six classes over three consecutive runs.
Parameters are shown as no. of trainable parameters / no. of total parameters.

Model Input Scale Dropout FC-Neurons # Parameters F1-Score

Autoencoder1 400x 0.1 256/512 89M/89M 0.934 ± 0.061
MONO 400x 0.3 2048 5.3M/20M 0.944 ± 0.007

DI 100x/400x 0.0 2048 6.3M/36M 0.986 ± 0.002
TRI 25x/100x/400x 0.5 1024 2.6M/47M 0.986 ± 0.003

4. Conclusion

In this paper, we present preliminary results from a multiscale tile-based classification
model. Tiles from six classes were extracted at multiple scales from WSI of patients diag-
nosed with urothelial carcinoma. Three model architectures were compared: MONO-CNN
(400x), DI-CNN (100x, 400x) and TRI-CNN (25x, 100x, 400x). Results for an autoencoder
model from previous work was also included for reference. Both multiscale models outper-
form the two single-scale models and achieve a very good result indicating the advantage of
utilising multiple scales. The model can be used as an ROI extraction method for relevant
tissue areas in the large WSI, useful for both pathologist and computer-aided diagnostic
systems. Some more experiments should be performed to clarify if the behaviour stems
from the multiscale approach or the extended field-of-view.

1. Model trained and evaluated on the same dataset (Wetteland et al., 2019).
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A Multiscale Approach for Whole-Slide
Image Segmentation of five Tissue Classes
in Urothelial Carcinoma Slides
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Vebjørn Kvikstad, MD2,3, and Emiel A. M. Janssen, PhD2,3

Abstract
In pathology labs worldwide, we see an increasing number of tissue samples that need to be assessed without the same increase in the
number of pathologists. Computational pathology, where digital scans of histological samples called whole-slide images (WSI) are
processed by computational tools, can be of help for the pathologists and is gaining research interests. Most research effort has been
given toclassify slides as being cancerousornot, localization of cancerous regions, and to the “big-four” in cancer: breast, lung, prostate,
and bowel. Urothelial carcinoma, the most common form of bladder cancer, is expensive to follow up due to a high risk of recurrence,
and grading systems have a high degree of inter- and intra-observer variability. The tissue samples of urothelial carcinoma contain a
mixture of damaged tissue, blood, stroma, muscle, and urothelium, where it is mainly muscle and urothelium that is diagnostically
relevant. A coarse segmentation of these tissue types would be useful to i) guide pathologists to the diagnostic relevant areas of the
WSI, and ii) use as input in a computer-aided diagnostic (CAD) system. However, little work has been done on segmenting tissue types
in WSIs, and on computational pathology for urothelial carcinoma in particular. In this work, we are using convolutional neural
networks (CNN) for multiscale tile-wise classification and coarse segmentation, including both context and detail, by using three
magnification levels: 25x, 100x, and 400x. 28 models were trained on weakly labeled data from 32 WSIs, where the best model got an
F1-score of 96.5% across six classes. The multiscale models were consistently better than the single-scale models, demonstrating the
benefit of combining multiple scales. No tissue-class ground-truth for complete WSIs exist, but the best models were used to segment
seven unseen WSIs where the results were manually inspected by a pathologist and are considered as very promising.
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Introduction

Worldwide, 549 393 new cases of bladder cancer were diag-

nosed in 2018, in addition there were 199 922 deaths due to the

disease. This makes bladder cancer the 10th most common type

of cancer in the world.1 Men are overrepresented, with approx-

imately 75% of the cases.2 The most common type of bladder

cancer is urothelial carcinoma, with over 90% of the cases.3 Of

the patients diagnosed with bladder cancer, 50% to 70% will
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experience recurrence, and 10% to 30% will advance to a

higher disease stage.4

Treatment and follow up of urothelial carcinoma are

primarily based upon histological grade and stage, evalu-

ated manually by an expert pathologist studying the histo-

logical images of the tumor using the latest WHO16

classification system.5 Correct grade and stage are essential

to avoid over- or under-treatment, and thereby unnecessary

suffering for the patient. For most pathology departments,

evaluation of histological images is still performed through

a microscope, a time-consuming process, not always repro-

ducible.6 Digital pathology has been introduced to improve

diagnostic accuracy, and certain computer-aided diagnostic

(CAD) tools are in use for other diseases. However, such

tools are currently not in use for the assessment of urothe-

lial carcinoma and could potentially be of great value to

patients and clinicians.

Non-muscle invasive bladder cancer is usually treated with

transurethral resection of the tumor. The removed tissue con-

tains both atypical urothelium from the tumor as well as

stroma, but can also contain smooth muscle from the bladder

wall, normal urothelium from surrounding mucosa and blood.

During the procedure, parts of the tissue can get damaged, for

example in terms of heating damage induced by laser or elec-

trically heated wire loop. Areas on the whole-slide images

(WSI) with blood and damaged tissue will not be suitable for

extracting diagnostic and prognostic information, and a pathol-

ogist will discard such regions on inspection. CAD systems

processing WSI must be able to identify trustworthy interesting

areas of resected tissue, but also identify damaged areas and

regions that should be excluded from further analyses.

This paper proposes an automatic method for classifying

WSI tiles from urothelial carcinoma cases into the following

categories: urothelium, stroma, muscle, damaged tissue, blood,

and background, utilizing different magnification scales.

Examples from each class are shown in Figure 1. The output

of such a system can be used as a guide for pathologists, pro-

viding a quick visualization of where the different tissue types

can be found. To the best of the author’s knowledge, a system

for segmenting urothelial carcinoma WSIs into each tissue

class does not exist. For determination of stage, pathologist

wants to identify if muscle tissue is present or absent in the

WSI and whether the tumor has infiltrated it. As muscle tissue

is often sparse in the WSI, it can be time-consuming to get a

full overview of its locations. However, with the help of seg-

mented tissue images, it can be verified in a short amount of

time. In the future, training data for a CAD system will be

created by utilizing the best model developed through this

paper by extracting diagnostic relevant features from the appro-

priate and relevant regions in the WSI. As this problem is not

strictly dependent on classifying all six tissue classes, a binary

approach is also experimented with in this paper classifying

only urothelium vs. non-urothelium tissue to see if an increase

in urothelium extraction can be achieved.

Tile-based classification of WSI has been done earlier.7

However, by only classifying a single tile, it leaves out infor-

mation from the surrounding area. Moreover, WSI viewed on

different magnification scale identifies different information.

Figure 1. Example tiles of each class extracted at three magnification scales. Tiles at each scale are extracted from the same center pixel. The

magnification scale is increased by a factor of 4 in each step, resulting in the tile covering 16 times as much area, even though they have the same

size of 128 � 128 pixels.
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During an examination, a pathologist will integrate information

across several magnification levels before reaching a final deci-

sion. Low magnification (25x) will show global context infor-

mation such as papillary architecture, outline, and the border of

the tissue, as well as color and texture. Nuclear polarity can be

evaluated in the mid magnification (100x), while high magni-

fication (400x) will reveal cytological features like cell size and

shape, mitosis, as well as cell nucleus characteristics as con-

tour, size and colorization intensity, and distribution.

The proposed method combines global context information

found at lower magnifications (25x, 100x) with local informa-

tion found at the highest magnification (400x) using deep

neural networks to extract features from the different scales,

thereafter concatenating the features feeding the last classifier

layers of the network. Different neural network models were

tested which utilized different combinations of the scales.

Related Work

It is not possible to feed an entire gigapixel WSI into a deep

neural network, and a practical solution to this is to divide WSI

into tiles and feed the tiles sequentially to the deep neural net-

work. There are primarily two methods for semantic segmenta-

tion within medical applications. The first, which utilizes

models capable of providing pixel-wise classifications, can out-

put segmentations with high resolution. These networks are

usually based on the fully convolutional networks (FCN) intro-

duced by Long et al. in.8 Popular models are the U-net model by

Ronneberger,9 and variants of this.10,11 As these networks can

detect small details, they are often used in cell and nuclei seg-

mentation,12,13 but also on tumor segmentation tasks.14 The

downside, however, is the need for pixel-wise ground-truth

annotation for supervised learning, which is difficult and time-

consuming to generate, especially in many medical applica-

tions. These networks are typically trained and tested on small

example-patches from WSIs, since no dataset with a pixel-wise

annotation of cells and tissue types on full WSI exist.

The second approach is based on tile-wise classification,

where the models output a class label for each tile. This results

in a coarser segmentation with the resolution of the tile size,

and thus are more often seen for classification tasks rather than

segmentation tasks. Nevertheless, it has been used in tumor

segmentation methods.15-19 As every pixel within the tile

belongs to the same class, the tile-based ground-truth annota-

tion process is significantly simplified for classification and

localization of regions within histological images.

A combination of both tile-wise and pixel-wise classifica-

tion has been seen for segmentation of WSI by Guo et al.20

Firstly, a tile-based prediction using Inception-V3 gives a

coarse segmentation of the WSI, followed by a pixel-wise clas-

sification of only the tumor tiles for refined segmentation of

those areas. This approach can speed up the segmentation pro-

cess relative to a pixel-wise segmentation of the entire slide;

however, the need for pixel-wise ground-truth in all region of

interests is still a significant challenge.

A pathologist studying a slide would typically zoom in and

out, looking at both details and context. To similarly include

these features in an artificial intelligence (AI) model, some

multiscale approaches have been suggested. Models are trained

with multiple input tiles, either taken from different magnifica-

tion scales or taken from the same scale but with varying sizes to

accommodate for a larger field of view. In the work of Sirinu-

kunwattana et al.,21 the author has performed a systematic com-

parison between five single-scale and five multiscale

architectures, tested on four classes of prostate cancer and four

classes of breast cancer. Both tiles extracted at different magni-

fication levels, as well as tiles of various sizes, were tested; and

the result supports the claim that incorporating a broader visual

context improves the outcomes. Another multiscale approach

was used by Vu et al.,13 which created a network named multi-

scale deep residual aggregation network (MDRAN). First, a tile

is extracted from the WSI at 200x magnification, and then

resized to x0.5 and x2 the original size. The three scales (0.5x,

1x, 2x) were then aggregated in the model and used to accurately

segment nuclei of non-small cell lung cancer (NSCLC). Since

the models uses multiple inputs, the architectures often become

more complex, and the total number of parameters within the

models also goes up. This affects both the training and inference

time of the models.

Most previous work on WSI classification is targeted on

segmenting cancerous vs. non-cancerous areas of the WSI, and

often the non-cancerous class may include several tissue

classes. E.g. the work just mentioned by Vu et al.13 also per-

formed WSI classification of NSCLC into three classes:

NSCLC adeno (LUAD), NSCLC squamous cell (LUSC) and

non-diagnostic (ND). The ND regions, in this case, consisted of

fat, lymphocytes, blood vessels, red blood cells, normal stroma,

cartilage, and necrosis without any attempt to separate these

classes. Sometimes, however, there can be useful information

in stroma, muscle, or other non-cancerous tissue types as well.

There are some very few reported works on segmenting various

tissue types. In,22 Li et al. propose a model with dual inputs

trained to segment WSI from the ICIAR2018 breast cancer

dataset into normal, benign, situ, and invasive regions. Also,

a transfer learning model with multiple inputs was explored by

Wang et al.23 to segment histological images of inflammatory

bowel disease (IBD) into the four categories: muscle regions,

messy regions, messy þ muscle regions and background.

Kather et al.24 used a deep learning model to classify tiles from

colorectal cancer into eight different classes of tissue: tumor

epithelium, simple stroma, complex stroma, immune cell con-

glomerates, debris and mucus, mucosal glands, adipose tissue,

and background.

Relatively little work is aimed at segmentation of bladder

cancer WSIs. In the work of Xu et al.,18 a method for predicting

low or high tumor mutational burden (TMB) in bladder cancer

patients was investigated. As a preprocessing step, a tile-wise

tumor vs. non-tumor classifier was used to segment out the

tumor regions from the surrounding tissue. An SVM classifier

was then used to predict the patient’s TMB state using

extracted histological image features from the tumor regions.

Wetteland et al 3



A similar approach was used by Zhang et al.,14 where a U-net

like network was used to predict each pixel into tumor or

non-tumor as a preprocessing step before using another neural

network for predicting the slide level diagnosis. As urinary

bladder tumors are removed using a laser, burnt and damaged

tissue is often present at the WSI. Muscle, stroma, and blood

will also be part of the removed tissue and visible in the WSIs.

But no effort is aimed at identifying these regions, even though

they may contain valuable information for a pathologist.

The recent research efforts show promising results utilizing

deep neural networks in different configurations for classifying

and localizing cancerous areas. However, most effort is made

on the “big four” in cancer (i.e., breast, lung, prostate, and

bowel), performed on some publicly available datasets. Still,

there is relatively little work done on other cancer types, on

multiclass classification, on tissue-type classification, and seg-

mentation/heat maps of full WSI.

Aims and Contributions

In Wetteland et al.,25 we presented a method based on convolu-

tional neural networks (CNN) for classifying tiles of urothelial

carcinoma WSI into the six classes shown in Figure 1. The

model utilized the autoencoder architecture and was first pre-

trained on a large unlabeled dataset, and afterward fine-tuned

on an annotated dataset. The models did not include any con-

text, as both the unlabeled and labeled dataset was extracted at

the full image resolution of 400x magnification.

The main contribution of the current paper is to combine

histological images from different magnification scales into the

model, giving the model access to a greater field of view and

more context of the surrounding tissue. The resulting models

are also used to generate segmented images of all the tissue

classes within bladder cancer WSIs. An extensive number of

experiments are conducted to find the best combination of

inputs and magnification levels for the given task. The method

utilizes the pyramidical image file format to extract tiles from

existing down-sampled versions already present in the file,

excluding any up- or down-sampling, limiting the number of

necessary computational operations. Transfer learning is incor-

porated by building on the VGG16 network rather than the

autoencoder model. To summarize, this paper proposes an

automatic multiscale system, merging inputs of 25x, 100x, and

400x magnification, based on a CNN for classification of

whole-slide histological images into six classes.

A preliminary study of this work was published by Wette-

land et al. as an abstract.26 Here we present much more com-

prehensive experimental work and a description of the method.

Materials and Methods

First, the data material will be introduced and explain how the

datasets are prepared. Afterward, the proposed system for tis-

sue segmentation is presented. Then the structure of the model

is described, and finally, the training procedure and model

selection is explained.

Data Material

The data material consists of digital whole-slide images from

patients diagnosed with primary papillary urothelial carci-

noma, collected at the University Hospital of Stavanger, Nor-

way, in the period 2002-2011. The biopsies are formalin-fixed

and paraffin-embedded, from which 4 mm slices are cut and

stained with Hematoxylin Eosin Saffron (HES).

Figure 2. The WSI is stored in a pyramidal file format, including several down-sampled versions of the base image. The annotated region

(marked with red at level 0) determines which tiles to extract. Tiles are then extracted at the desired location from all three levels.
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The prepared tissue samples are scanned at 400x magnifica-

tion using the Leica SCN400 slide scanner, producing image

files in Leica’s SCN file format. The images are stored as a

pyramidal tiled image with several down-sampled versions of

the base image in the same file to accommodate for rapid

zooming. Each level in the file is down-sampled by a factor

of 4 from the previous level. Figure 2 shows an example of a

pyramidal histological image with three levels. The Vips

library27 is capable of extracting the base image as well as the

down-sampled versions, making it easy to extract the dataset at

each resolution.

Two datasets were collected from the described data mate-

rial, referred to as the CV dataset and the inference dataset,

both are described below.

CV dataset. An expert pathologist carefully annotated selected

regions in the WSI, where each region includes one of the six

classes. A total of 239 regions belonging to the five foreground

classes was annotated in WSI from 32 unique patients. The

background regions were extracted from seven randomly

selected patients.

The annotated regions contain tight corners and narrow pas-

sages to accommodate the shape of the tissue regions in the

WSI. When extracting tiles from the WSI, a grid of non-

overlapping tiles was superimposed upon the annotated region

at 400x magnification level. The tiles in the grid which lie

outside of the region are regarded as invalid and will not be

used, whereas tiles within the region are valid. By shifting the

grid in the X- and Y- direction, more or fewer tiles become

valid. To maximize the number of valid tiles, an automatic

search algorithm was developed. The algorithm checks the

number of valid tiles for all possible positions of the grid. The

grid location with the highest number of valid tiles was used to

extract the dataset from that region. This search was performed

individually for each region.

Tile sizes of 64� 64, 128� 128, and 256� 256 pixels were

tested when extracting tiles with the automatic program. Using

a tile size of 64 � 64 extracted the most extensive dataset, but

the size may be too small as each tile contain little context

information. With a tile size of 256� 256, the extracted dataset

became very small, especially for the stroma and muscle class.

A tile size of 128� 128 was thus chosen as a trade-off between

the other two sizes. When a tile is saved from the region, the

corresponding tiles from 25x and 100x magnification were also

extracted in such a manner that the center pixel is the same in

all three magnification levels, as can be seen in the right-half of

Figure 2.

The extracted 400x magnification tiles are ensured to stay

within the region border. However, by keeping the tile size the

same, the lower magnification (25x, 100x) tiles will have a

wider field of view, allowing for more context of the surround-

ing tissue to be included. Consequently, these tiles will, in

some cases, include several classes. Because the annotation

process requires specific expertise input, the dataset contains

a limited number of samples. Furthermore, the labels are

imprecise as they do not include samples of the labeled border

between tissue regions. This would require multi-label sam-

ples, an even more expensive annotation process. As a result

of this, the dataset is weakly labeled in both quantity and

quality.

No normalization of the stain color is performed on the data,

and the raw pixel intensity is used to train the models.

Stroma- and muscle-tissue are more sparsely distributed in

the WSI, resulting in a smaller amount of data for these classes.

Data augmentation techniques have been utilized to balance the

dataset. Tiles from these two classes are extracted with 50%
overlap, and further rotated and flipped during training to

achieve a more balanced dataset. The size of each class is listed

in Table 1.

Due to the low number of patients in the dataset, a tradi-

tional train/validation/test split could potentially hurt both the

training and evaluation of the models. Instead, stratified 5-fold

cross-validation is used. This enables the usage of all WSIs in

both training and testing of the models. Stratification is per-

formed on the patient-level to ensure that tiles from the same

patient are not present in both the training and test set. A ran-

dom seed is set to ensure that the folds are the same for each

model, making the included samples in the training and test sets

identical for all models.

Inference dataset. In addition to the CV dataset, seven WSIs were

selected to be used as inference on the retrained models. The

WSIs included in the inference dataset is not part of the CV

dataset, and thus unseen by the models. As with the CV dataset,

no normalization is performed on the WSIs in the inference

dataset.

Due to the large size of the histological images, the WSIs

included in the inference dataset do not have any annotations, and

therefore any quantitative measurements are lacking. However,

the resulting segmented images have been examined by a pathol-

ogist to be promising and confirm that the models can go from

predicting smaller regions of the WSI to segment the full WSI.

Proposed System

An overview of the proposed system for tissue segmentation of

whole slide images is presented in Figure 3. The system accepts

Table 1. The Resulting CV Dataset Is Listed in the Table With the

Total Number of Tiles Extracted for Each Class. The Number of Tiles

Refers Only to Tiles Extracted at 400x Magnification. For the DI- and

TRI-CNN Models, the Numbers Need to be Multiplied by 2 and 3,

Respectively. Classes Marked With an Asterisk Shows the Number of

Tiles After Augmentation.

Class Tiles Patients

Urothelium 29 728 28

Damaged 33 607 9

Stroma* 9 750 5

Blood 19 832 5

Muscle* 19 932 4

Background 27 012 7
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input WSI of any size and outputs a corresponding segmenta-

tion image from the input. The system is tested on the seven

WSIs in the inference dataset. The system consists of three

main steps which will be described here. The multiscale model

in step 2 is described in more detail in the next section. Note

that the blue box in step 2 in Figure 3 marked with “Multiscale

Tissue Model” can be exchanged with any of the models

described in the model structure section below.

First, a binary background mask is produced from the 25x level

of the WSI, generated by checking the pixel intensity value and

splitting them into background or non-background tiles. About 60

to 80% of the WSI is covered by background, so this step reduces

the number of tiles that needs to be processed by the inference

model. Tiles selected as non-background are then extracted and

fed to the multiscale model for further classification.

Depending on which model architecture is used (MONO,

DI, or TRI), one, two, or three tiles are extracted from the same

location but with different magnification. The extracted tile

will always be 128 � 128 pixels, as this is the required input

size of the inference model. However, the prediction only holds

for a smaller area within the tile, typically 8 � 8 pixels, but can

be set to any size. The input tiles are then overlapped, such that

the inner area is located next to each other with no overlap.

Tiles are classified according to the highest prediction score.

The outcome of a prediction may be equally split between

multiple classes (e.g., two classes getting a score of 0.5 each,

or four classes getting 0.25 each). To avoid such cases, a

threshold value is set to determine if a prediction is valid. To

ensure that the majority of the predicted score falls to a single

class, the threshold needs to be above 0.51. Also, by setting the

Figure 3. Overview of the proposed system. A background mask is created from the 25x WSI to exclude the background from further

processing. Areas in the WSI selected as non-background is then extracted and fed through the multiscale model from Figure 4, which outputs

tissue predictions. The prediction needs to exceed a set threshold to be valid. Finally, the segmentation image is generated by giving each class a

separate color. The values shown in the figure are for illustration purposes only.
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threshold too high may result in removing too many tiles. A

threshold value of 0.6 is therefore determined as a trade-off

between removing the unwanted conflicting predictions and

not removing too much. Tiles with all prediction scores below

the threshold are labeled as undefined.

Finally, each class is given a separate color, and the final

segmentation image is saved. The segmentation images are

ensured to only show classes with prediction scores higher than

0.6 but do not show the exact score. A method for creating heat

maps has also been implemented, where no thresholding is

performed, and the score for each class is visualized. A disad-

vantage of this is that one image must be created for each class.

We earlier showed this approach in Wetteland et al.,25 but have

omitted it from this paper.

Multiscale model structure. This paper compares three architec-

tures referred to as the MONO-, DI-, and TRI-CNN models.

The three architectures have one, two, and three inputs, respec-

tively. To differentiate the models from each other, they are

named according to their main architecture, and the input scale,

e.g. MONO-400x is a MONO-CNN model trained on tiles

extracted at 400x magnification. Tiles in the dataset are

extracted at three magnification levels, yielding three MONO

models: MONO-25x, MONO-100x, and MONO-400x. These

three magnification scales can further be combined in three

configurations for the DI-CNN model: DI-25x-100x, DI-25x-

400x, and DI-100x-400x. The TRI-CNN model has only one

configuration: TRI-25x-100x-400x, and is depicted in Figure 4.

The different MONO- and DI-CNN models can easily be

derived from the same figure. E.g. to create the DI-25x-400x

model, remove the 100x input and blue blocks, and to create the

MONO-100x model, remove the 25x input, 400x input, red and

yellow blocks.

The overall structure of each model is the same. Each input is

fixed at 128� 128� 3 pixels, which is the size of each tile. The

input is fed into a pre-trained VGG16 network28 which acts as a

feature extractor, followed by a global average pooling (GAP)

layer providing a feature vector representation of the input. This

feature vector is then fed into a classification network consisting

of two fully-connected (FC) layers, each followed by a dropout

layer, and a final softmax layer with one output node for each

class. The DI- and TRI-CNN models have two and three parallel

VGG16 branches, respectively, resulting in multiple feature vec-

tors. These feature vectors are concatenated before entering the

classification network. The FC-layers has the same size of 4096

neurons as the original layers in the VGG16 network. Dropout

layers are added after each FC-layers to add regularization to the

network due to the small dataset.

Training procedure and model selection. All models were trained

using the SGD optimizer with a learning rate of 1.5e-4, batch

size of 128, a dropout rate of 0.3, and a cross-entropy loss

function. Early stopping was enabled, stopping the model when

no increase in performance during the past 10 epochs was seen.

Due to the cross-validation training scheme, no validation set

was used, and the early stopping process was thus monitoring

the training loss. The model is written in Python 3.5 using the

Keras machine learning library,29 and Scikit-learn module30 for

evaluation.

The models were trained in a stratified 5-fold cross-

validation fashion. To produce an unbiased evaluation score,

the output from each fold was summarized in a micro-average

manner, as suggested by Forman and Scholz.31 All the true

positive (TP), false positive (FP), and false negative (FN) val-

ues were summarized for each class over all the folds to pro-

duce a final micro-averaged F1-score.

The VGG16 network, which is used as a base model in our

architectures, is pre-trained on the ImageNet dataset.32 It is

possible to have the base model fixed during training by freez-

ing the parameters, preventing the base model from being

updated. Freezing the parameters will allow for faster training

as fewer parameters need to be learned, however, as the nature

of the histological images is not part of the ImageNet domain, it

could affect the model’s ability to fully grasp the new images.

Figure 4. A block diagram of the TRI-CNN model proposed in the current paper. The input tiles are fed through individual pre-trained VGG16

network and global average pooling (GAP) layer to create feature vectors. The feature vectors are concatenated and fed through the classification

network before entering the final output layer consisting of a softmax function. The softmax function outputs a prediction score for each of the

six classes.
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By unfreezing the weights, it may allow to better adapt to the

histological domain, at the cost of longer training time. Both

freezing and unfreezing the weights were tested in the

experiments.

As one of the objectives is to be able to automatically extract

urothelium tissue from the histological images, to be used in

diagnostic systems in the future, it is therefore not strictly nec-

essary to classify all six tissue classes. A possible easier problem

would be to define a binary problem, classifying urothelium vs.

non-urothelium tissue. Each model was therefore also tested

with this binary-class approach to see if it improved classifica-

tion results for urothelium tissue. By simply combining the

remaining five classes into one non-urothelium class, the dataset

becomes heavily unbalanced toward the non-urothelium class.

To counteract against this, augmentation using rotation and flip-

ping was applied to balance out the dataset. By augmenting all

the tiles from the muscle, stroma, and urothelium class 4x during

training, the dataset became evenly distributed between the two

classes urothelium and non-urothelium.

After evaluating the model using stratified cross-validation,

a new and final inference model was trained by utilizing all

available data as training data. The average number of epochs

used during cross-validation was used when training the infer-

ence model. This inference model was then used to predict new

WSIs from the inference dataset.

Results

This section will present the results for the different models. A

total of 28 models were trained using stratified 5-fold cross-

validation, including single- and multiscale, and binary- and

multiclass models. Each model was trained using weakly

labeled data, with both frozen and unfrozen weights in the

VGG16 network.

Table 2 shows the cross-validation results for all the models.

Aggregated micro-average F1-score across all classes are

included, as well as the F1-score for only the urothelium class

to better compare multiclass vs. binary-class models. Figure 5

displays the confusion matrices for the best multiclass models.

The matrices are normalized to allow for more easy compari-

son. For the number of samples in each class, refer to Table 1.

Some of the best models have been retrained on the entire

CV dataset and used to segment the seven WSIs included in the

inference dataset. The resulting segmented images have then

been inspected by an expert pathologist and are considered to

be very promising. Figure 6 shows four WSIs and their corre-

sponding tissue segmented images generated by the best multi-

class model. Figure 7 shows a comparison between

segmentation images generated by the best binary-class model

and the best multiclass model. A DICE-score is calculated to

measure the similarity between the predicted urothelium tissue

between these two models, with an average DICE-score of 0.87

for the three WSIs. Figure 8 shows a close-up region taken

from the top-right corner of the first WSI in Figure 6. This

region is then segmented with all the best MONO-, DI-, and

TRI-models for comparison.

Discussion

The results in Table 2 are shown as micro-averaged F1-score

across all classes, as well as for the urothelium class. The

results are overall good for all models, and a discussion of each

case follows below. Afterward, the confusion matrices and the

segmented images will be discussed, and finally, different

usage scenarios of the system will be considered as well as

some limitations of the study.

Binary-class vs. multiclass. As expected, the binary-class models

achieve a higher average F1-score than the multiclass models,

with all 14 of the binary models getting a higher score than their

multiclass counterparts. This is expected because five of the

classes are now grouped, and misclassification within these

classes is canceled out. The best multiclass model is the frozen

TRI-25x-100x-400x with an F1-score of 96.5% across six

classes, whereas the best binary model is the DI-25x-100x with

unfrozen weights, which got an F1-score of 99.3% across its two

classes.

By looking at the F1-score for the urothelium class alone,

the multiclass models are now superior, with 9 of the 14 models

Table 2. Results for all 28 Models, Trained Using Stratified 5-Fold Cross-Validation. Each Score Is Shown as Micro-Averaged F1-Score

Aggregated Across all Classes, Marked as “All” in the Table. F1-Score Only for the Urothelium Class Is Shown in the Columns Marked “Uro.”

Numbers in Bold Refer to the Highest Score in Their Respective Column.

Multiclass Binary-class

Frozen Unfrozen Frozen Unfrozen

Model All Uro. All Uro. All Uro. All Uro.

Single-scale MONO-25x 93.4 92.9 96.4 96.8 96.3 92.5 98.1 96.1

MONO-100x 94.4 96.6 94.8 97.8 98.3 96.5 99.1 98.1

MONO-400x 87.2 89.7 86.4 86.3 94.2 88.1 93.7 87.2

Multiscale DI-25x-100x 96.5 97.4 96.2 98.1 98.1 96.2 99.3 98.5

DI-25x-400x 95.6 96.3 96.0 97.6 97.8 95.4 98.3 96.5

DI-100x-400x 95.0 96.8 95.3 97.6 98.4 96.6 98.9 97.7

TRI-25x-100x-400x 96.5 97.6 96.4 98.3 98.5 97.0 99.2 98.3

8 Technology in Cancer Research & Treatment



being ahead of their binary-class counterparts. The few binary-

models which have a higher score, are only marginally so, with

the largest difference being the unfrozen MONO-400x, where

the binary version is 0.9% better than the multiclass version. It

is clear that by simplifying the problem into a 2-class problem,

did not help with getting better urothelium extraction. The

highest urothelium score is achieved by the TRI model, where

both the unfrozen multiclass and unfrozen binary-class version

each got an equal F1-score of 98.3% for the urothelium class.

Frozen vs. unfrozen. The three architectures MONO, DI and TRI,

have 19 M, 21 M, and 23 M trainable parameters, respectively,

when the VGG16 weights are frozen. By unfreezing the weights,

the same models get 34 M, 50 M, and 67 M trainable parameters.

When comparing results for these models, there is on average an

increase ofþ0.6% by unfreezing the weights. Of the 14 unfrozen

models, 10 get a higher score than the corresponding frozen mod-

els. The largest increase is seen in the binary MONO-25x model,

which goes from an F1-score of 96.3% to 98.1% by unfreezing the

weights.

The increase in the number of trainable parameters also

affects the training time of the models. The average time per

epoch for all the frozen models was 9 minutes, while the unfro-

zen models needed on average 10 minutes to compute one

epoch. This is an increase of 11% processing time per epoch.

However, the frozen models needed on average 162 epochs to

reach the early stopping criteria, whereas the unfrozen models

only needed 58 epochs. Thus, the models with unfrozen

weights needed about 60% less processing time during training.

Single-scale vs. multiscale. When comparing the single-scale

MONO-models with the multiscale DI- and TRI-models, the

multiscale models achieve better results across all columns in

Table 2, with the exception for the unfrozen MONO-25x model

which matches the performance of the TRI-scale model. If we

limit ourselves to the multiclass models, the best models for the

three architectures are the unfrozen MONO-25x with 96.4%,

frozen DI-25x-100x with 96.5%, and frozen TRI-25x-100x-

400x which got an F1-score of 96.5%. The story is similar for

the binary models, with unfrozen MONO-100x being the best

with 99.1%, unfrozen DI-25x-100x with 99.3%, and unfrozen

TRI-25x-100x-400x with 99.2%.

By looking at the single-scale models alone, it is clear that

the two lower scales (25x, 100x) are performing better than the

400x scale, and that having a greater field of view is preferable.

The multiscale models, consisting of two and three VGG16

networks, have a more complex structure involving more para-

meters than the MONO models. In addition, they have access to

a greater field of view in all its models. These two features

seem to help the performance of these models.

Naturally, the MONO models take the least amount of train-

ing time, with an average of 4:40 minutes per epoch. The DI-

models take 136% longer with an average of 11:01 minutes,

and finally, the TRI-models take the most time with 19:38

minutes on average per epoch. That is 321% and 78% longer

than MONO and DI, respectively. The average number of

epochs before reaching the early stopping criterion for the three

architectures was 147, 88, and 64 epochs for the MONO-, DI-,

and TRI-models, respectively.

Confusion matrices. Figure 5 shows the resulting normalized

confusion matrices for the best multiscale models for both

multiclass and binary-class models.

Figure 5. Normalized confusion matrices for the best multiscale models. Aggregated results across all 5 folds in the cross-validation test. A)

Best multiclass DI-CNN, B) Best multiclass TRI-CNN, C) Best binary-class DI-CNN, and D) Best binary-class TRI-CNN.
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In the two multiclass matrices (A) and (B), the models did

an excellent job at classifying background, blood, and urothe-

lium correctly, and a great job with the damaged class as well.

Both models struggled mostly with the muscle and stroma

classes. These are the classes with the fewest number of labeled

samples in the dataset. As a result of this, the models may have

achieved a weaker generalization for these classes, and thus

misclassified them more often. Most notable misclassifications

are related to muscle and stroma being misclassified as dam-

aged tissue, and also stroma being misclassified as urothelium.

Figure 6. The best multiclass model was retrained and used to generate segmentation images from four WSI not present in the training data.
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The two binary-class models in Figure 5 (C) and (D) got an

equally good performance. Five of the classes are now com-

bined into one class named other in the figure and thereby

removing most of the misclassifications from the multiclass

cases. However, this did not significantly increase the perfor-

mance of model (C) and (D). Model (D) got the same normal-

ized score as (A), and model (C) is only marginally better.

Inference dataset results. The seven WSIs included in the infer-

ence dataset were processed with overlapping tiles according to

Figure 3, where only the inner 16 � 16 pixel of the tile was

classified. The average processing time was 7 hours 18 min-

utes, including all three steps in Figure 3. On average, only

0.9% of the WSIs were categorized as undefined. Four of the

WSIs are presented in Figure 6, and three in Figure 7.

Segmentation image results. The best multiclass model, accord-

ing to Table 2, is split between two models. The frozen DI-25x-

100x and frozen TRI-25x-100x-400x both have a similar F1-

score of 96.5%, but the latter model has a higher urothelium F1-

score and is thus regarded as the best multiclass model. The

model was retrained and used to process four new WSIs, not

present in the training data, to demonstrate its usage. Figure 6

shows the original WSI with the corresponding segmentation

images. The segmented images are intuitive, easy to under-

stand, and allow even untrained personnel to both identify and

locate the difficult to find regions, e.g. like muscle tissue.

Fully multiclass-annotated WSI in our dataset is not avail-

able. The resulting segmentation images for the WSI have,

however, been manually inspected by an expert uropathologist

and are considered to be very promising, especially considering

that the WSIs were only weakly annotated. Large homoge-

neous areas with a certain tissue type are clearly recognized.

Most models are really challenged by smaller, more heteroge-

neous areas.

Binary-class vs. multiclass segmentation images. The best multi-

class and binary-class models were retrained and used to create

the segmentation images seen in Figure 7. The multiclass seg-

mentation image may be of more interest to a pathologist, as it

outlines regions of all six classes, whereas the binary-class

segmentation image only outlines the urothelium class. How-

ever, both the multiclass and binary-class models have about

the same F1-score for the urothelium class, and the additional

Figure 7. The best binary-class model vs. the best multiclass model. A DICE-score is calculated to measure the similarity between the predicted

urothelium tissue between the two models. DICE-score from top to bottom are 0.92, 0.85 and 0.85 .
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information in the multiclass segmentation images favor the

former model in a final system.

After comparing the urothelium regions in the two segmen-

ted images for each WSI, they are very similar. The DICE-

score is calculated to measure the similarity between the

regions, and the three cases have an average DICE-score of

0.87, which confirms that the two model’s prediction for

urothelium is quite similar. However, there is no truth annota-

tion, so the DICE-score does not reveal if one of the models is

better than the other.

Close-up segmentation regions. Even though the system is trained

on weakly labeled data, consisting of single-class samples,

using tile-based classification and not a per-pixel classification,

it is still interesting to see how the system performs on a

detailed level. This also allows us to compare the different

models. Figure 8 shows a close-up region taken from the top-

right corner from the first WSI in Figure 6, processed using an 8

� 8 pixel predict area.

All models do a decent job of outlining the major regions

in the image. The different models process the image on

different scales, and so the prediction tile covers a larger

area for the smaller scales. The effect of this is visible at the

three MONO models, where the level of detail goes up with

each scale. The MONO-100x and MONO-400x models,

with its smaller field of view, are able to detect some of

the small regions containing blood in the middle of the

image. The MONO-25x, however, is not able to identify

this. The DI-25x-100x model, which has access to both the

mid and broad field of view, barely identifies a small part of

Figure 8. Segmentation of close-up region taken from the top-right corner from the first WSI in Figure 6. A) Best MONO-25x, B) Best MONO-

100x, C) Best MONO-400x, D) Best DI-CNN model, E) Best TRI-CNN model. Arrows in the WSI region points to small areas of blood that the

models struggle to identify.
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the blood, whereas the TRI scale model does not identify

it at all.

Usage Scenarios

As seen from both Table 2 and the segmented images in Figure

6, the model is fully capable of distinguishing between the

different tissue types. The presented system has several possi-

ble usage scenarios, which will be discussed here.

The segmented images in Figure 6 can be used as a digital

tool for pathologists to help them become more efficient in

their work. It can be used to guide them to the diagnostic

relevant areas of the WSI, such as urothelium, muscle, and

stroma tissue. It can also be used to find edges of the urothe-

lium tissue without damage more easily. During an examina-

tion, a pathologist needs to verify if muscle tissue is present or

not in the current WSI. With the segmented images, this can be

verified within a short amount of time.

Another use case for the system is as a preprocessing

step for an automatic diagnostic system. For instance, each

patient has follow up records about whether the patient

experienced recurrence and progression. By training a diag-

nostic model on the entire WSI, the dataset quickly becomes

too large if many patients are included. Also, by randomly

selecting a subset of tiles within each WSI, the dataset will

include a large portion of damaged tissue and blood, which

will add noise to the diagnostic model. By using the multi-

scale tissue model presented in this paper as a preprocessing

step, areas of clean, undamaged urothelium and other diag-

nostic relevant types can easily be extracted and used as

training data.

Limitations

One limitation of the current study is that the dataset is

relatively limited in size. A small training dataset may lead

to overfitting of the model, resulting in poor performance,

and a small test set may cause an optimistic estimate of the

performance. Several measures have been taken to reduce

these negative effects. Pre-trained models, dropout, and

early stopping was used to reduce overfitting, and cross-

validation was used to get a realistic estimate of each mod-

el’s performance.

As mentioned in the data material section, the labels are

accurate in the highest resolution (400x) but are imprecise on

the lower scales (25x, 100x), meaning the ground-truth is based

on weak annotations of the dataset, which may impact the

accuracy. The experimental results show that having access

to a greater field of view outweighs the potential negative

effects of imprecise labels.

It is difficult to compare the presented models against other

approaches or to perform a test on an independent dataset. To

the best of the authors’ knowledge, no other open dataset exists

with annotations of the same six classes. As mentioned in the

related work section, some research and models exist for seg-

mentation of histological images. However, these are based on

other cancer types or trained on other classes than the six

classes used in this paper.

Conclusion

This paper investigates the effect of using multiple scales

during tissue classification from WSI of urothelial carci-

noma into six classes. The classification is performed on

smaller tiles and can be useful for a coarse segmentation,

or ROI-extraction, of WSI. Three main architectures are

presented: MONO-, DI-, and TRI-CNN model, and a total

of 28 different models were trained using weakly labeled

data and evaluated in a stratified 5-fold cross-validation

scheme.

The multiscale models achieved a better result than the

MONO-CNN models. There was not a substantial increase in

urothelium classification by using the binary-class models, nei-

ther by cross-validation or by inspection of the segmented

images. The best multiclass model was used to generate intui-

tive and easy to understand segmented images from unseen

WSIs, and after inspection by a pathologist is considered to

be very promising.

The segmented regions shown in Figure 8 demonstrates the

importance of including the highest magnification scale (400x)

during tile-wise classification. The models which do not

include this scale are not able to identify the smaller details

within the WSI.

As the three MONO models pick up different levels of

details, we will in the future experiment on employing them

in a multiscale ensemble model by combining their outputs,

instead of combining the different scales within the models, as

the DI- and TRI-CNN models do. We also plan to use the

model for automatic ROI-extraction of relevant tissue in the

WSI to create training datasets for a diagnostic and prognostic

classification model. By only extracting the diagnostic rele-

vant areas of the WSIs, a dataset of much higher quality can

be collected.
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ABSTRACT The most common type of bladder cancer is urothelial carcinoma, which is among the cancer
types with the highest recurrence rate and lifetime treatment cost per patient. Diagnosed patients are stratified
into risk groups, mainly based on grade and stage. However, it is well known that correct grading of bladder
cancer suffers from intra- and interobserver variability and inconsistent reproducibility between pathologists,
potentially leading to under- or overtreatment of the patients. The economic burden, unnecessary patient
suffering, and additional load on the health care system illustrate the importance of developing new tools
to aid pathologists. We propose a pipeline, called TRIgrade, that will identify diagnostic relevant regions in
the whole-slide image (WSI) and collectively predict the grade of the current WSI. The system consists
of two main models, trained on weak slide-level grade labels. First, a WSI is segmented into the different
tissue classes (urothelium, stroma, muscle, blood, damaged tissue, and background). Next, tiles are extracted
from the diagnostic relevant urothelium tissue from three magnification levels (25x, 100x, and 400x) and
processed sequentially by a convolutional neural network (CNN) based model. Ten models were trained for
the slide-level grading experiment, where the best model achieved an F1-score of 0.90 on a test set consisting
of 50 WSIs. The best model was further evaluated on a smaller segmentation test set, consisting of 14 WSIs
where low- and high-grade regions were annotated by a pathologist. The TRIgrade pipeline achieved an
average F1-score of 0.91 for both the low-grade and high-grade classes.

INDEX TERMS Automated cancer grading, bladder cancer, convolutional neural networks, multiscale
classification, urothelial carcinoma, weakly labeled data, whole-slide image.

I. INTRODUCTION
Bladder cancer is the 10th most commonly diagnosed cancer
disease worldwide, with 573 278 new cases in 2020 [1].
The most common type of bladder cancer is urothelial
carcinoma, in which men are overrepresented. It is among the
cancer types with the highest recurrence rate, approximatly
50 to 70%, which makes it especially challenging [2].
It requires an intensive treatment and follow-up plan, which
results in it being one of the cancer types with the highest
lifetime treatment cost per patient [3], [4]. In the case of
muscle-invasive bladder cancer (MIBC), where the cancer
has invaded the muscle wall of the bladder, a cystectomy

The associate editor coordinating the review of this manuscript and

approving it for publication was Kin Fong Lei .

is often required. However, cancers that stay confined in
the bladder mucosa are referred to as non-muscle-invasive
bladder cancer (NMIBC) and are easier to treat.

In histopathological diagnostics, pathologists use grading
and staging to describe the tumor. These parameters are
used to stratify patients into risk groups and form a suitable
treatment and follow-up plan. The grade of a tumor describes
the differentiation state of the tumor cells under amicroscope.
Different cancers have different grading scales, but in general,
if the cancer cells are similar to that of healthy non-cancerous
cells, the grade will be low, and the cancer will have a
lower likelihood of spreading. On the other hand, if the
cells have a more abnormal appearance and are disorganized,
the grade will be higher. In addition to the grade, tumor stage
is also important and is determined by the size of the primary
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FIGURE 1. Examples of low-grade and high-grade tiles extracted from a
WSI. The tiles are extracted from three magnification levels (25x, 100x,
and 400x) and all have the same size of 256 × 256 pixels.

tumor, how far it has spread into the surrounding tissue,
and the number of primary tumors present. In this paper,
we focus on grading of NMIBC. However, it is well known
that correct grading of bladder cancer suffers from intra-
and interobserver variability and inconsistent reproducibility
between pathologists [5], [6], which can lead to both under-
or overtreatment of the patients. New tools to aid pathologists
are therefore desired.

TheWorld Health Organization (WHO) has proposed three
grading systems for bladder cancer. The first grading system
was introduced in 1973, referred to as WHO73, which is
still somewhat used today. It consists of three categories,
grade 1, grade 2, and grade 3, where grade 3 is themost severe
state. A revised edition of the grading system was introduced
in 2004 called WHO04, and further updated in 2016 as
WHO16. In these versions, cases are split into low- and high-
grade carcinoma. Some examples of low- and high-grade
areas are shown in Fig. 1. Grade 1 patients are referred to
as low-grade patients, and grade 3 patients are high-grade
patients. Patients diagnosed as grade 2, however, are now split
into either the low- or high-grade case. This might seem like
a minor change, but for a patient to be diagnosed as low-
or high-grade may result in very different follow-up regimes
and local treatment with potential adverse events. A patient
falsely diagnosed as a high-risk patient is an example of
unnecessary patient suffering by overtreatment, additional
load on the health care system, and extra cost. The data
material used in this paper was collected and diagnosed prior
to 2016 and will therefore focus on the WHO04 grading
system.

After the tumor is removed, it is placed on an object glass
and stained before a pathologist examines it. This is usually
done through a microscope; however, with the introduction of
digital pathology, digital versions of the stained specimen are
also available in the form of whole-slide images (WSI). This
has multiple advantages, such as remote access, storage and
sharing cases between institutes, cloud computing, improved
workflow, as well as computational pathology, which enables
the use of new tools to process and interpret the tissue
samples. All of which can improve the diagnostic accuracy
and the clinical outcome of the patients [7]–[11].

Recent years have seen a rapid increase in both interest
and usage of machine learning applications. Such tools could
potentially be used to assist pathologists and help reduce
the increasing workload. Also, because the errors made by
a machine learning system may be different from that of a
pathologist, the two may be combined for improved accuracy
by the pathologist, as shown by Wang et al. [12]. Low
reproducibility and variability in interpretations may also be
reduced if a trustworthy computer-aided diagnosis (CAD)
system could be implemented in a clinical setting.

With a CAD system, we want to map a WSI input to one
of the disease output categories. The traditional machine-
learning method to achieve this is by supervised learning.
A set of known image and label pairs are shown to the
model, which uses a gradient descent algorithm to optimize
its parameters. For these algorithms to work efficiently
and create robust models, a large set of image-label pairs
are needed. Within digital pathology, we have access to a
large amount of image data in the form of WSIs. However,
annotated data is limited, challenging the practicability of
supervised learning approaches. The nature of the images
also calls for expert input to be able to annotate them. This
is a time-consuming and, in some cases, challenging task.
To create enough of the image-label pairs necessary to train
these models and avoid the expensive annotation process,
one possibility is to utilize data already available in the form
of the slide-level diagnosis information. The WSIs are split
into smaller images in the form of tiles, and the slide-level
diagnosis will be assigned to each of the tiles.

For patients diagnosed with NMIBC, the tumor is usually
removed through transurethral resection of bladder tumor
(TURBT). During this process, parts of the tissue get dam-
aged, either heating damage from the cauterization process or
physical damage from tearing. Other tissue types, like stroma
or muscle, as well as blood, are also often present in the slides
of urothelial carcinoma. For the purpose of grading NMIBC,
urothelium is the most diagnostic relevant tissue. For staging,
both urothelium and stroma, and particularly the border
between them, is essential. The presence of muscle tissue
also has importance for correct staging. However, cauterized
tissue from the TURBT process, as well as areas containing
blood, have no diagnostic relevance. Feeding a deep learning
model with these irrelevant tissue classes, e.g., blood or
damaged tissue, may harm the diagnostic model’s accuracy.
To avoid this, we have previously proposed a method
based on convolutional neural networks (CNN), which
automatically segments NMIBC slides into background and
five foreground classes (urothelium, stroma, muscle, blood,
and damaged tissue). This tissue classification model is
referred to as the TRItissue-model in the following and is
explained in detail in Wetteland et al. [13].

In the current paper, we propose a system called
TRIgrade for automatically grading WSI according to the
WHO04 grading system. The proposed system uses the
TRItissue-model as a first-stage network for preprocessing
the WSI to find regions of urothelium tissue. The extracted
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urothelium tissue is then fed through a second-stage network
called the TRIWHO04-model for automatic grading.

The large size of the gigapixel images causes some
challenges. It is not possible to feed the entire image into a
deep learning algorithm; instead, tiles of a suitable size are
extracted from the WSI and fed to the algorithm sequentially.
The CNN-based model assigns a prediction score to every
tile. These predictions are used to create a heatmap showing
which regions were predicted with low- or high-grade
carcinoma. The final decision can further be aggregated from
the micro predictions into a slide-level prediction.

A WSI is stored in a pyramid format with multiple
magnification levels, where the different levels will give
different information. An example of such a pyramidal WSI
is shown in Fig. 2. A pathologist will typically zoom in and
out of a WSI to gather information at several scales before
reaching a final decision. Our proposed method mimics this
behavior by combining global context information and local
details by utilizing a multiscale model architecture.

A. PREVIOUS WORK
With the introduction of digital pathology, there has been an
increase in medical application research utilizing machine
learning and deep learning approaches. Most research is
related to cancer diseases such as breast, lung, prostate, brain,
and skin cancer [14]. By looking at the list of US Food
& Drugs Administration (FDA) approved artificial intelli-
gence (AI) based medical technologies, most are in the fields
of radiology, cardiology, and Internal Medicine/General
Practice [15]. Still, a lot of effort is also aimed towards
histological images [16]–[20].

The majority of CAD research conducted on histolog-
ical images utilize two or more seperate models in their
methods [16], [21]–[24]. First, a segmentation algorithm or
region of interest (ROI) selection step is performed to narrow
down the area which needs additional processing. This is
an important step that helps in several ways. Compared
to standard images, the WSIs are very large in size, and
it is computationally expensive to process the entire WSI.
By limiting the number of extracted tiles, the classification
runtime is reduced, speeding up the classification step. Also,
by removing the unwanted and diagnostically irrelevant
areas, the extracted datasets will consist of higher quality
tiles, which aids the classification algorithm in the following
steps. After segmentation, tiles from the ROI are processed,
usually by a classification model, which will predict the
class of the tiles. Examples of tile classes can be cancer vs.
non-cancer, recurrence vs. no recurrence, cancer grading or
staging, or other classes related to cancer diagnosis. After
all the selected tiles have been classified, the predictions are
aggregated into a final slide-level prediction, usually using
statistical or machine-learning methods.

Some research has been aimed towards urothelial
carcinoma, otherwise known as bladder cancer. In
Jansen et al. [22], they utilized two individual single-scale
neural networks to detect and grade 328 cases of bladder

FIGURE 2. WSI images are stored in a pyramidal format, where the base
image corresponds to the highest magnification level. The right-hand side
shows a set of three tiles extracted so that the center of the tile
corresponds to the same physical area in the WSI, forming a triplet.

cancer collected from 232 patients. A U-net-based segmenta-
tion networkwas trained to detect and segment the urothelium
tissue, used as input to a second network trained to grade the
urothelium tissue according to the WHO04 grading system.
The classification network assessed the WHO04 grading
on slide-level, using the majority vote of all classified
tiles. The predictions were compared with the grading of
three experienced pathologists. According to the consensus
reading, the classification model achieved an accuracy score
of 74%. The included whole-slide images were all exported
at 20x magnification (0.5 µm per pixel).
From the same research group, thework of Lucas et al. [24]

utilized the same urothelium segmentation model as
presented in [22]. Regions of urothelium were then fed into
a selection network which classified tiles into recurrence
vs. no recurrence. A strategy was applied to select features
from 200 tiles fed into a final bidirectional gated recurrent
unit (GRU) classification network that predicts 1-year and
5-year recurrence-free survival (RFS) in bladder cancer
patients.

The work of Zhang et al. [23] was also performed on
bladder cancer. They used three different neural networks
referred to as s-net, d-net, and a-net. The s-net model is
a U-net-like architecture that classifies each pixel as tumor
vs. non-tumor. The d-net then characterizes the tumor ROIs
and generates an interpretable diagnosis and low-dimensional
encodings. Finally, the a-net uses the ROI encodings and
predicts a slide-level WHO04 grading.

Multiscale cancer subtype classification, where two
or more different magnification scales are fed to the
classification model, has been shown to improve the accuracy
compared to single-scale models [13], [25]. This mimics
the pathologist’s process, which will zoom in and out to
investigate the tissue area at several scales.

In Skrede et al. [21] theWSI is first segmented, before tiles
are extracted at 10x and 40x resolution. The tiles from each
scale are fed to an ensemble of 5 models, using a total of ten
CNN-based models. The average score from the ensembles
is used to predict the prognosis of colorectal patients.

VOLUME 9, 2021 115815



R. Wetteland et al.: Automatic Diagnostic Tool for Predicting Cancer Grade in Bladder Cancer Patients

TABLE 1. Overview of how the data material in this study is distributed
into training, validation, and test sets. For triplets in the training dataset,
see Table 2.

TABLE 2. Extracted triplets for the training dataset.

In the work of Hashimoto et al. [26] WSIs from malignant
lymphoma were fed to a multiscale CNN-based model. They
compared the results of models using tiles extracted at 10x
or 20x resolution. However, the best result was achieved
by combining the two scales into a multiscale model. The
authors of this study also confirm that class-specific features
exist at different magnification scales.

Previous work from our group, on bladder cancer, included
tissue segmentation [13], [27], [28], and prediction of
recurrence in NMIBC patients [29]. In Wetteland et al. [13],
we experimented with three magnification scales and any
combination of these. We proposed three MONO-models
(Mono-25x, Mono-100x, and Mono-400x), three DI-models
(DI-25x-100x, DI-25x-400x, and DI-100x-400x), and finally
a model utilizing all three magnification scales, TRI-25x-
100x-400x. All models used the VGG16 network as a feature
extractor and were trained and evaluated on six tissue classes.
The MONO-models performed worst, and the best result was
achieved with the TRI-model utilizing all scales, supporting
the claim that multiscale models achieve better results. Both
frozen and unfrozen weights were experimented with, but the
TRI-model trained with frozen weights in the VGG16models
performed best and achieved an average F1-score of 96.5%
when evaluated on all six classes, and an average F1-score
of 97.6% for the urothelium class alone.

Based on this result, we continued with the TRI-model and
VGG16 as feature extractors in the current paper.We have not
evaluated the MONO- or DI-models on the diagnostic data.
The model referred to as TRI-25x-100x-400x in [13] is in the
current paper referred to as the TRItissue-model. It is used for
tissue extraction as shown in Fig. 4. The name, architecture,
and base model have also been carried over to this paper and
are the basis for the TRIWHO04-model we propose here.

B. OUR CONTRIBUTIONS
The current study’s main contributions is listed below.
• A novel, fully automated pipeline called TRIgrade is
proposed. The system consists of a tissue segmentation

FIGURE 3. A close-up image from a WSI with a superimposed urothelium
ROI mask (semi-purple). As N increases, the density of the tiles (red
squares) also increases. The illustrated tiles are shown on 400x
magnification level, but tiles from 25x and 100x are also extracted.

model and a diagnostic WHO04 grade model. The
system’s output consists of a tissue segmentation
map, a WHO04 heatmap, and a predicted slide-level
WHO04 grade. The proposed TRIgrade system correctly
predicted 45 of the 50 WSIs in the test set, achieving an
accuracy of 90%.

• The TRIgrade system-generated heatmaps are both visu-
alized and evaluated against a segmentation test set. This
helps to demonstrate the usage of such a system for a
pathologist in a clinical setting.

• An algorithm for finding the optimal value of a decision
threshold for classifyingWSIs at slide-level is proposed.

• We trained models on differently sized training sets. The
results for this provide insight on how dataset sizes affect
the performance of the models, training time per epoch,
and trained epochs before reaching stopping criteria
during early stopping.

• Source code for this paper is accessible at the following
URL address https://git.io/J3OdW.

II. METHODS
The proposed TRIgrade system presented in this paper utilizes
multiscale models, which use tiles extracted at multiple
magnification levels as input. For improved readability,
we define these tiles as a triplet. A triplet is denoted Ti
and is defined as a set of three tiles extracted from a
WSI at three different magnification levels (25x, 100x, and
400x). Let T denote a set of triplets in a WSI, where
T = {T1,T2 . . . Ti . . . Tmax}, and the number of elements
in the set is given by the cardinality |T |. An example of a
triplet is shown in Fig. 2.

A. DATA MATERIAL
The data material consists of 300 digital whole-slide images
from patients diagnosed with NMIBC, where the tissue is
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FIGURE 4. This figure presents the pipeline for our proposed system, TRIgrade. Input) A WSI of urothelial carcinoma is used as input. 1) A foreground
discriminative mask is found by evaluating the pixel intensity values and used as a reference to extract tiles from the WSI. 2) The TRItissue-model is used
to generate a tissue segmentation map. 3) The urothelium regions are used to create a urothelium discriminative mask. 4) Using the urothelium mask,
triplets consisting of tiles from three magnification levels are extracted from the input WSI. 5) The urothelium triplets are fed sequentially to the
TRIWHO04-model, which outputs a probabilistic score for the two classes, low- and high-grade carcinoma. Output) The system will output a WHO04 grade
heatmap and a slide-level WHO04 prediction.

removed from the patient through transurethral resection
of bladder tumor. The data was collected at the University
Hospital of Stavanger, Norway, in the period 2002-2011.
All non-muscle invasive bladder cancers are included in
the dataset, making it a true population based dataset. The
biopsies were formalin-fixed and paraffin-embedded, from
which 4 µm thick sections were cut and stained with
Hematoxylin, Eosin, and Saffron (HES).

The slides were diagnosed and graded according to
WHO73 and WHO04 [30]. All slides have the label low-
grade or high-grade in the WHO04 system. In addition,
cancer stage and follow-up data on recurrence and disease
progression are recorded, and all patients have stage Ta or T1,
i.e., non-muscle invasive. We have, however, no annotated
regions with healthy non-cancerous urothelium available.
All WSI have gone through a manual quality check at
the department of pathology, Stavanger University Hospital,
and only high-quality slides, with little or no blur, have
been included in the dataset. However, as mentioned,
NMIBC is removed by cauterization, which will leave
burned and damaged tissue areas. All WSI are from the
same laboratory, and the variation in staining color is rela-
tively low. Ethical approval from Regional Committees for
Medical and Health Research Ethics (REC), Norway, ref.no.:
2011/1539, regulated according to the Norwegian Health
Research Act.

The glass slides were digitized using a Leica SCN400 slide
scanner, producing WSI images in the vendor-specific scn
file format. These WSI images are gigapixel images with a
typical resolution of 100 000 × 100 000 pixels, stored as a
pyramidal tiled image with several down-sampled versions
of the base image in the same file to accommodate for rapid
panning and zooming. The pyramidal structure of the WSI
is depicted in Fig. 2. The Vips library [31] can extract the
base image and the down-sampled versions, making it easy
to extract the dataset at each resolution.

Tiles are extracted from the image pyramid at levels
corresponding to 25x, 100x and 400x magnification, which
is equivalent to a spatial resolution of 4µm/pixel, 1µm/pixel
and 0.25 µm/pixel, respectively. For the TRItissue-model,
we used a tile size of 128 × 128 pixels, which for the three
magnification levels correspond to (512 µm × 512 µm),
(128 µm × 128 µm), and (32 µm × 32 µm). For the
TRIWHO04-model, we had access to a much larger library of
WSIs, and thus a larger tile size of 256 × 256 pixels was
chosen. For the three magnification levels, this corresponds
to (1 024 µm × 1 024 µm), (256 µm × 256 µm), and
(64 µm × 64 µm).
The 300 WSIs included in this study were split into

220/30/50 WSIs for training, validation, and testing, respec-
tively. Demographic characteristics of the data material were
not used when splitting the data material into the different
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FIGURE 5. Architecture of the TRIWHO04-model. Three separate VGG16 networks are used to extract features from each magnification scale. The
global average pooling layer (GAP) is used to flatten the features into feature vectors, which are concatenated. The classification network consists
of fully-connected layers and dropout layers. The output uses a softmax activation function to predict the input tiles to the two classes, low-grade
and high-grade carcinoma.

datasets. Instead, the WSIs were randomly selected and
stratified to include the same ratio of all diagnostic outcomes
based on theWHO73 andWHO04 grading, stage, recurrence,
and disease progression, to represent the data material best.
The distribution of low- and high-gradeWSIs in each dataset,
as well as the number of triplets in the validation and test set,
can be seen in Table 1.

The 50 WSIs in the test set will use the slide-level label as
ground truth to evaluate the TRIWHO04-model. In addition,
a pathologist has carefully annotated low- and high-grade
regions in 14 of the 50 WSIs. The 14 WSIs are a sub-set of
the test set and are referred to as the segmentation test set and
will be used to evaluate the low- and high-grade segmentation
performance of the best TRIWHO04-model.
From the 220 WSIs used for training, five datasets were

extracted with a different number of triplets extracted from
eachWSI. A set of N triplets was selected randomly from the
predicted urothelium regions in each WSI, where N was set
to 250, 500, 1 000, 3 000, and 5 000.

Some of the WSIs in the data material contain only
small amounts of urothelium, either because the tissue
sample itself is small or because most of the tissue
sample consists of damaged tissue or other tissue classes.
For these WSIs, an augmentation strategy was employed,
where a randomly selected set of triplets were augmented.
The aim of this process is for each WSI to contribute
equally, or as close as possible, to the number of triplets
specified by N . Augmentation was performed by rotation
and vertical/horizontal mirroring of the individual tiles in the
triplet. All tiles in the triplet were augmented in the same
manner. By combining rotation and mirroring, a tile can be
oriented in eight uniquely defined ways, making this the
maximum number a particular tile can be augmented. For
N ≥ 1 000, some WSIs did not reach the desired number
of triplets, even with 8x augmentation. No augmentation was
performed on the validation or test datasets. Table 2 shows a
list of total triplets extracted, before and after augmentation,
for each value of N .
Fig. 3 shows a region from oneWSI with the extracted tiles

superimposed. The semi-transparent purple color indicates
the predicted urothelium region. From this region, N
randomly selected tiles are extracted as indicated by the red

tiles on the image. As N increase, the density of extracted
tiles also increases. Also, note that only the tile extracted at
magnification level 400x is visualized in the figure. At each
tile position, tiles from all three magnification levels (25x,
100x, and 400x) are extracted in such a manner that the
center position of each tile corresponds to the same physical
location, as illustrated in Fig. 2.

For preprocessing, all pixel intensity values were normal-
ized from 0-255 values into 0-1 values, and the order of the
color channels was altered from RGB to BGR. These steps
ensure that the input data is presented to the VGG16 network
in the same fashion as when it was pre-trained on the
ImageNet data. No stain normalization was performed on the
extracted tiles.

Our data material contains slide-level diagnostic informa-
tion; however, no location annotations exist, showing where
in theWSI the low- or high-grade regions are found, except on
our segmentation test set, as explained. As manual annotation
is time-consuming, expensive, and requires expert input, it is
not feasible to get this type of detailed annotations on large
datasets as needed for training such models, particularly
considering both the size of eachWSI and the total number of
WSIs in the data material. Instead, each extracted tile inherits
the slide-level WHO04 grade as its label. This is not ideal,
as high-grade slides may contain regions with low-grade tis-
sue. Consequently, all the extracted datasets are thus regarded
as weakly labeled due to the inaccurate labels, which is
consistent with what is called a weak label in many tasks [32].
The segmentation test set is considered strongly labeled.

B. PROPOSED SYSTEM
We propose a pipeline, called TRIgrade, that takes a
WSI as input and outputs a tissue segmentation map,
a WHO04 grading heatmap, and a slide-level WHO04
grade prediction. The pipeline consists of two main models,
denoted as TRItissue-model and TRIWHO04-model. The task
of the TRItissue-model is to classify an input triplet as a tissue
type which then can be used to make a tissue segmentation
map. The task of the TRIWHO04-model is predicting the
cancer grade, i.e., low- or high-grade, based on the urothelium
tissue. The TRIgrade pipeline is depicted in Fig. 4 and
explained in detail below.
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Algorithm 1 Find Optimal Threshold Value Dt

Initialize: Y , Ŷ ,R, Dcbest are empty lists
Initialize: Accmax = 0
for WSI ← training set do
Feed WSI through pipeline in Fig. 4
Rhigh = 1

|T |
∑|T |

i=1 ci
Append Rhigh to the listR
Append the true grade Y of WSI to the list Y

end for
for Dc← 0 to 50 do
for Rhigh←R do

Ŷ =
{
High-grade, if Rhigh ≥ Dc
Low-grade, otherwise

Append the slide-level prediction Ŷ to the list Ŷ
end for
AccDc = sklearn.metrics.accuracy_score(Y , Ŷ)
if AccDc > Accmax then
Accmax ← AccDc
Clear list Dcbest

end if
if AccDc ≥ Accmax then
Append Dc to list Dcbest

end if
end for
Dt = d 1

|Dcbest |

∑
Dcbest e

1) TRIgrade PIPELINE
The TRIgrade pipeline depicted in Fig. 4 contains five steps
explained here. The input to the pipeline consists of a WSI
file in the vendor-specific.scn file format. First, in step 1,
a foreground discriminative mask is found on the 400x level
by evaluating the pixel intensity values as grey background
or not. Using the foreground mask as reference, tiles with
dimension 128 × 128 pixels were extracted from the WSI
with 87.5% overlap, resulting in the inner 16 × 16 pixels
being classified for each tile. Three tiles were extracted in
the WSI (25x, 100x, and 400x) for each location, forming
a triplet. All tiles in each triplet have the same dimension
of 128× 128 pixels and are extracted such as the center point
corresponds to the same physical location in the WSI for all
three tiles, as shown in Fig. 2.

In step 2, triplets are sequentially fed into the TRItissue-
model we proposed in Wetteland et al. [13]. This model will
evaluate the triplets and predict which of the six tissue
classes (urothelium, stroma, muscle, blood, damaged tissue,
and background) the current triplet belongs. In our case,
the class of damaged tissue is a collection of all tissue that
is not one of the other classes, and in our dataset, this is
mainly cauterized or torn tissue areas. If blurred regions are
a problem in the dataset, this can be made as a separate
class or included in the damaged tissue class. After predicting
all triplets, a segmented tissue map is created, visualizing
all tissue regions in the WSI. This tissue map can also be
presented to the clinician to help guide them more efficiently
to the specific tissue types in the WSI.

From the generated tissue map, all urothelium regions are
extracted in step 3. Small regions are filtered to suppress
noise, and a urothelium discriminative mask is created on
the 400x level. In step 4, a grid of non-overlapping tiles is
overlayed on the WSI at the 400x level, this time using tiles
of dimension 256 × 256 pixels. The individual tiles in the
grid are checked against the discrimination mask. If 80% or
more of a tile lay within the discriminate mask, the position
is saved, while the remaining tiles are discarded. For the
validation and test sets, triplets from all the saved positions
are extracted. Whereas for the training set, N randomly
selected triplets are extracted from the saved positions, where
training sets are formed with N set to 250, 500, 1 000,
3 000, and 5 000. If fewer than N positions are saved,
the augmentation strategy explained in the data material
section is employed. The total number of extracted triplets
for each dataset is shown in Tables 1 and 2.

A comprehensive description of how triplets are extracted
from the WSI is given in Wetteland et al. [33], where a
parameterized method for extracting tiles in multilevel
images is given. The parameters used in this paper are the tile
size parameter LT = 256. The overlap-ratio between a tile
and the discriminative mask is set to 80%, which corresponds
to a value of φ = 0.8. Tiles are checked at the 400x level by
setting α = 0, and the corresponding tiles in the triplets are
found at level 25x and 100x, i.e., Sβ = {1, 2}. The binary
mask Bk is set as the urothelium discriminative mask, and the
starting coordinate of the grid is at position (0, 0). With these
parameters and the methods described in [33], extraction of
the triplets in the WSIs is repeatable and reproducible.

In step 5, the extracted urothelium triplets are fed to the
TRIWHO04-model, which outputs a probabilistic score for
the two classes, low- and high-grade carcinoma. Finally, all
scores are used to generate a heatmap which is overlayed on
the WSI, and the aggregated micro-predictions are measured
against the decision threshold Dt to get the final slide-level
prediction.

2) MODEL ARCHITECTURE
The proposed pipeline in Fig. 4 contains two CNN-based
models used for different tasks; the TRItissue-model is used for
tissue classification and the TRIWHO04-model for grading of
urothelium tissue. The models are built upon the same archi-
tecture but have different inputs and outputs. The architecture
consists of three separate VGG16 networks, one for each
input scale. Both the model architecture and the TRI-
terminology comes from our previous work on the tissue
model in Wetteland et al. [13].

The input to the TRItissue-model is a triplet consisting of
three 128× 128 pixel tiles (25x, 100x, and 400x). The model
can predict triplets extracted from anywhere in the WSI, but
a foreground discriminative mask is usually used to save pro-
cessing time by removing the background. The output of the
TRItissue-model is a probability distribution over the six pre-
dicted classes (urothelium, stroma, muscle, blood, damaged
tissue, and background). The input to the TRIWHO04-model
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is a triplet consisting of three 256 × 256 pixel tiles
(25x, 100x, and 400x) extracted from urothelium tissue
regions. The model outputs a probability distribution over
the two predicted classes, low- and high-grade carcinoma.
A block diagram of the TRIWHO04-model architecture is
depicted in Fig. 5. The TRItissue-model has almost the same
architecture but has six output classes instead of two.

The individual tiles in the input triplet are fed to separate
VGG16 networks. The VGG16 networks are used as base
models with weights pre-trained on the ImageNet dataset,
a large dataset containing annotated photographs used for
computer vision research. Each VGG16 network acts as a
feature extractor and takes a high dimensional tile as input
(128 × 128 × 3 or 256 × 256 × 3 pixels) and compresses it
down to a feature volume (8 × 8 × 512). A global average
pooling (GAP) layer is used as the output layer for each
VGG16 network, transforming the feature volume into a
feature vector of length 512. The three feature vectors, one
for each scale, are concatenated into one final feature vector
of length 1 536 and fed to the classification network.

The classification network consists of two fully-connected
(FC) layers using a rectified linear unit (ReLU) activation
function, each followed by a dropout layer for regularisation.
Lastly, an output layer with a softmax activation function
is used to provide the prediction of the model. The two
FC-layers and the two dropout layers each have a dimension
of 4 096 neurons, and the output layer has one output
neuron for each class. The TRIWHO04-model consists of 67M
parameters, where 23M of the parameters are trainable
parameters belonging to the classification network.

3) TILE-LEVEL PREDICTION
When a triplet Ti is fed to the TRIWHO04-model, the model
outputs a list of probabilities for the two classes, low-
and high-grade. These probabilities are denoted as [pil, p

i
h].

To find the class with the largest predicted probability,
the argmax function is used.

ci = argmax([pil, p
i
h]) (1)

where ci is the index to the predicted class for the triplet at
position Ti. The low-grade class has an index of 0, and the
high-grade class has an index of 1.

The proposed system can also produce a heatmap from the
individual triplet probabilities, which indicates the location of
low- and high-grade regions. This is useful for pathologists
who can focus their limited per-patient investigation time on
the diagnostic relevant areas in the WSI. A color mapping
function converts the high-grade probability pih into a color
based on its value. This color is then superimposed on the
WSI at the current triplet’s position, covering the same area
as the 400x magnification tile in the triplet. This results in
the heatmap, as seen in the bottom-right of Fig. 4. Only
the model’s probabilistic score for the high-grade class is
used to generate the heatmaps. However, because there are
only two classes, a low probabilistic score of the high-grade
class implicitly means a high score for the low-grade class.

I.e., red highlighted regions in the heatmaps are associated
with the high-grade class, and blue highlights indicate the
low-grade class.

4) SLIDE-LEVEL PREDICTION
In addition to predicting the individual triplets, we also output
a WHO04 slide-level prediction. A pathologist will often
assign the worst case to a slide during a clinical examination,
meaning that if a high-grade region exists in the WSI,
theWHO04 grading should be high-grade. However, wemust
assume some misclassification in the WSI from both the
TRItissue-model and TRIWHO04-model, so there must be a
minimum amount of high-grade triplets before the slide-level
prediction becomes high-grade, and we would like to find a
decision threshold, Dt , which maximizes correct prediction
of the WSIs.

By summing over ci, the number of triplets predicted as
high-grade is counted, since triplets predicted as low-grade
is at index 0 and thus not adding to the sum. By dividing by
the total number of triplets in the WSI, we get the ratio of
high-grade triplets referred to as Rhigh in this paper:

Rhigh =
1
|T |

|T |∑
i=1

ci (2)

If Rhigh exceeds the decision thresholdDt , the slide is given
the slide-level prediction of high-grade; else, it is considered
low-grade.

Ŷ =

{
High-grade, if Rhigh ≥ Dt
Low-grade, otherwise

(3)

Algorithm 1 describes how to find the optimal threshold
value Dt . Y is considered the ground truth grading of a slide
and consists of a single value, whereas Y is a list of all the
ground truth values. The same holds for Ŷ and Ŷ , which holds
a single slide-level prediction and a list of all the predictions,
respectively. First, all WSIs are processed, and the ratio Rhigh
for each WSI is appended to the list R. The true grade Y
of each WSI is also saved in the list Y . All WSIs in the
dataset are processed before proceeding to the next step. A set
of candidate threshold values, Dc, between 0-50% are tested
one at a time. For each candidate threshold, the slide-level
prediction Ŷ for all WSIs is saved to the list Ŷ . The total
accuracy score is then calculated for the dataset. The decision
threshold Dt is chosen as the candidate threshold with the
highest score, or, if more than one Dc value yielded the same
maximum result, the average integer value is selected as the
decision threshold Dt .

5) TRAINING PARAMETERS
The TRIWHO04-model was trained using a stochastic gradient
descent (SGD) optimizer with a learning rate of 1 × 10-3,
learning rate decay of 1 × 10-6, and momentum set to 0.9.
The batch size used during training was set to 128. Both
dropout layers had a dropout rate of 0.5. The cross-entropy
loss function was used to optimize the model during training.
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TABLE 3. Slide-level prediction results for automatic WHO04 grading tested on the 50 WSIs of the test set. Precision, recall, and F1-score is the weighted
average score for the two classes across all 50 WSIs in the test set. Dt is the decision threshold found using Algorithm 1. The column trained epochs show
how many epochs each model was trained before the early stopping criteria were reached. Training times are shown as hours:minutes.

The pre-trained weights of the VGG16 networks were held
frozen during training. To avoid overfitting the models on the
training set, an early-stopping rule monitored the validation
loss and stopped the training when no improvements were
seen for ten epochs. The best epoch was restored when testing
the models on the test set.

To train the models, a program was written in Python
3.6 using Keras 2.2.4 together with the Tensorflow 1.14 as
backend [34], [35]. The PyVips 2.1 library was used for han-
dling the WSI [31], and Scikit-learn 0.19 for evaluation [36].
The models were training on a Ubuntu 18.04 server, running
on dual Xeon E5-2650 v5 @ 2.2GHz with a total of 48 cores.
An Nvidia Tesla P100 16GB GPU was used for the training.
Training parameters for the TRItissue-model can be found in
Wetteland et al. [13].

III. EXPERIMENTS
We have conducted two experiments, listed here.
Experiment 1: is for slide-level prediction ofWHO04 grade

and is tested on the test set of 50 WSIs. As training of the
TRIWHO04-model is very time-consuming, we wanted to see
if it is preferable to utilize more of the available urothelium
data from each WSI as training data at the cost of additional
training time or if a smaller dataset could perform equally
well. This is interesting, both for our research group as
well as other researchers working with large WSI datasets.
If the optimal number of tiles used from each WSI during
training can be lowered, then time can be saved in future
experiments. To investigate this, we created several datasets
where we extracted N triplets per WSI, as shown in Table 2.
In this experiment, ten versions of the TRIWHO04-model,
all with the same architecture, were trained on training sets
of various sizes, listed in Table 2. The micro predictions
from the individual triplets were aggregated into a slide-level
prediction of the WHO04 grading. A decision threshold Dt
was found for eachmodel using Algorithm 1; then, equation 3
was used to provide the final predicted grade.
Experiment 2: is testing the tile-level prediction and

compare that in detail with the 14 WSIs of the segmentation
test set. This set contains pathologist annotated regions
belonging to either low- or high-grade which are considered
the ground truth. The best model from experiment 1 is used

for this, and the model’s performance will be visualized
as heatmaps. Calculation of recall and F1-score will be
presented for each WSI, in addition to a total score across
all WSIs.

IV. RESULTS
In experiment 1, slide-level test results for the ten models
are listed in Table 3, showing trained epochs, time, precision,
recall, F1-score, and the threshold value Dt . For precision,
recall, and F1-score, the weighted average score is presented
as reported by the classification report function from the
scikit-learn library [36].

For experiment 2, the TRIWHO04-5000-AUG model was
used, as it performed best in experiment 1. The predicted
heatmaps for each WSI in the segmentation test set are
shown in Fig. 6 together with the ground truth. Recall, and
F1-score for each WSI is listed in Table 4. As each ground
truth WSIs only contain annotations for one of the two
classes, the precision score will always be 1.00 because
whenever the model predicts the ground truth class, it will
be correct. The precision column in Table 4 is thus discarded.
The last row in Table 4 shows the average value of all scores
for each class together with the standard deviation. Table 5
shows the total aggregated results for all 14 WSIs. Here,
the predictions for all WSIs are accumulated before the score
is calculated.

A slide-level comparison between the proposed TRIgrade
system and the model presented in Jansen et al. [22] is shown
in Table 6. The TRIgrade system consists of the TRItissue-
model followed by the TRIWHO04-5000-AUG model. Values
for sensitivity, specificity, and accuracy are shown for easier
comparison with the reported results from [22]. These values
are unweighted and calculated using values for true positive
(TP), true negative (TN), false positive (FP), and false
negative (FN). Note that these results are based on models
trained and evaluated on different datasets.

V. DISCUSSION
The three VGG16 networks are identical copies as we have
used frozen (pre-trained) weights in this work. Thus, it would
be possible to use only one copy of the model, with the
appropriate change in the architecture, keeping in mind that
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TABLE 4. Tile-level prediction for each individual WSI in the
segmentation test set, using the TRIWHO04-5000-AUG model. The WSI
numbering is referring to the WSIs in Fig. 6. The last row shows the
average value and standard deviation for its respective column.

the feature vectors from the different magnifications are
concatenated before the classification network. However,
utilizing three versions of the VGG16 network allows us
to train the entire multiscale model end-to-end and allows
unfreezing the weights if a larger training set is available.
We have experimented with unfreezing weights, but we
quickly get overfitting problems with the available data
material, this is therefore omitted from the paper.

Experiment 1 was conducted using ten training sets with a
different number of triplets extracted from the same 220WSI.
From the result in Table 3, we see that the best performing
model is trained on the largest dataset. However, the other
models are not far behind. Even with a small value of
N , the models do a good job at correctly predicting the
WHO04 grade of WSIs.

Regarding overfitting, we tried training the models using
unfrozen weights in the VGG16 networks, but this led
to instantaneous overfitting of the model and had no
improvements on the validation set. However, by freezing the
weights, we see that all models improve on the validation
dataset before reaching a plateau and eventually triggering the
early stopping trigger. E.g., as shown in Fig. 7, the best model,
TRIWHO04-5000-AUG, improved its performance for seven
epochs before training stopped after epoch 17. The weights
from epoch seven were restored when using the model on
the test sets. The number of trained epochs before the early
stopping criteria is triggered decreases as the training dataset
increases. This can be explained by the models trained on
the larger datasets having more parameter updates per epoch
than that of the smaller dataset models, thus reaching the
plateau faster. Similarly, we see that the duration of one epoch
is increasing as the dataset size increases. There is about
a 60-hour difference in the smallest and largest model by
comparing the total training time. Even though we would
advise utilizing the most data to train a production model,
it could be helpful to do an extended hyperparameter search
and train multiple models on a smaller dataset.

TABLE 5. Aggregated tile-level result for all WSIs in the segmentation test
set using the TRIWHO04-5000-AUG model.

TABLE 6. Comparison table for automatic slide-level grading between
our proposed method and the method presented in Jansen et al. [22].
Note that these results are based on models trained and evaluated on
different datasets.

Experiment 2, tile-level prediction, was conducted using
the TRIWHO04-5000-AUGmodel, which had a slide-level F1-
score of 0.90. As seen in Fig. 6, Table 4 and 5, the results are
overall excellent. The model does a very good job at correctly
identifying both the low-grade and high-grade regions in the
different WSIs. Table 4 shows that the model achieved an
average F1-score of 91% for both the low-grade and high-
grade classes. The aggregated score for all WSIs in Table 5
shows a small decrease in performance, with an F1-score
of 81% and 85% for the two classes, respectively.

The largest misclassification in Fig. 6 is one of the regions
inWSI-N,where the ground truth is high-grade, but themodel
predicts low-grade. When reevaluated by the pathologist,
the misclassified area was found to be heterogenous, showing
mixed low- and high-grade features, consequently regarded
as high-grade initially. This illustrates one of the challenges
with automatic grading of urothelial carcinoma, that grading
between low- and high-grade is not two distinct binary classes
but rather a continuous spectrum with a floating transition,
making it difficult to set a hard threshold between the two.

To correct suchmisclassifications, and also avoid the costly
task of annotating a large dataset, one possible solution is
human-assisted learning. For example, the proposed TRIgrade
system could be used to find and predict urothelium regions
into the low-grade and high-grade classes, e.g., like the
regions seen in Fig. 6. Then, a pathologist could verify the
regions in each WSI and correct misclassified regions. This
way, a large, strongly labeled dataset could be created, and
the TRIWHO04-model could be fine-tuned on the new dataset.

A direct comparison of results with others reported in
the literature is not straightforward, as the experiments per-
formed in this paper are conducted on a private dataset, which
is often the case in many medical applications. To our knowl-
edge, there exists no publically available NMIBC dataset or
any publically available models from other researchers that
we can evaluate on our dataset. The work of Jansen et al. [22]
is based on the same labels but evaluated on a private dataset
using different methods. Unfortunately, their models are not
available for us to evaluate, and we do not have access to
labels to train a Unet segmentation model from scratch, hence
we cannot test the same approach by training the models
ourselves. However, even though the dataset or model used in
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FIGURE 6. Ground truth annotations vs. model prediction. The WSI with a black background is the ground truth images with low- and
high-grade annotations. The WSI with a grey background has superimposed a heatmap from the same area as the ground truth and
highlights the predictions from the TRIWHO04-model. For quantitative results, see Table 4 and 5.

Jansen et al. [22] are not publically available, a comparison
is still included as both research results are based on an
NMIBC dataset of similar size (328 WSIs from 232 patients
vs. our dataset of 300 WSIs), a similar split of the dataset
into training, validation, and test, and the use of the same
labels (WHO04). The results in Table 6 compare the slide-
level sensitivity, specificity, and accuracy for our proposed
TRIgrade pipeline, to the results reported in table 3 from [22].
We achieve better results on all metrics, and with 45 of the
50 WSIs correctly predicted, we achieve an accuracy of 0.90.

Training and validation accuracy from the training of the
TRIWHO04-5000-AUG model is shown in Fig. 7. The model
uses frozen pre-trained weights for the VGG16 networks,
and only the last layers in the model have random weights
which are being optimized. The model uses the largest
training dataset from Table 2 with a mini-batch size of 128,
resulting in a large number of weight updates per epoch,
and the majority of the accuracy is achieved from the first
epoch. After the initial epoch, the validation accuracy is
not improving too much. This is most likely because the
datasets use imprecise weak labels (e.g., all urothelium
triplets extracted from a high-grade WSI will have the class
label high-grade, but not all triplets from this WSI will
represent high-grade tissue). Note also that all the urothelium
triplets from all the WSIs in the validation set are predicted
before Tensorflow computes the accuracy score for the
validation set.

A. USAGE SCENARIOS
The automatic TRIgrade system presented in this paper has
many potential applications. The tissue model we presented
in Wetteland et al. [13] provides the tissue segmentation
maps, which clinicians can use to discriminate urothelium
regions from other tissue classes. This can be a valuable tool
to aid pathologists in examining the whole-slide images by
focusing their attention on the diagnostic relevant areas of
the stained specimen. With the addition of the TRIWHO04-
model presented in this paper, the focus can not only be aimed
towards the urothelium regions in general but be further
narrowed down to the most severe urothelium regions.

The automated slide-level prediction can potentially be
used to prioritize high-grade patients for earlier examination.
Also, it can be used as input to an automatic prognostic tool
and output ameasure of the patient’s overall clinical outcome,
such as the risk of recurrence, 1-yr and 5-yr survival rate, and
mortality. In the future, it is also a possibility to use it in an
automatic system that predicts how a patient will respond to
a given treatment and therapy program.

B. LIMITATIONS
In the paper, we train a model to classify urothelium tissue
into two classes, low- and high-grade carcinoma. However,
it is also a possibility that the urothelium tissue can be healthy
non-cancerous tissue. Since our models are dependent on the
weak slide-level label, and all cases in the data material are
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FIGURE 7. Training and validation accuracy for the TRIWHO04-5000-AUG
model. The model is trained on imprecise weak labels, using the largest
training set in Table 2. Results are shown for tile-level prediction on the
entire training and validation sets. Validation accuracy is computed at the
end of each epoch.

diagnosed with cancer, we currently do not have any training
material containing non-cancerous samples.

All WSIs in this study are collected from the same
laboratory and consists of high quality with relatively small
variations in stain colors and little blur. This is both a strength
in the sense that we have produced good models and reliable
predictions, but also a limitation in the sense that we do not
know how the system will perform on slides of lower quality.

C. FUTURE WORK
In future work, preprocessing steps might be added to deal
with color variations, blur, and folded tissue, or the tissue
segmentation model can be updated with a new class for blur,
providing a more generalized system.

From [13] it was concluded that for the tissue segmentation
task, the multiscale TRI-25x-100x-400x model (which is
used as the TRItissue-model in this work) provided the best
performance. Following, a multiscale model was adopted
for the grading task as well, with the masking of the
urothelium tissue performed at the 400x level. However,
the large field-of-view provided by the 25x and 100x
magnification will bring neighboring tissue types into the
triplet, like, for example, damaged tissue, which might affect
the performance in such areas. In future work, we would
like to use the tissue segmentation maps and not only extract
the urothelium tissue but also mask out unwanted regions of
damaged tissue and blood. Incorporating attention modules is
also something we will try, which would further help explain
what parts of the WSI are responsible for the predictions.

Cells of low-grade cancer often resemble that of non-
cancerous cells, and high-grade cells have a more abnormal
appearance and are disorganized. Thus, we expect that non-
cancerous tissue would be predicted as low-grade carcinoma.
However, this is our expectation as we do not have verified
material to test this on. To better detect these non-cancerous
regions in the future, we would have to expand our training
dataset to include examples of non-cancerous urothelium.
The TRIWHO04-model architecture must be updated to
include one additional class on the output and then be trained
on the updated dataset.

The proposed model uses three VGG16 networks as
feature extractors. In the future, we would like to experiment
with other deep learning networks for our base model.
Newer deep learningmodels continuously improve the results
on datasets like ImageNet, and could potentially improve
feature extraction of urothelium tissue. We also plan to look
into different ways of fusing the multiscale information,
both for the tissue classifier (TRItissue) and grade-classifier
(TRIWHO04).

VI. CONCLUSION
In this paper, we have proposed a TRIgrade pipeline for
automatic grading of urothelial carcinoma slides based on
the WHO04 grading system. First, the slide is segmented
into the tissue classes (urothelium, stroma, muscle, blood,
damaged tissue, and background). Next, tiles are extracted
at three magnification levels (25x, 100x, and 400x) from the
urothelium regions. The three tiles form a triplet, which is
fed sequentially to a multiscale CNN-based WHO04 grading
model.

The proposed method will generate a tissue segmentation
map, helpful for the clinicians to easier find diagnostic
relevant regions during an examination. The system will also
output aWHO04 grade heatmap, highlighting themost severe
urothelium tissue regions, beneficial for the pathologists who
can focus their limited per-patient time on the most important
regions in the WSI. Finally, the system produces a slide-level
WHO04 grade that could potentially be used to prioritize
high-grade patients for earlier examination, as well as suggest
the diagnosis to the pathologist.

Ten WHO04 grade models were trained on datasets of
varying sizes. Note that all the same number of WSI were
used all the time, but a different number of triplets were
extracted from each WSI, constituting the training set. The
model trained on the largest training dataset achieved the
best result, a weighted average F1-score of 0.90 on the test
set. This model was further evaluated on a segmentation test
set, where low- and high-grade regions were annotated by a
pathologist. On this task, the model got an average F1-score
of 0.91 on both the low-grade and high-grade classes.

The system as a whole can be used by clinicians and
pathologists to potentially improve their decision-making
and further help patients by receiving correct diagnoses and
treatment.
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Abstract

Background: European treatment guidelines for pTa and pT1 urinary bladder urothelial carcinoma depend highly
on stage and WHO-grade. Both the WHO73 and the WHO04 grading systems show some intra- and interobserver
variability. The current pilot study investigates which histopathological features are especially sensitive for this
undesired lack of reproducibility and the influence on prognostic value.

Methods: Thirty-eight cases of primary non-muscle invasive urothelial carcinomas, including thirteen cases with
stage progression, were reviewed by three pathologists. Thirteen microscopic features were extracted from
pathology textbooks and evaluated separately. Reproducibility was measured using Gwet’s agreement coefficients.
Prognostic ability regarding progression was estimated by the area under curve (AUC) of the receiver operating
characteristics (ROC) function.

Results: The best reproducible features (Gwet’s agreement coefficient above 0.60) were papillary architecture,
nuclear polarity, cellular maturation, nuclear enlargement and giant nuclei. Nucleoli was the strongest prognostic
feature, and the only feature with an AUC above 0.70 for both grading systems, but reproducibility was not among
the strongest. Nuclear polarity also had prognostic value with an AUC of 0.70 and 0.67 for the WHO73 and WHO04,
respectively. The other features did not have significant prognostic value.

Conclusions: The reproducibility of the histopathological features of the different WHO grading systems varied
considerably. Of all the features evaluated, only nuclear polarity was both prognostic and significantly reproducible.
Further validation studies are needed on these features to improve grading of urothelial carcinomas.

Keywords: Papillary urothelial carcinoma, Grading, Reproducibility, Prognosis

Background
Bladder cancer is the ninth most frequently diagnosed
cancer worldwide. The incidence is highest in developed
countries, and is the fourth most common cancer among
men in Norway [1, 2]. Urothelial carcinoma accounts for
about 90% of bladder cancers in industrialized countries

[3], and 70–80% of these are non-muscle-invasive blad-
der cancers (NMIBC), pTa, pT1 or pTis, on first diagno-
sis. Among these 50–70% will recur, while only 15–25%
will progress to a higher stage [4]. The follow-up of
these patients is labor-intensive [5, 6], causing massive
costs for the health care systems [7].
Papillary urothelial carcinomas are the most frequent

in western countries and are graded based on the degree
of anaplasia. In 1973 the World Health Organization
(WHO) introduced a classification system, in which pap-
illary carcinomas were divided into three groups; grades
1, 2 and 3 (WHO73). A new classification system was
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introduced in the 2004 WHO Classification of tumours
of the urinary system (“blue book”), following an Inter-
national Society of Urological Pathology (ISUP) consen-
sus conference in 1998 (WHO04). This grading system
is maintained in the 4th.edition, 2016, of the WHO blue
book. Currently, both systems are being used in routine
diagnostics at pathology departments around the world
[8]. The WHO04 classification system divided the papil-
lary urothelial tumours into papillary urothelial neo-
plasm of low malignant potential (PUNLMP), low and
high grade carcinomas. The histologic features are de-
scribed in detail, aiming to improve reproducibility.
However, several studies have shown considerable inter-
observer variability for both classification systems [9–
11]. In a recent review Soukup et al. [12] conclude, on
behalf of the European Association of Urology (EAU),
that the “Current grading classifications in NMIBC are
suboptimal”, both with regards to reproducibility (poor
to fair) and with regards to prognostication.
Grading of papillary urothelial carcinomas according

to the WHO73 and the WHO04 classification systems is
based on a variety of histopathological features. How-
ever, these are not necessarily consciously and systemat-
ically analysed one-by-one in a routine diagnostic setting
by diagnostic pathologists. Rather than a time consum-
ing analytical approach, many pathologists make a first-
glance low-magnification diagnosis, and zoom in on spe-
cial areas or features to get their diagnosis confirmed.
This is a quick, time-effective method but a drawback is
lack of reproducibility, with classification shifts from one
to other grades and hence prognostic variation as well.
The aim of this pilot study was to systematically ana-

lyse the reproducibility and prognostic value of each of
the microscopic features. As far as we know, this has not
been done before; although previous work on mitotic ac-
tivity in urothelial carcinoma has found mitosis to be a
prognostic factor [13, 14].

Methods
The study was approved by the Norwegian Regional Eth-
ics Committee (#106/09). All patients with a primary
non-muscle-invasive papillary urothelial carcinoma, at
Stavanger University Hospital (SUH) from January 2002
to January 2007 were investigated (N = 228). All patients
with urothelial carcinoma outside the urinary bladder
(except for those with tumour in the pericollicular area
in the urethra) were excluded. Thirty-five cases were ex-
cluded because of inadequate sample quality (necrotic
tumour, fragmentation, thermal damage and insufficient
material), leaving a total of 185 patients. Of these, 13 pa-
tients had stage progression; 12 within 5 years, and one
after 5 years and 1 month.
In this pilot study we selected a group of 38 patients,

including the 13 with progression and 25 without

progression. Among the 13 patients with progression 10
were high grade and 3 were low grade according to
WHO04. Patients without progression were randomly
selected from the remaining 172 patients. There were no
statistical significant differences between the grade, age,
sex, recurrence or follow-up time of the selected 25 and
the other 147 patients without progression.
Tumour tissue was obtained by transurethral resection

or biopsy. Tissue was fixed in 4% buffered formaldehyde,
dehydrated and embedded in paraffin. For microscopic
evaluation four μm thick sections stained with haema-
toxylin-eosin-saffron (HES) were used.
The patients were treated according to the national

guidelines at the time of diagnoses. The treatment con-
sisted of transurethral resection (TUR), followed by a
single instillation of a cytotoxic agent (epirubicin hydro-
chloride). Most patients defined as high risk patients
were offered regular instillations with Bacillus Calmette
Guérin (BCG), but some were offered alternative treat-
ment with regular instillations containing a combination
of epirubicin hydrochloride and interferon alpha. High
risk patients included stage T1, grade 3 (WHO73), con-
current or later carcinoma in situ (pTis), three or more
separate tumours diagnosed within 18 months or recur-
rences at multiple sites at first or second follow-up. Pro-
vided that the first follow-up cystoscopy was negative,
patients with Ta grade 1 tumours would undergo con-
trol cystoscopies 3 months after initial diagnosis, 9
months later, and then annually for 5 years. All other pa-
tients would have cystoscopies every 3 months for the
first 2 years, every 4 months for the 3rd year, every 6
month the 4th and 5th years, followed by annual cystos-
copies thereafter.
Follow-up data were retrieved from the medical- and

laboratory records at SUH. We defined progression as
any advance in TNM stage, including both from pTa to
pT1 or to pT2, and from pT1 to pT2. Progression to
muscle invasive disease is clinically most relevant due to
major differences in therapy. We also included cases
with progression from pTa to pT1 as these tumours
have gained the capability to infiltrate the stroma, a basic
trait for progression.
The histopathological features constituting the grading

systems were derived from urological pathology text-
books [15–17]. A list of the microscopic features and
their interpretation, both for WHO73 and WHO04, is
shown in Table 1. We extracted 13 features: papillae
architecture, superficial layer, papillary fusion, nuclear
polarity, cell maturation, cohesion, mitoses, nuclear en-
largement, nuclear shape, nuclear hyperchromasia, chro-
matin pattern, nucleoli and giant nuclei.
All specimens were evaluated by three pathologists, fo-

cusing on grading criteria of the individual features, one
at a time, for both WHO73 and WHO04. In tumours
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with morphological heterogeneity the “worst” area was
graded. The evaluations were done without any know-
ledge about the original diagnosis or the other patholo-
gists’ results. At a later stage, all three pathologists
contributed to a consensus assessment for all the vari-
ables. Concerning the WHO04, only low grade and high
grade were used as only three cases were classified as
PUNLMP in our original cohort. In a previous study we
found that recurrence and stage progression in the
PUNLMPs and the low grade tumours by univariate sur-
vival analysis on our material were no different [18]. A
later publication by Kim et al. [19] also showed no dif-
ference in progression between PUNLMP and low grade
carcinomas.

Statistics
Reproducibility was measured using Gwet’s AC1 agree-
ment coefficient [20] for features with two categories,
and using Gwet’s AC2 agreement coefficient with quad-
ratic weights for features with > 2 categories [21]. Fleiss’
generalized kappa [22] is also reported for reference;
however, due to its vulnerability to skewed marginal dis-
tributions [23], the focus in this paper is on Gwet’s
agreement coefficients. A coefficient of < 0.2 is defined
as poor agreement, 0.2–0.4 fair agreement, 0.4–0.6 mod-
erate agreement, 0.6–0.8 good agreement and > 0.8 as
very good agreement [24]. Confidence intervals (CIs) for
the reliability measures were based on the normal ap-
proximation [21].

Prognostic ability with regard to progression for the
consensus classification of each feature was estimated by
the area under curve (AUC) of the receiver operating
characteristics (ROC) function, which is reported with a
normal based confidence interval [25]. Statistical analysis
was performed in R version 3.4.0 with syntax provided
at http://www.agreestat.com/r_functions.html (down-
loaded 24.05.2018) and with package pROC [25].

Results
The median age at diagnosis was 72 years (range 56–87).
Thirty patients were male (79%) and eight female (21%)
(M:F ratio = 3.8). Median follow-up time was 73months
(range 5–168). Not all samples were regarded adequate
for assessing all the microscopic features by all three pa-
thologists. These cases were not included in the calcula-
tion of reliability for that particular feature (Table 2). At
the consensus meeting, there was agreement that two
cases could not be used to assess the feature “papillary
fusion”. There were also two cases in which “matur-
ation” could not be reliably assessed, and in one case
“superficial layer” could not be assessed. This left be-
tween 36 to 38 total cases for each of the different
features.
The reproducibility varies among the different micro-

scopic features according to the calculated Gwet’s AC1/2

agreement coefficient (Table 2). The values range from
0.47 for mitosis in the WHO73 system to 0.85 for giant
nuclei. This corresponds to moderate to very good

Table 1 The microscopic features with descriptions for each grade (WHO73/ 04)

WHO73 WHO04

Grade 1 Grade 2 Grade 3 Low grade High grade

Architecture

Papillae Delicate Varies Broad, varies Slender Broad

Superficial layer
(umbrella cell layer)

Usually present Usually present Partially or completely lost Usually present Partially or completely lost

Papillary fusion Some Varies Common Some Varies

Nuclear arrangement

Polarity Preserved Moderate loss Lost Preserved, moderate loss Lost

Maturation Normal Some Lost Preserved, moderate loss Lost

Cohesion Normal Some Lost Some Lost

Proliferation

Mitotic figures Rare, basal Lower half Common, atypical Rare Common

Nuclear atypia

Nuclear enlargement Mild Mild Varies Mild Varies

Nuclear shape Uniform Moderate variation Pleomorphic Moderate variation Pleomorphic

Nuclear hyperchromasia Mild Moderate Varies Mild to moderate Varies

Chromatin pattern Finely granular Granular Coarse Fine Coarse

Nucleoli Occasional Occasional Common Occasional Common

Giant nuclei No No Yes No Yes
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reproducibility. The other features yielded evenly distrib-
uted values, with papillae architecture, nuclear polarity,
cell maturation, nuclear enlargement and giant nuclei as

the most reproducible, all with Gwet’s AC1/2 agreement
coefficient above 0.60 (=good agreement) for both grad-
ing systems. Several of the values have very wide

Table 2 Reproducibility and prognostic value for each of the microscopic characteristics
Feature n* AC1/AC2 (95% CI) Fleiss’ κ (95% CI) n** Consensus grade

(prob. of progression)
AUCROC (95% CI) ***

Papillae73 36 0.62 (0.42 to 0.82) 0.63 (0.45 to 0.82) 38 Delicate (1/10)
Varies (4/11)
Broad, varies (8/17)

0.67 (0.51 to 0.83)

Papilae04 36 0.61 (0.39 to 0.82) 0.59 (0.37 to 0.81) 38 Slender (3/16)
Broad (10/22)

0.64 (0.49 to 0.80)

Superficial layer73/04 36 0.51 (0.30 to 0.73) 0.50 (0.29 to 0.72) 37 Usually present (4/12)
Partially lost (8/25)

0.49 (0.33 to 0.66)

Papillary fusion73 34 0.64 (0.44 to 0.84) 0.67 (0.48 to 0.86) 36 Some (2/13)
Varies (4/9)
Common (7/14)

0.67 (0.50 to 0.84)

Papillary fusion04 34 0.53 (0.32 to 0.75) 0.53 (0.31 to 0.75) 36 Some (4/19)
Varies (8/17)

0.67 (0.51 to 0.84)

Polarity73 38 0.68 (0.53 to 0.82) 0.70 (0.55 to 0.84) 38 Preserved (1/9)
Moderate (4/14)
Lost (8/15)

0.70 (0.54 to 0.86)

Polarity04 38 0.66 (0.47 to 0.86) 0.63 (0.43 to 0.84) 38 Preserved (5/23)
Lost (8/15)

0.67 (0.50 to 0.83)

Maturation73 36 0.60 (0.43 to 0.78) 0.59 (0.42 to 0.76) 36 Normal (1/9)
Some (5/14)
Lost (6/13)

0.66 (0.49 to 0.83)

Maturation04 36 0.62 (0.42 to 0.82) 0.60 (0.40 to 0.81) 36 Some (6/23)
Lost (6/13)

0.60 (0.43 to 0.78)

Cohesion73 37 0.57 (0.42 to 0.71) 0.47 (0.28 to 0.65) 38 Normal (1/12)
Some (9/21)
Lost (3/5)

0.71 (0.56 to 0.85)

Cohesion04 37 0.54 (0.30 to 0.77) 0.23 (−0.02 to 0.47) 38 Some (10/33)
Lost (3/5)

0.58 (0.44 to 0.71)

Mitosis73 38 0.47 (0.23 to 0.71) 0.41 (0.18 to 0.64) 38 Rare, basal (8/31)
Lower half (1/1)
Common, atypical (4/6)

0.65 (0.50 to 0.80)

Mitosis04 38 0.64 (0.43 to 0.85) 0.49 (0.25 to 0.72) 38 Rare (9/32)
Common (4/6)

0.61 (0.47 to 0.76)

Nuclear enlargement73/04 38 0.65 (0.45 to 0.85) 0.65 (0.45 to 0.84) 38 Mild (4/19)
Varies (9/19)

0.65 (0.48 to 0.81)

Nuclear shape73 38 0.58 (0.41 to 0.74) 0.51 (0.32 to 0.69) 38 Uniform (3/10)
Moderate (8/23)
Pleomorphic (2/5)

0.53 (0.36 to 0.71)

Nuclear shape04 38 0.58 (0.34 to 0.81) 0.41 (0.21 to 0.61) 38 Moderate (11/33)
Pleomorphic (2/5)

0.52 (0.40 to 0.64)

Nuclear hyperchromasia73 38 0.51 (0.38 to 0.65) 0.51 (0.35 to 0.68) 38 Mild (3/11)
Moderate (6/17)
Varies (4/10)

0.56 (0.37 to 0.74)

Nuclear hyperchromasia04 38 0.51 (0.28 to 0.74) 0.43 (0.21 to 0.65) 38 Mild to moderate (9/28)
Varies (4/10)

0.53 (0.38 to 0.69)

Chromatin pattern73 38 0.51 (0.29 to 0.73) 0.46 (0.26 to 0.67) 38 Finely granular (7/25)
Granular (4/10)
Coarse (2/3)

0.60 (0.43 to 0.78)

Chromatin pattern04 38 0.66 (0.47 to 0.86) 0.55 (0.31 to 0.79) 38 Fine (9/31)
Coarse (4/7)

0.59 (0.45 to 0.74)

Nucleoli73/04 38 0.54 (0.33 to 0.76) 0.54 (0.33 to 0.75) 38 Occasional (2/16)
Common (11/22)

0.70 (0.56 to 0.85)

Giant nuclei 38 0.85 (0.72 to 0.98) 0.78 (0.59 to 0.98) 38 No (8/28)
Yes (5/10)

0.59 (0.43 to 0.75)

AC1/ AC2 Gwet’s AC1/ AC2 coefficient, CI Confidence interval, AUCROC Area under Receiver Operating Characteristics Curve.
* Number of cases evaluated by all three pathologists
** Number of cases for which consensus was reached
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confidence intervals, making them less robust. For in-
stance, for mitosis73 the confidence interval ranges from
0.23 to 0.71.
Prognostic ability for the different features, estimated by

AUC, ranged from 0.49 for superficial layer, to 0.71 for co-
hesion in WHO73. To qualify as reliable, we wanted the
features to be convincing (> 0.7) for both WHO73 and
WHO04. For instance, cohesion generated an AUC of
0.58 for WHO04, and should therefore not be relied on in
our material. Only nucleoli achieved an AUC above 0.7
for both WHO73 and WHO04, which is seen as an ac-
ceptable discrimination for progression or not. Polarity
tends to show some prognostic information for both grad-
ing systems with AUC 0.70/ 0.67 for WHO73 and
WHO04 respectively. These two features and papillary fu-
sion gave estimated confidence intervals ≥0.5 for both
grading systems. The other ten features showed no statis-
tical significant prognostic value.
Nuclear polarity was the only feature with both reason-

able reproducibility and prognostic value in this pilot study.

Discussion
Grade is seen as one of the most important prognostic
factors in bladder cancer, with impact on treatment and
patient follow-up. As reproducibility of both WHO73
and WHO04 is suboptimal, we systematically analysed
the reproducibility and prognostic value of each of the
microscopic features described as being part of grading.
Each of the 13 features, which theoretically should be
used to reach the final grade, carries its own uncertainty
in terms of reproducibility and prognostic value.
In the absence of a formal prognostic decision tree of

microscopic features in urinary bladder cancers, and lack
of a descriptive atlas with typical pictures, pathologists
will emphasize each feature differently while grading a
urinary bladder tumour. The assessment of grade is
therefore more or less based on intuition, as the features
are not evaluated in a systematic manner, and only
rarely truly quantitatively. This partially explains the
considerable difficulty with reproducibility. Furthermore,
the thresholds for the different subclasses of each of the
included features are very subjective (example: the de-
scribed thresholds for cohesion are: normal, some or
lost). Such descriptive and subjective criteria lead to
diagnostic confusion. In the process of grading, patholo-
gists will also be challenged by laboratory variables like
section thickness which might blur nuclear hyperchro-
masia or the introduction of artefacts that might mimic
dyscohesiveness. The individual prognostic values of
these features has never been analysed separately in
urinary bladder tumours.
Before our analyses we expected mitoses to be a useful

feature, as reported in a previous study on bladder can-
cer [13]. In the current analyses, mitosis was one of the

least reproducible and prognostic features. However, mi-
totic activity in the current study was assessed in a semi-
quantitative manner. Contrary, previous studies which
reported mitoses as a strong prognostic factor, counted
mitoses in a defined area by using the protocol for Mi-
totic Activity Index (MAI) as it is used and developed
for breast cancer, and the final number of mitoses was
used to categorize the tumours. When grading according
to either of the WHO-systems, a rough mitotic impres-
sion, rather than a formalized mitotic count is used. This
may explain the differences in prognostic value and re-
producibility. Such a prognostic difference between mi-
totic activity as the MAI (truly quantitative) and mitotic
impression (a rough estimate) has previously been
shown in breast cancer [26], and may be true for urothe-
lial carcinoma as well.
To be clinically useful, a grading system should be well

reproducible to assure the intended sensitivity and speci-
ficity. As known the final grade is the sum of an evalu-
ation of different microscopic features, therefore if one
of these features is not truly quantitative, it inevitably
will lack reproducibility and this will affect the final
grade as well. Individual features may have a prognostic
potential, which might be hidden by low overall repro-
ducibility. It is crucial to minimalize the interobserver
variability, making these features more reliable before
extracting and emphasizing the features giving the best
prognostic information. These features might be evalu-
ated separately in a new grading system.
One way to improve reproducibility could be to pro-

vide pathologists with an image atlas with examples of
the various features, facilitating comparison with the
tumour to be graded. In prostate adenocarcinoma, the
Gleason score has been well documented, tested and
tried since its introduction in 1966 [27]. It has been
claimed that the success of the system may in part be at-
tributed to the ease of application and the simplicity of
the original drawings [15]. Although the Gleason score
has issues regarding reproducibility as well, especially
when differentiating between Gleason grade group 2 and
3 [28, 29], the system as a whole has proven to be an im-
portant predictor of prognosis [30, 31]. A similar system
with simplified, stylized illustrations may improve grad-
ing reproducibility in bladder cancer as well.
In this study nuclear polarity stands out as the most

valuable histopathological feature in grading. This sup-
ports the current view that architectural and cytological
order versus disorder decides whether a lesion should be
regarded as low or high grade in the WHO04 grading
system. Strict definitions will be necessary to further im-
prove reproducibility of this feature as well. One ap-
proach could be to grade nuclear polarity according to
how much the axis of the nuclei tends to deviate from a
line perpendicular to the basement membrane (Fig. 1).
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The introduction of digital pathology introduces a
multitude of possibilities for measurement of structures
like nuclei, nucleoli and papillae. This can be exploited
in grading, in an attempt to achieve standardization.
Digital images can be further analysed by computer
based algorithms, thereby analysing features not easily
measured directly, like polarity, nuclear shape and mi-
totic Figures. A first attempt, using a local binary pattern
(LBP) and local variance (VAR) operators followed by a
RUSboost classifier, on a small test set of 42 patients
with NMIBC resulted in an accuracy of 70%, a sensitivity
of 84% and a specificity of 45% for prediction of recur-
rences [32]. Although only performed using a small
dataset these results show the potential of these

methods. Further studies using bigger datasets are neces-
sary to further investigate these new measurements.
The value of the data in this pilot study is limited by

the small sample size, not allowing any final conclusions.
Although, our data suggest a substantial variety among
the different histopathological features when it comes to
reproducibility. Also, the prognostic value is disappoint-
ing for most of the features. Our data calls for further
validation studies to highlight the most reproducible and
most prognostic microscopic features making up the
current grading system. We hope this article will con-
tribute to developing a new approach.
when it comes to grading of papillary urothelial

carcinomas.

Fig. 1 The images 1–3 show decreasing nuclear polarity at 40 x magnification. The red line is for comparison with the axis of the nuclei
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Conclusion
WHO grading is based on the use of 13 histopatho-
logical features, which in our material vary considerably
in reproducibility and prognostic value. Of all the fea-
tures evaluated in this small study, only nuclear polarity
was both reasonably prognostic and reproducible. Fur-
ther validation studies on the individual histopatho-
logical features are needed to improve the assessment of
grade of urothelial carcinomas. A new grading system
should be based upon more clear-cut definitions and
features with true prognostic value.
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Abstract

In urothelial cell type non-muscle invasive urinary bladder carcinoma, TNM stage and WHO

grade are widely used to classify patients into low and high-risk groups for prognostic and

therapeutic decision-making. However, stage and grade reproducibility and prediction accu-

racy are wanting. This may lead to suboptimal treatment. We evaluated whether prolifera-

tion features, nuclear area of the epithelial cancer cells and the composition of stromal and

tumor infiltrating lymphocytes have independent prognostic value. In 183 primary non-mus-

cle invasive bladder cancer patients with long follow-up (median for stage progression

cohort: 119 months, range 5-173; median for tumor recurrence cohort: 82, range 3-165) pro-

liferation features Ki67, PPH3 and Mitotic Activity Index (MAI), Mean Nuclear Area (MNA),

lymphocyte subsets (CD8+, CD4+, CD25+) and plasma cells (CD138+) were assessed on

consecutive sections. Post-resection instillation treatments (none, mitomycin, BCG) were

strictly standardized during the intake period. Risk of recurrence was associated with

expression of Ki67 (� 39 vs. > 39) and Multifocality (p = 0.01). Patients with low Ki67 had a

higher recurrence rate than those with high Ki67. Lymphocyte composition did not predict

recurrence. Stage progression was strongly associated with high values for MAI (>15) and

CD25+ (>0.2%). In a multivariate analysis the combination of MAI and CD25+ was the single

most prognostic feature (p<0.001). Validation of these results in additional, independent

studies is warranted.

Introduction

Urothelial cell carcinoma (UCC) is the most common type of carcinoma of the urinary blad-

der, accounting for about 90% of cases in Western Europe [1]. About 75 to 80% of the UCC

are non-muscle invasive bladder cancer (NMIBC) at the time of diagnosis [2] and
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approximately 5 to 10% of these progress to muscle invasive disease [3, 4]. In addition to

tumor stage (TNM-classification), grading based on the degree of anaplasia is used as an

important prognostic factor. A recent review reported that WHO1973 and WHO04/WHO16

grading systems are suboptimal concerning both reproducibility and prognostic value [5, 6].

On the other hand, earlier reports stated that proliferation features Ki67, PPH3 and Mitotic

Activity Index (MAI), as well the nuclear feature Mean Nuclear Area of the largest 10 nuclei

(MNA), were strongly predictive, prognostic and cost effective markers, overriding both TNM

stage and grade in NMIBC [7–9]. Currently, intravesical immunotherapy (BCG) is the stan-

dard treatment for intermediate or high-risk patients according to European Association of

Urology guidelines [10]. Due to the intensive follow-up and treatment side effects, the costs

per bladder cancer patient are high compared to other cancer types [11]. As such better predic-

tive and prognostic markers than stage and grade are warranted [12].

Several publications have shown that an increased level of tumor infiltrating lymphocytes

(TILs) is associated with a better overall survival [13] in patients with urothelial carcinomas

[14]. More specifically, CD8+ cytotoxic T cells were related to a more favorable clinical out-

come in both invasive bladder cancer [15] and many other tumor types. Also, the ratio of CD4

+ and CD8+ TILs showed an altered pattern in recurrent and non-recurrent tumors in

patients with NMIBC [16]. In addition, a strong association between increased numbers of

regulatory T cells (Tregs) and bladder tumor recurrence, metastasis and stage has been

reported [17]. Similarly, the ratio between tumor infiltrating effector T cells and Tregs was

inversely related with tumor recurrence in invasive urothelial carcinomas [18].

Unfortunately, most of these studies have included small numbers of patients and mixed

NMIBC and higher stage muscle invasive bladder cancer (MIBC) [16]. Furthermore, follow-

up was often short, in spite of the fact that recurrences can also occur after many years.

Another issue is that the selection of positive and negative cells were not random in the mea-

surement procedure. This may have caused serious selection bias and erroneous results. At

present, there are no reliable data regarding the significance of stromal and tumor infiltrating

lymphocytes on prognosis in pTa pT1 urothelial carcinomas.

The aim of the present study is to investigate, whether CD8+, CD4+, CD25+ lymphocytes,

and CD138+ plasma cells (immune cell markers) have additional prognostic value for recur-

rence and stage progression in a homogeneous cohort of pTa-pT1 tumors with long follow-up.

We followed a fully randomized selection procedure for the measurement of Ki67, MNA and

immune cell markers within the least differentiated area of the tumors. We hypothesize that

adaptive immune cell composition in addition to proliferation features and MNA can have an

additional value to predict, recurrence and stage progression.

Material and methods

This study was approved by the Norwegian Regional Ethics Committee (REK Vest, #106/09)

before the start of the study. With approval from REK Vest, informed consent was not

obtained as the tissue samples had already been removed for diagnostic and treatment pur-

poses. In the period between January 1, 2002 and December 31, 2007, 249 patients were diag-

nosed with primary NMIBC, at the Department of Pathology, Stavanger University Hospital

(SUH). Sixty-six cases were lost to follow-up or had inadequate sample quality for further anal-

ysis, leaving 183 patients to be included in the study (Table 1). Tissue samples were obtained

by TURB or biopsies from the urinary bladder mucosa. After TURB, most patients underwent

a single installation of the cytotoxic agent mitomycin C, while primary, high-risk patients

(13%) classified according to national guidelines (bladdercalculator.no) were treated with

BCG immunotherapy. All specimens were staged and graded by four experienced pathologists
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(VK, OM, EG and JPAB) according to the WHO73 and WHO04 grading systems [19]. Tumor

recurrence was defined as the presence of (a) tumor(s) in the bladder mucosa more than 3

months after the primary diagnosis. Total follow-up time, registered for statistical analyses of

recurrence, was defined as the time from primary diagnosis until last control with cystoscopy.

Stage progression was defined as recurrent tumor with pT2 or higher stage or confirmed

metastasis, more than 3 months after primary diagnosis. Follow-up time registered for statisti-

cal analyses of stage progression was from primary diagnosis until death, or last known contact

with the health care system. For stage progression, clinical follow-up was regarded as enough,

but for recurrence, regular scheduled follow-up with cystoscopies according to guidelines was

considered necessary. For the calculation of tumor recurrence only 177 patients were included

as 6 more patients were lost to follow-up, as patients had to keep their urinary bladders and go

through cystoscopy at least 3 months after primary diagnosis. Follow-up data were retrieved

from medical hospital records, with last registration on June 30, 2016.

Immunohistochemistry (IHC)

TURB and biopsies were fixed in 10% neutral buffered Formalin1, dehydrated, and embed-

ded in paraffin. Sections for assessment of MAI, MNA and histology were stained by Hema-

toxylin, Erythrosine & Saffron (HES). Adjacent to the HES stained sections, consecutive 4 μm

paraffin sections were mounted onto Superfrost Plus1 slides (Menzel, Braunschweig, Ger-

many) and dried overnight at 37˚C followed by 1 h at 60˚C. Deparaffinization was performed

stepwise by xylene, thereafter rehydration through decreasing concentrations of alcohol solu-

tions. Heat-mediated antigen retrieval was performed with a computerized retrieval system

(Immuno-Prep©; Instrumec, Oslo, Norway) using TRIS (10 mM) - EDTA (1 mM) antigen

retrieval buffer (pH 9). The deparaffinized sections were first heated for 3 min at 110˚C and

thereafter incubated for 10 min at 95˚C and finally cooled to 20˚C [20], in a pressure cooker.

For the elimination of nonspecific background, a Tris-Buffered Saline Solution (DAKO,

Glostrup, Denmark, S1968), containing 0.05% Tween 20, was used as a wash buffer (pH 7.6).

Endogenous peroxidase activity was inactivated by the incubation of tissue sections in the per-

oxidase-blocking reagent (DAKO, Glostrup, Denmark; S2001) for 10 min. Immunostaining of

CD4+, CD8+, CD25+ T lymphocyte subsets, CD138+ plasma cells and proliferation marker

Ki67 was performed using an Autostainer (DAKO, Glostrup, Denmark). The tissue sections

Table 1. Exclusion criteria, number of excluded and included patients.

Primary pTaT1 urothelial carcinomas at SUH 2002–2006 249

Insufficient material 21

Thermal damage 11

Fragmented specimen 1

Necrotic specimen 2

Sarcomatoid differentiation 1

Previous urothelial carcinoma (on review of clinical notes) 1

cT3 or cT4 (on review of clinical notes) 3

pT2 at re-TURB 2

pT2 at review 1

Clinical metastasis at time of diagnosis 2

Lost to follow-up 11

Insufficient material for quantification of immune cell markers 2

Metastases at renal pelvis, ureter and urethra 8

Included in study 183

https://doi.org/10.1371/journal.pone.0233676.t001
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were incubated with the monoclonal antibodies using the following dilutions: CD4 (Novocas-

tra, Newcastle upon Tyne, UK; clone 1F6, 1:20); CD8 (DAKO, Glostrup, Denmark; clone C8/

144B, 1:50); CD25 (Novocastra, Newcastle upon Tyne, UK; clone 4C9, 1:150); CD138 (Serotec,

Kidlington, UK; clone B-B4, 1:200) and Ki67 (DAKO, Glostrup, Denmark; clone MIB-1,

1:100). An antibody diluent (DAKO, Glostrup, Denmark; S0809) was used for the preparation

of primary and secondary antibody dilutions. The immune complex was visualized by peroxi-

dase/DAB (DAKO, Glostrup, Denmark; EnVision Detection System, K5007) with incubation

of Envision/HRP, rabbit/mouse antibody (ENV) for 30 min and DAB-chromogen with hema-

toxylin counterstain for 10 min. Thereafter the tissue sections were dehydrated and mounted

[7, 21].

Quantitative image analysis

In each case the least differentiated area was carefully selected and demarcated on HES stained

sections by a pathologist, based on the degree of cellular anaplasia. All assessments were done

in this demarcated area. MAI, PPH3 and MNA were assessed as previously described [7–9].

Highly reproducible, semi-automated quantification of all immune cell markers and Ki67 was

performed by using the motorized semi-automated QPRODIT (version 6.1) interactive image

analysis system (Leica, Cambridge, UK). Immune cell quantification was performed at a final

magnification of 400X using a 6-line grid in 150 random fields of vision (FOV) within the

measurement area. In each FOV, the same endpoints of six electronic gridlines were used to

register both immunohistochemically stained (IHC) positive-, IHC-negative immune cells and

other cell types. Consequently, the sampling procedure within the measurement area was fully

at random, which is essential for getting a well reproducible and prognostically accurate results

(see Fig 1). Quantification and percentage calculation of Ki67-positivity was performed as ear-

lier described [7–9]. The percentage of immune cell marker positivity was defined as: ((IHC

positive immune cells) / (Total numbers of cells within the measurement area)) x 100. The

average total counted cells within the measurement area was 210 cells (range 30-396). The

average measurement area was 15 mm2 (range 2-91).

Fig 1. Immune cell markers CD8, CD4, CD25 and CD138 in representative urothelial bladder cancer tissue. (A)

CD8 IHC stain (400X magnifications), (B) CD4 IHC stain (400X magnifications), (C) CD25 IHC stain (400X

magnifications) (D) CD138 IHC stain (400X magnifications). In each field of vision positively stained immune cells

were quantified as “positive counts” and negatively stained immune cells and other cell types were quantified as

“negative counts”. Counts were registered using six electronic grids with five endpoints. Scale bar 10 μm.

https://doi.org/10.1371/journal.pone.0233676.g001
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Statistics

Statistical analysis was performed by using SPSS, version 21 (SPSS Inc., Chicago, IL, USA) and

MedCalc Statistical Software version 19.1 (MedCalc Software BV, Ostend, Belgium; https://www.

medcalc.org; 2019). The immunological markers, proliferation features and MNA were continu-

ous variables, whilst stage progression, recurrence, grade and stage were categorical variables.

Different percentiles (medians, tertiles and quartiles) and ROC curve analyses were used to deter-

mine the optimal prognostic thresholds of the continuous variables. Proliferation features and

MNA were dichotomized by using previously published prognostic thresholds in both recurrence

and stage progression cohorts [7–9]. In addition, proliferation features and MNA were dichoto-

mized by using median values as well in the recurrence cohort. Univariate, nonparametric Krus-

kal-Wallis and Mann Whitney-U tests were performed to compare differences of continuous

variables in the independent groups. A log rank test was run to determine if there were differences

in the survival distributions of recurrence or stage progression for the two subgroups of immune

cell markers, proliferation features and MNA or clinical and histopathological parameters. The

differences between the subgroups were considered significant if the probability of no difference

(p value) was<0.05. Univariate Cox proportional hazard ratios (HR) with 95% confidence inter-

vals (CI) were also calculated. Multivariate Cox survival analysis was performed to evaluate the

best prognostic combination of both continuous and categorical variables.

Results

The median follow-up time of the 177 patients available for recurrence analysis, was 82 months

(range 3 to 165). From these, 105 patients (60%) experienced tumor recurrence. When analyzing

for stage progression, the median follow-up time was 119 months (range 5 to 173). From these

183 patients, 13 patients (7%) experienced stage progression. In both groups, the gender distribu-

tion of the patients was 76% men and 24% women, and median age at first diagnosis was 74 years

(range 39 to 95). According to the TNM-classification in both groups, 80% of the tumors pre-

sented as stage pTa and 61% were classified as WHO04 low-grade urothelial carcinoma. The dis-

tribution of WHO73 classification G1, G2 and G3 was 23%, 51% and 26% respectively.

Recurrence analysis

In total 173/177 and 150/177 patients were available for statistical analyses of Ki67 and Multi-

focality respectively. Out of all investigated immune cell markers, proliferation and nuclear

features, clinical and histopathological parameters only Ki67 (threshold 39%, HR: 0.61, 95%

CI, 0.4-0.9; p = 0.05) and Multifocality (HR: 1.8, 95% CI, 1.2-2.7; p = 0.01) showed significant

association with tumor recurrence. Fig 2 shows the Kaplan-Meier curves for recurrence free

survival for the two subgroups of Ki67. The group with low Ki67 had significantly shorter

recurrence free survival, than the group with higher values. The presence of Multifocality cor-

related with a shorter recurrence free survival (Fig 3). There were no statistically significant

differences between the median values of the immune cell markers in patients with or without

recurrence. Median values and range as well threshold values; and hazard ratio, CIs, and p val-

ues for histopathological characteristics, proliferation features, MNA and immune cell markers

were calculated by univariate recurrence free survival analyses summarized in Table 2.

Stage progression analysis

In our stage progression cohort, 183 NMIBC patients were available, 146 with pTa tumors and

37 with pT1 tumors. Interestingly, in pT1 tumors the percentages of CD25+, CD4+ and

CD138+ cells were significantly higher than in pTa tumors (p<0.001, p = 0.01 and p = 0.01
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respectively). When examining all 183 pTaT1 patients, out of all immune cell subsets only

CD25+ showed significant association with stage progression (HR: 13.8, 95% CI, 1.8-106.2;

p = 0.001) (Fig 4). Median values and range as well as threshold values; and hazard ratio, CIs,

and p values for histopathological characteristics, proliferation features, MNA and immune

cell markers were calculated by univariate recurrence free survival analyses summarized in

Table 3. Patients with higher stage, grades and concomitant carcinoma in situ (CIS) had signif-

icantly higher stage progression risks (p<0.05).

Multivariate Cox proportional hazard analysis of all 183 patients, including age, WHO1973

and WHO2004 grade, KI67 (threshold�18), PPH3, MAI and CD25+, showed that MAI

(threshold >15) was the strongest single predictor for stage progression (HR: 8.6, 95% CI, 2.6-

28.5; p<0.001). When the combination of MAI and CD25+ was also included, the MAI CD25

+ combination was an even better predictor for stage progression (HR, 95% CI could not be

computed, p<0.001). With Kaplan-Meier survival analyses, 26% of patients experienced stage

progression in the high MAI high CD25+ group and 0% experienced stage progression in the

low MAI low CD25+ group. In the mixed group (low MAI high CD25+, high MAI low CD25

+) 8% of patients progressed. Fig 5 shows the stage progression free survival curves for the two

subgroups of MAI and Fig 6 shows the progression free survival curves for the two subgroups

of MAI CD25+ combination.

Fig 2. Low Ki67 (�39%) associated with shorter recurrence free survival in Kaplan Meier survival analysis.

https://doi.org/10.1371/journal.pone.0233676.g002
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Discussion

In the last decades, several studies have analyzed the association between different subgroups

of lymphocytes and clinical outcome in bladder cancer. However, both concordant and con-

flicting results are observed when comparing our findings. One explanation might be the vari-

ation between the investigated areas within the bladder mucosa. Alternatively, numerous

subsets of CD25+, CD4+ and CD8+ lymphocytes may coexist in the tumor microenviron-

ment, which could differ in phenotypes, functions and locations in different time perspectives.

One study demonstrated that increased numbers of CD4+ predict a lower 5-year overall sur-

vival (OS) in NMIBC [22]. On the other hand, it was also reported that increased numbers of

CD4+ cells are related to a prolonged recurrence free survival in high-risk NMBIC [23]. Others

published that CD8+ TILs are associated with better disease-free and overall survival in more

advanced tumors [15, 24]. However Zhang et al. demonstrated that higher numbers of CD8

+ TILs were related to a more unfavorable clinical outcome in pTa-pT2 (organ confined)

tumors [25]. Regarding Tregs, one study reported that high FOXP3+/CD3+ and FOXP3

+/CD8+ cell ratios predict poorer overall survival in pT1-pT4 tumors [26]. Controversially,

another study, observing pT1-pT4 tumors as well, demonstrated that high numbers of FOXP3

+ lymphocytes were correlated with better survival [27].

Fig 3. High CD25+ (>0.2%) associated with shorter stage progression free survival in Kaplan Meier survival

analysis.

https://doi.org/10.1371/journal.pone.0233676.g003
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Table 2. Univariate analyses for recurrence free survival of histopathological characteristics, immune cell mark-

ers, proliferation features and MNA.

Characteristics Tumor recurrence cohort (105/177)

Event/at risk (%) Log rank P value HR 95% CI

Age at diagnosis

<74 51/87 (59) 0.12 1.4 0.9-2.0

�74 54/90 (60)

(range 39-95)

Gender

Male 77/135 (57) 0.73 1.1 0.7-1.7

Female 28/42 (66)

WHO1973 grade

1 27/41 (66) 0.39

2 50/90 (56) 0.8 0.5-1.2

3 28/46 (61) 1.0 0.6-1.7

WHO2004 grade

Low 67/108 (62) 0.92 1.0 0.7-1.5

High 38/69 (55)

Stage

Ta 85/142 (60) 0.63 1.1 0.7-1.8

T1 20/35 (57)

Multifocality

No 42/84 (50) 0.01 1.8 1.2-2.7

Yes 47/66 (71)

CIS

No 92/156 (59) 0.63 1.2 0.6-2.1

Yes 13/21 (62)

CD25+ (%)

�0.2 52/89 (58) 0.51 1.1 0.8-1.7

>0.2 53/88(60)

(range 0-10)

CD8+ (%)

<3.0 53/89 (60) 0.74 1.1 0.7-1.6

�3.0 52/88 (59)

(range 0-28)

CD4+ (%)

<4.5 55/89 (62) 0.83 1.0 0.7-1.4

�4.5 50/88 (57)

(range 0–57)

CD138+ (%)

<1.4 53/89 (60) 0.62 1.1 0.8-1.6

�1.4 52/88 (59)

(range 0-20)

Ki67 (%)

�39 83/130 (64) 0.05 0.6 0.4-0.9

>39 20/43 (47)

(range 1-82)

Ki67 (median)

(Continued)
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An important issue when comparing these studies is the fact that many have included

patients ranging from pTa-pT4. Furthermore, different methods and measurement areas have

been used (some only intrastromal, others within the tumor urothelium as well) to quantitate

the different subsets of lymphocytes. Moreover, non-random selection methods for the mea-

surements have been described, which can be a serious cause for biased results. In the present

study we have prevented these methodological challenges (consecutive sections, only pTa pT1

tumors, random selection methods for quantification) and analyzed the association between

CD8+, CD4+, CD25+, CD138+, proliferation and nuclear features, histopathological and clini-

cal parameters and outcomes (recurrence and stage progression free survival).

Doing so, the results for recurrence were different from those before. Low percentage of

Ki67 was associated with a high risk for tumor recurrence. These results are unexpected and

contrary to a recent meta-analysis, which showed that in 34 studies, high Ki67 was related to

poor recurrence free survival [28]. One of the explanation could be, that in this meta-analysis

Table 2. (Continued)

Characteristics Tumor recurrence cohort (105/177)

Event/at risk (%) Log rank P value HR 95% CI

<18 53/86 (62) 0.95 1.0 0.7-1.5

�18 50/87 (57)

(range 1-82)

PPH3

<40 79/131 (60) 0.52 0.86 0.5-1.4

�40 25/44 (57)

(range 0-137)

PPH3 (median)

<17 53/84 (63) 0.93 1.0 0.7-1.5

�17 51/91 (56)

(range 0-137)

MAI

�15 80/138 (58) 0.56 1.1 0.7-1.8

>15 25/39 (64)

(range 0-46)

MAI (median)

<4 51/83 (61) 0.86 1.0 0.7-1.5

�4 54/94 (57)

(range 0-46)

MNA (mm2)

�170 90/154 (58) 0.26 1.4 0.8-2.4

>170 15/23 (65)

(range 49-488)

MAI CD25+ (%)

Low-Low� 45/77 (58) 0.6

Mixed� 42/73 (57) 1.0 0.7-1.6

High-High� 18/27 (67) 1.3 0.8-2.3

HR Hazard Ratio, CI Confidence interval

�Low-Low: low CD25 low MAI, Mixed: low CD25 high MAI and high CD25 low MAI, High-High: high CD25 high

MAI

https://doi.org/10.1371/journal.pone.0233676.t002
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Fig 4. High MAI (>15) associated with shorter stage progression free survival in Kaplan Meier survival analysis.

https://doi.org/10.1371/journal.pone.0233676.g004

Table 3. Univariate analyses for stage progression free survival of clinical and histopathological characteristics,

immune cell markers, proliferation features and MNA.

Characteristics Stage Progression cohort (13/183)

Event/at risk (%) Log rank P value HR 95% CI

Age at diagnosis

<74 3/90 (3) 0.02 4.0 1.1-14.7

�74 10/93(11)

(range 39–95)

Gender

Male 11/140 (8) 0.50 0.6 0.1-2.7

Female 2/43 (5)

WHO1973 grade

1 1/41 (2) 0.04

2 5/94 (5) 2.3 0.3-19.3

3 7/48 (15) 6.8 0.8-55.6

WHO2004 grade

(Continued)
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Table 3. (Continued)

Characteristics Stage Progression cohort (13/183)

Event/at risk (%) Log rank P value HR 95% CI

Low 4/113 (3) 0.01 4.1 1.3-13.2

High 9/70 (13)

Stage

Ta 4/146 (3) <0.001 10.8 3.3-35.3

T1 9/37 (24)

Multifocality

No 3/87 (3) 0.10 3.0 0.8-11.5

Yes 7/68 (10)

CIS

No 9/162 (6) 0.01 4.3 1.3-14.0

Yes 4/21 (19)

CD25+ (%)

�0.2 1/94 (1) 0.001 13.8 1.8-106.2

>0.2 12/89 (13)

(range 0–10)

CD8+ (%)

<3.0 7/92 (8) 0.87 0.9 0.3-2.7

�3.0 6/91 (7)

(range 0–28)

CD4+ (%)

<4.5 5/92 (5) 0.31 1.8 0.6-5.4

�4.5 8/91 (9)

(range 0–57)

CD138+ (%)

<1.4 5/92 (5) 0.33 1.7 0.6-5.3

�1.4 8/91 (9)

(range 0–20)

Ki67 (%)

�39 7/135 (5) 0.12 2.4 0.8-7.6

>39 5/44 (11)

(range 1–82)

Ki67 (median)

<18 1/89 (1) 0.003 11.5 1.5-88.9

�18 11/90 (12)

(range 1–82)

PPH3

<40 4/136 (3) <0.001 7.3 2.3-23.8

�40 9/45 (20)

(range 0–137)

MAI

�15 5/143 (3) <0.001 6.8 2.2-20.7

>15 8/40 (20)

(range 0–46)

MNA (mm2)

�170 10/159 (6) 0.20 2.3 0.6-8.2

>170 3/24 (12)

(Continued)
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Ki67 threshold varied between 5% and 25%, in our study it was much higher, 39% (previously

published prognostic threshold was used) [7]. In addition Ki67 positive cell quantification pro-

cedures differed from our highly reproducible semi-automated quantification method [7–9].

Table 3. (Continued)

Characteristics Stage Progression cohort (13/183)

Event/at risk (%) Log rank P value HR 95% CI

(range 49–488)

MAI CD25+ (%)

Low-Low� 0/81 (0) <0.001

Mixed� 6/75 (8) - -

High-High� 7/27 (26) - -

HR Hazard Ratio, CI Confidence interval

�Low-Low: low CD25 low MAI, Mixed: low CD25 high MAI and high CD25 low MAI, High-High: high CD25 high

MAI

https://doi.org/10.1371/journal.pone.0233676.t003

Fig 5. The combination of MAI and CD25+ stratifies patients into three groups. Patients with both low MAI and

CD25+ values showed a better outcome than those with high amount of MAI and/or CD25+.

https://doi.org/10.1371/journal.pone.0233676.g005
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On the other hand the previously described threshold was calculated in correlation to progres-

sion, another threshold might be necessary for the prediction of recurrence. When using the

median value for any of the proliferation markers no significant correlation was found with

recurrence (Table 2). As such we need to validate the prognostic value of Ki67 in larger, inde-

pendent, cohorts.

In our investigation we were not able to confirm a connection between the amount of CD8+,

CD4+ and CD138+ cells, tumor recurrence or stage progression, nor the association between the

amount of CD25+ cells and tumor recurrence in patients with NMIBC as described by other

authors. Although our findings on CD4+ cells, are similar to the results of Kripna et al., who also

reported no significant difference in the number of CD4+ cells between the recurrent and non-

recurrent group in low-grade papillary urothelial carcinoma. However, they found an association

between an increased number of CD8+ TILs and tumor recurrence [16]. Furthermore, Pichler

et al. demonstrated that high FOXP3+CD25+ Tregs was associated with shorter recurrence free

survival in NMIBC, which we could not confirm in our recurrence cohort [23].

As to stage progression prediction, we show that the number of CD25+ cells differed

strongly between pTa and pT1, and is also significantly associated with stage progression. Los-

kog et al. previously published a similar finding that tumor infiltrating CD4+CD25+ T cells

show a regulatory phenotype in human bladder cancer biopsies which was strongly associated

with tumor progression [29]. Our results as well suggest a systemic suppression of immune

Fig 6.

https://doi.org/10.1371/journal.pone.0233676.g006
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response by CD4+CD25+ Tregs in the bladder tumor tissue. Furthermore, the combination of

MAI and CD25+ was the strongest predictor for tumor stage progression and strongly associ-

ated to TNM stages. The combination of MAI and CD25+ could define patient groups even

better and in a more standardized and reproducible manner and can identify a large group of

patients with a (nearly) 100% stage progression-free survival. Based on our current data and

previously published data, we hypothesize that the CD25+ cells are Tregs, which increase in

numbers following the development from superficial to more advanced stages, and as such

tumors develop a gradually more immunosuppressive and more heterogeneous/proliferative

tumor microenvironment.

A weakness of our study is, that in spite of the large number of patients and long follow-up,

the number of patients with stage progression is still limited (n = 13). Mangrud et al. pub-

lished, that the threshold estimation of Ki67 and other proliferation markers (MAI and PPH3)

was sensitive to the number of patients [7]. Therefore external validation of our results is

essential. Another issue is, that threshold values for Ki67 differed between previously published

cohorts as well [28]. One of the explanations could be the lack of standardization of Ki67 anti-

bodies, which makes the interpretation of true positive and negative cells difficult. In addition

we used the same threshold values in both recurrence and stage progression cohorts. On the

other hand Kaplan Meier survival plots and ROC curve analyses could not estimate an optimal

threshold value in the recurrence cohort. Furthermore, tumor size of the patients (>3 cm)

were not available in our retrospective cohort, which is an important factor regarding tumor

recurrence. Although our quantification method for the immunohistochemical markers is

highly reproducible, the method is very labor intensive. Therefore independent studies are

needed to validate our results using more sophisticated and fully automated digital image anal-

yses such as artificial intelligence. Bunimovich-Mendrazitsky recently published a mathemati-

cal dynamic model as a powerful tool, which could be used to analyze the interactions between

stromal and tumor infiltrating lymphocytes and tumor cells [30] and to develop a standardized

immunoscore [31] for predicting clinical outcome of patients with NMIBC.

Overall, the findings of our study show that a combination of MAI and CD25+ have over-

ridingly strong prognostic value to predict stage progression and are worth validating in a

well-defined, larger cohort.
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T1 Substaging of Nonmuscle Invasive Bladder Cancer is
Associated with bacillus Calmette-Gu�erin Failure and Improves
Patient Stratification at Diagnosis

Florus C. de Jong, Robert F. Hoedemaeker, Vebjørn Kvikstad, Jolien T. M. Mensink, Joep J. de Jong,

Egbert R. Boev�e, Deric K. E. van der Schoot, Ellen C. Zwarthoff, Joost L. Boormans

and Tahlita C. M. Zuiverloon*

From Department of Urology (FCdJ, JJdJ, JLB, TCMZ), Erasmus MC Cancer Institute, Rotterdam, The Netherlands, Pathan BV (RFH), Pathological Laboratory,

Rotterdam, The Netherlands, Department of Pathology (VK), Stavanger University Hospital, Stavanger, Norway, Department of Mathematics and Natural Science (VK),

University of Stavanger, Stavanger, Norway, Department of Pathology (JTMM, ECZ), Erasmus MC Cancer Institute, Rotterdam, The Netherlands, Department of

Urology (ERB), Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands, Department of Urology (DKEvdS), Amphia, Breda, The Netherlands

Purpose: Currently, markers are lacking that can identify patients with high
risk nonmuscle invasive bladder cancer who will fail bacillus Calmette-Gu�erin
treatment. Therefore, we evaluated the prognostic value of T1 substaging in
patients with primary high risk nonmuscle invasive bladder cancer.

Materials and Methods: Patients with primary high risk nonmuscle invasive
bladder cancer who received �5 bacillus Calmette-Gu�erin induction instillations
were included. All tumors were centrally reviewed, which included T1 substag-
ing (microinvasion vs extensive invasion of the lamina propria). T1 patients were
stratified into high risk or highest risk subgroups according to major urology
guidelines. Primary end point was bacillus Calmette-Gu�erin failure, defined as
development of a high grade recurrence. Secondary end points were high grade
recurrence-free survival, defined as time from primary diagnosis to biopsy-
proven high grade recurrence and progression-free survival. Time-to-event an-
alyses were used to predict survival.

Results: A total of 264 patients with high risk nonmuscle invasive bladder cancer
had tumor invasion of the lamina propria, of which 73% were classified as
extensive invasion and 27% as microinvasion. Median followup was 68 months
(IQR 43e98) and bacillus Calmette-Gu�erin failure was more common among pa-
tients with extensive vs microinvasive tumors (41% vs 21%, p[0.002). The 3-year
high grade recurrence-free survival (defined as bacillus Calmette-Guerin failure)
for patients with extensive vs microinvasive tumors was 64% vs 83% (p[0.004). In
multivariate analysis, T1 substaging was an independent predictor of high grade
recurrence-free survival (HR 3.2, p[0.005) and progression-free survival (HR 3.0,
p[0.009). Patients with highest risk/microinvasive disease have an improved
progression-free survival as compared to highest risk/T1e disease (p.adj[0.038).

Conclusions: T1 substaging provides important prognostic information on pa-
tients with primary high risk nonmuscle invasive bladder cancer treated with

Accepted for publication September 7, 2020.
Funding was obtained from Erasmus MC Medical Research Advisory Committee Erasmus (MRACE) Grant 107477. MRACE has no role

whatsoever in design, collection, management, analysis, interpretation, preparation, review or approval of this manuscript.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC

BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used
commercially without permission from the journal.

* Correspondence: Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, Room Be-304, 3015 GD, Rot-
terdam, The Netherlands (telephone: þ31-107043059; FAX: þ31-107044762; email: t.zuiverloon@erasmusmc.nl).

Abbreviations

and Acronyms

BCG [ bacillus Calmette-Gu�erin

CIS [ carcinoma in situ

DSS [ disease-specific survival

HG [ high grade

HG-RFS [ high grade recurrence-
free survival defined as BCG failure

HPF [ (microscopic) high-
powered field (objective 40�)
HR-NMIBC [ high risk nonmuscle
invasive bladder cancer

LVI [ lymphovascular invasion

MIBC [ muscle invasive bladder
cancer

MM-VP [ muscularis mucosae-
vascular plexus

p.adj [ adjusted p value

PFS [ progression-free survival

RC [ radical cystectomy

re-TURBT [ repeated transure-
thral resection of bladder tumor

T1e [ T1 extensive invasion of
the lamina propria

T1m [ T1 microinvasion of the
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bacillus Calmette-Gu�erin. The risk of bacillus Calmette-Gu�erin failure is higher in extensive vs microinvasive
tumors. Substaging of T1 high risk nonmuscle invasive bladder cancer has the potential to guide treatment
decisions on bacillus Calmette-Gu�erin vs alternative strategies at diagnosis.

Key Words: BCG vaccine; urinary bladder neoplasms; prognosis; carcinoma, transitional cell; neoplasm

staging

NONMUSCLE invasive bladder cancer accounts for
w75% of newly diagnosed bladder cancer cases.1 In
case of lamina propria (T1) invasion, patients are at
high risk for recurrent and progressive disease.2,3

Patients with T1 high risk nonmuscle invasive
bladder cancer are treated with transurethral
resection of the bladder tumor and adjuvant intra-
vesical bacillus Calmette-Gu�erin induction in-
stillations.4 In 30%-50% of patients with HR-
NMIBC, BCG therapy fails and these patients
develop high grade recurrences or progression to
muscle invasive bladder cancer. In case of progres-
sion, neoadjuvant chemotherapy followed by radical
cystectomy is the standard of care.4 Despite treat-
ment, 50%-70% of progressed patients die within 5
years after diagnosis.5

No markers are available to predict which pa-
tients will benefit from BCG treatment.6 Repeated
BCG instillations in nonresponders cause a delay
in RC and a recent study showed that progression
to MIBC is associated with worse overall survival
compared to patients with primary MIBC at diag-
nosis.5 Furthermore, the ongoing global BCG
shortage demands selective use of limited re-
sources. Thus, there is a clinical need for markers
to identify patients who will benefit from BCG and
patients who should receive other treatments.7 To
improve patient stratification, guidelines use the
presence of aggressive clinicopathological features
to identify a subgroup of HR-NMIBC patients at
the highest risk of progression.4,8 For these pa-
tients, both American and European guidelines
strongly recommend to consider an immediate
RC.4,8 Despite this substratification of HR-NMIBC
patients at the highest risk of progression, per-
forming immediate RC in all of these patients re-
sults in overtreatment.2,3

Over the years, T1 substaging has been inves-
tigated as a prognostic tool in HR-NMIBC. Several
methods have been described to assess depth and
extent of tumor invasion into the lamina propria,
which was associated with an increased risk of
progression and death.9e15 Some evidence showed
that deeper invasion was also associated with
recurrent disease.16,17 T1 substaging is recom-
mended for pathologists since the 2016 WHO
classification.18 However, the most optimal T1
substaging system remains to be defined.19,20 T1
substaging by evaluation of muscularis mucosae-

vascular plexus (T1a/b MM-VP) invasion is chal-
lenging due to difficult assessment of the MM-VP
and T1 metric substaging by (optical) microme-
ters is impractical and time-consuming.12,16 T1
microinvasive vs extensive substaging, in which
tumor invasion should not exceed 1 HPF, is easy to
use and proved more accurate than MM-VP sub-
staging in earlier studies.9,21

Currently, it is unknown if T1 substaging is
associated with treatment response in HR-NMIBC.
Furthermore, it is unclear if T1 substaging has the
potential to guide treatment decisions. Here, we
investigated whether T1 HPF substaging was
associated with BCG failure and if this substaging
method can be used to improve patient stratification
at diagnosis.

MATERIALS AND METHODS

Patients and Pathology
All patients with a primary diagnosis of HR-NMIBC
(Tis or Ta/T1HG urothelial carcinoma), who under-
went transurethral resection of the bladder tumor with
or without re-TURBT and who received �5/6 BCG in-
duction instillations were retrospectively included at 3
Dutch (Erasmus MC; Franciscus Gasthuis & Vlietland
and Amphia) and 1 Norwegian hospital (Stavanger
University Hospital) from 2000e2017. Additional in-
formation on patient inclusion can be found in the
supplementary methods (https://www.jurology.com).
The study was approved by the Erasmus MC Medical
Ethics Committee (MEC-2018-1097). Hematoxylin and
eosin (HE) slides from all primary tumors, re-TURBTs
and recurrent tumors were centrally reviewed by a uro-
pathologist who was blinded for clinical information.
Assessment included T stage, tumor grade (WHO 1973/
2016), presence of concomitant carcinoma in situ, T1
HPF substaging, lymphovascular invasion, variant his-
tology, tumor infiltrating lymphocytes (TILs) and tumor
necrosis (TN). T stage, tumor grade, CIS, LVI, VH and
TN were scored according to standard WHO criteria.18

T1 HPF substaging was performed as described previ-
ously (in this manuscript referred to as T1 substaging).9

Briefly, if a single focus of lamina propria invasion with a
maximum diameter of 0.5mm (ie 1 HPF, objective 40�)
was observed, the tumor was defined as T1m. If tumor
invasion was >0.5 mm or when more than 1 invasive
focus was observed, the tumor was defined as T1e. TILs
were scored as either absent/sparse vs marked within
the tumor area.22 Patients for whom T1 disease was
confirmed in either the primary or re-TURBT specimen,
and with identifiable detrusor, were included in the
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analyses. After review, patients were stratified into a
high risk or highest risk subgroup, according to the AUA/
SUO nonmuscle invasive bladder cancer algorithm and
EAU risk stratification.4,8 Highest risk clinicopatholog-
ical features were: T1G3/HG with concomitant CIS,
lymphovascular invasion or VH, T1G3/HG with prostatic
urethra involvement or multifocal and/or large (�3 cm)
T1G3/HG.4,8

Definitions, End Points and Statistics
Primary end point was BCG failure. BCG failure was
defined as biopsy proven T1HG disease after �5 BCG
induction instillations, HG disease after adequate BCG
therapy or recurring muscle invasive disease.4,8 Adequate
BCG consists of �5/6 BCG induction instillations plus �2/3
BCGmaintenance instillations.23 Secondary end points were
3-year HG recurrence-free survival, progression-free sur-
vival and disease-specific survival. Time-to-recurrence was
defined as the moment from primary T1 diagnosis until a
biopsy-proven HG recurrence occurred (BCG failure). Three-
year HG-RFS was selected because duration of the BCG
regimen is 3 years.4 Patients with only HG cytology or low
grade (LG) biopsy recurrences were not considered BCG
failures.4,23 Further details on definitions and statistical
analyses can be found in the supplementary methods
(https://www.jurology.com).

RESULTS

Study Population

The study population consisted of 535 primary HR-
NMIBC patients who received �5 BCG induction
instillations. After pathology review, 26 cases were
excluded because of the following reasons: up staging
to muscle invasion in 4, downgrading to G2/LG in 5,
and 17 cases had degraded hematoxylin and eosin
slides and tissue blocks. Of the remaining 509 HR-
NMIBC patients, 264 were included based on the
presence of lamina propria invasion (T1) in the pri-
mary and/or re-TURBT specimen. Clinicopathological

Table 1. Baseline study characteristics of 264 patients with

primary T1 high risk nonmuscle invasive bladder cancer

No. (%)

Age at diagnosis (yrs):
Median (IQR) 71 (66e77)

Gender:
Male 215 (81)
Female 49 (19)

Substaging:
T1 microinvasion 72 (27)
T1 extended invasion 192 (73)

Tumor grade (WHO 1973):
2 6 (2)
3 258 (98)

Smoking:
No 85 (32)
Yes/stopped 165 (63)
Missing 14 (5)

Concomitant CIS:
No 205 (78)
Yes 59 (22)

Tumor focality:
Unifocal 129 (49)
Multifocal 132 (50)
Missing 3 (1)

Tumor size (cm):
<3 51 (19)
�3 43 (16)
Missing 170 (65)

Tumor infiltrating lymphocytes:
No 74 (28)
Yes 190 (72)

Tumor necrosis:
No 244 (92)
Yes 20 (8)

Lymphovascular invasion:
No 249 (94)
Yes 15 (6)

Variant histology:
No 216 (82)
Diffuse 21 (8)
Micropapillary 12 (4)
Glandular 8 (3)
Squamous 4 (1.5)
Neuroendocrine 1 (0.5)
Sarcamatoid 1 (0.5)
Other 1 (0.5)

Re-TURBT performed:
No 51 (19)
Yes 213 (81)

Risk classification at start of BCG:
High risk 90 (34)
Highest risk 174 (66)

Adequate BCG:*
No 27 (10)
Yes 237 (90)

Median BCG maintenance instillations (IQR) 12 (6e18)
BCG maintenance completed:
1 Yr (�3 cycles) 173 (66)
3 Yrs (�9 cycles) 52 (20)

Median total BCG instillations (IQR) 18 (12e24)
BCG failure:†
No 171 (65)
Yes 93 (35)

BCG failure (characteristics):
1. MIBC as first recurrence 20 (8)
2. T1, grade 3/HG after BCG induction 19 (7)
3. HG recurrence after adequate BCG 54 (20)

Progression (MIBC, lymph node disease and metastases):
No 201 (76)
Yes 63 (24)

Median time to progression (IQR) 18 (10e48)

(continued)

Table 1. (continued )

No. (%)

Lymph node metastases:
N0 247 (93)
N1-3 17 (6)

Distant metastases:
M0 240 (91)
M1 24 (9)

Death from bladder cancer at last followup 41 (15)
Death of other cause: 67 (26)
Unknown 6 (2)
Alive 150 (57)

Median total mos followup (IQR) 68 (43e98)
Median followup BCG responders (IQR) 71 (55e99)
Median mos time to BCG failure (IQR) 7 (5e16)

Data in table 1 are also summarized in table 2, stratified by T1 substaging.
* Defined as �5/6 inductions þ �2/3 maintenance instillations.
† Specified by major urology guidelines, which include patients with muscle
invasive recurrences, T1HG after BCG induction and high grade recurrences after
adequate BCG therapy.
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characteristics of patients with T1 disease at diag-
nosis is depicted in table 1. Median age was 67 years
(IQR 62e71), 81% of patients were male, and the
median time from T1 diagnosis to BCG induction was
8 weeks. Median followup for the entire cohort was 70
months (IQR 48e90).

T1 Substaging is Associated with BCG Failure

T1 substaging was assessed in all tumors; T1m was
present in 72 (27%) and T1e in 192 (73%). An over-
view of main study variables and outcome parame-
ters according to T1 substaging is included in table 2.
Patients with T1m vs T1e disease underwent the
same number of re-TURBTs (79% vs 81%, p[0.731).
Adequate BCG was administered in 237/264 (90%)
patients. Reasons for not having received adequate

BCG were incorrect planning/BCG intolerance in
7/264 (3%) and discontinuation of BCG treatment due
to persistent �T1 disease following BCG induction in
20/264 (8%). Of the patients 93/321 developed BCG
failure; 20 had a muscle invasive recurrence, 19 had
recurrent T1HG disease after BCG induction and 54
patients had a HG recurrence after adequate BCG.
The median time to BCG failure was 7 months (IQR
5e16 months). BCG failure occurred more often in
patients with T1e HR-NMIBC than in patients with
T1m disease: 41% vs 21%, p[0.002. Furthermore,
patients with T1e disease had significantly worse 3-
year HG-RFS than patients with T1m tumors: 64%
vs 83% (p[0.004), worse PFS (p[0.014), but not DSS
(p[0.08) (fig. 1, A to C). In multivariate analysis, T1
substaging was an independent predictor of HG-RFS
(HR 3.2, p[0.005), PFS (HR 3.0, p[0.009) and DSS
(HR 3.1, p[0.031) (HG-RFS in table 3; PFS and DSS
in supplementary table 1, https://www.jurology.com).

Understaging of T1 HR-NMIBC may occur in case
a re-TURBT is not performed. Hence, to exclude the
possibility that understaging of T1 disease could
have caused our observed association between T1e
substaging and poor clinical outcome, the analyses
were repeated in 213/264 patients who also received
a re-TURBT. BCG failure occurred more often in
patients with T1e vs T1m disease (39% vs 18%,
p[0.005). In addition, the 3-year HG-RFS (p[0.011)
and PFS (p[0.028) remained worse in patients with
T1e tumors, in contrast to the DSS (p[0.12) (sup-
plementary fig. 1, A to C, https://www.jurology.com).
In multivariate analysis, T1 substaging remained
an independent predictor of HG-RFS (HR 3.2,
p[0.016) and PFS (HR 2.9, p[0.025), yet not for

Table 2. Main study variables and outcome parameters

stratified for T1 substaging in 72 patients with T1m vs 192 with

T1e disease

T1m T1e

Median yrs age at diagnosis (IQR) 73 (64e80) 70 (63e75)
No. female gender (%) 21 (29) 28 (15)
No. active smoker (%) 15 (20) 62 (33)
No. re-TURBT (%) 57 (79) 156 (81)
No. WHO grade 3 (%) 69 (96) 189 (98)
No. CIS (%) 11 (15) 48 (25)
No. multifocal (%) 34 (47) 98 (51)
No. variant histology (%) 3 (4) 45 (23)
No. TILs (%) 30 (42) 160 (83)
No. LVI (%) 2 (3) 13 (7)
No. tumor necrosis (%) 4 (6) 16 (8)
No. BCG failure (%) 15 (21) 78 (41)
No. progression (%) 9 (13) 54 (28)
No. death from BC (%) 6 (8) 35 (18)

Figure 1. Kaplan-Meier estimates of clinical outcome in 264 patients with primary T1 high risk nonmuscle invasive bladder cancer

stratified by T1 high-powered field substaging and with visible detrusor in specimen. A, HG-RFS (BCG failure). B, PFS. C, DSS.

p Value is determined by log-rank test.
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DSS (HR 2.8, p[0.08) (supplementary table 2, A and
B, https://www.jurology.com). To confirm that the
difference between T1m and T1e disease is not due to
up staging of Ta to T1m disease at central review, we
analyzed T1m/T1e vs TaHG disease. In total, 37 pa-
tients were down staged (T1 >Ta) and 12 patients
were up staged (Ta >T1). Patients with Ta disease
had a similar HG-RFS (p[0.592), PFS (p[0.828)
and DSS (p[0.798) as patients with T1m disease
(supplementary fig. 2, A to C, https://www.jurology.
com). Importantly, patients with Ta disease had a
favorable HG-RFS and PFS as compared to patients
with T1e disease (both p <0.01). Lastly, we investi-
gated whether T1e disease correlated with other
characteristics. Patients with T1e tumors had more
TILs (OR: 6.9, p <0.001) and VH (OR: 5.0, p[0.012)
(supplementary table 3, https://www.jurology.com).

Interestingly, all 12 patients with clinically unfa-
vorable micropapillary VH had T1e disease.

T1 Substaging Improves Stratification of

HR-NMIBC Patients

We determined if T1 substaging could improve ac-
curacy of the current HR-NMIBC risk stratification
for PFS. To this end, patients were stratified into
the high risk (90, 34%) or highest risk (174, 66%)
subgroup. Highest risk patients had a higher risk of
developing progression than high risk patients (HR
2.1, p[0.001) and a worse PFS (fig. 2, A, p[0.017).
Patients were stratified by T1 substaging and no
difference was found in PFS within the high risk
group (T1m vs T1e) (fig. 2, B, p.adj[0.754). Impor-
tantly, patients with highest risk/T1m disease had a
comparable PFS to high risk patients (T1m/T1e)

Table 3.Univariate andmultivariate Cox proportional hazard analyses of high grade recurrence-free survival in 264 primary T1 high risk

nonmuscle invasive bladder cancer patients

HG-RFS Univariate HG-RFS Multivariate

HR (95% CI) p Value HR (95% CI) p Value

Age at diagnosis 1.0 (0.99e1.0) 0.255 1.0 (1.0e1.1) 0.047
Female gender 0.7 (0.4e1.3) 0.229 0.7 (0.3e1.6) 0.401
Smoking (active) 1.1 (0.7e1.7) 0.645 0.6 (0.3e1.1) 0.095
Pos re-TURBT 0.7 (0.4e1.0) 0.074 1.0 (0.5e2.1) 0.977
Substage T1e 2.2 (1.3e3.8) 0.006 3.2 (1.4e7.3) 0.005
Grade 3 2.3 (0.3e16) 0.409 0.7 (0.1e5.9) 0.803
Pos CIS 1.7 (1.1e2.7) 0.015 1.8 (0.96e3.4) 0.068
Size �3 cm 1.2 (0.6e2.4) 0.608 - -
Multifocal 1.9 (1.3e2.9) 0.003 1.8 (0.98e3.3) 0.060
Pos variant histology 1.1 (0.7e1.9) 0.728 0.5 (0.2e1.2) 0.110
Pos TILs 1.1 (0.7e1.7) 0.727 0.8 (0.4e1.5) 0.438
Pos LVI 2.5 (1.3e4.9) 0.006 4.4 (2.1e9.4) <0.001
Pos tumor necrosis 1.0 (0.5e2.2) 0.951 1.8 (0.7e4.5) 0.223

Figure 2. Kaplan-Meier estimates of progression-free survival according to substratification of T1 disease and T1 high-powered field

substaging in 264 patients with primary T1 high risk nonmuscle invasive bladder cancer and with visible detrusor in specimen.

A, PFS high risk vs highest risk subgroup. B, PFS high risk vs highest risk subgroups according to T1 substaging. HR, high risk

patients. HHR, highest risk patients. p Value is determined by (pooled) log-rank test.
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(p.adj[0.823). Patients with highest risk/T1e dis-
ease had a significantly worse PFS than highest
risk/T1m disease (p.adj[0.038).

Recurrent T1e Disease is Associated with a Very

High Risk of Disease Progression

Lastly, we determined whether T1 substaging of re-
currences was associated with PFS. Of 264 patients
84 developed nonmuscle invasive recurrences, ie Tis/
Ta in 38 and T1 in 46. Patients with T1 recurrences
had a worse PFS than patients with Ta/Tis re-
currences (HR 4.1, p <0.001). Within the group of
patients with T1 recurrences, 19/46 (41%) had T1m
and 27/46 (59%) had T1e disease. Patients with a T1e
recurrence had a nonsignificant increased risk of
progression, compared to patients with a T1m
recurrence (HR 1.8, p[0.12, fig. 3, A and supple-
mentary table 4, https://www.jurology.com). Patients
with primary and recurrent T1e disease (T1e-T1e)
had a worse PFS compared to patients with pri-
mary and recurrent T1m disease, but the difference
was not statistically significant after multiple testing
correction (T1m-T1m; p.adj[0.19; fig. 3, B).

DISCUSSION
T1 substaging is easy to use and predictive of
outcome in HR-NMIBC, but it is unknown whether
T1 substaging improves patient stratification in the
context of current guidelines.4,8,17,21,24 Thus, we
investigated if T1 substaging was associated with
BCG failure and whether T1 substaging could be
used as a tool to refine risk stratification in a cohort of
BCG treated HR-NMIBC patients.

Patients with T1e HR-NMIBC were more likely to
fail BCG, suggesting that they should be surveilled

with vigilance. In a previous study (79 patients), T1e
vs T1m was associated with a worse 5-year RFS (29%
vs 64%), but treatment information was unavai-
lable.25 Rouprêt et al showed a worse RFS in T1b
disease (ie below muscularis mucosae in T1 MM-VP
substaging).16 However, analysis did not include
important predictive variables such as CIS, LVI and
VH. Moreover, by selecting RFS as an end point, LG
recurrences, which are not considered BCG failures,
were included as events.4 Therefore, we selected HG-
RFS to define BCG failure as our primary end point,
since a HG recurrence will affect therapeutic deci-
sion making.

In the real-world situation, it may occur that a re-
TURBT is not performed, especially when detrusor
muscle was visible. Most studies investigating T1
substaging showed an association with PFS and
DSS. None of the 36 studies included in a recent
meta-analysis took into account the impact of
I) adequate BCG treatment, II) a re-TURBT before
BCG induction, III) detrusor muscle in the tran-
surethral resection/re-TURBT specimen to prevent
the risk of understaging of T1 disease and IV) a
comparison of T1m vs TaHG disease.9,17,20,21,24,26

Therefore, we also performed 2 subanalyses in pa-
tients who received a re-TURBT and compared T1m
vs TaHG disease to investigate up staging at
centralized review.

Guidelines recommend considering an immediate
RC in HR-NMIBC patients with highest risk fea-
tures, but this may lead to overtreatment by RC.4,8

In line with previous studies, we observed a higher
progression rate in patients with highest risk
prognostic factors.2,3,27 To our knowledge, we are
the first to demonstrate that T1 substaging

Figure 3.Kaplan-Meier estimates of progression-free survival in 46 patients with primary T1 high risk nonmuscle invasive bladder cancer

who developed T1 recurrence, stratified by T1 high-powered field substaging andwith visible detrusor in specimen.A, PFS of primary T1

patients with T1 recurrences stratified according to T1 substaging. B, PFS in primary-recurrent T1 combinations both stratified by T1

substaging. p Value is determined by (pooled) log-rank test.
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improves stratification of highest risk patients.
Interestingly, highest risk/T1m patients had a risk
of progression comparable to patients with high risk
disease, indicating that a bladder sparing approach
is worthwhile investigating. Hence, prospective tri-
als are needed to assess the safety of bladder-
sparing approaches in highest risk/T1m patients.
Patients with highest risk/T1e disease had the
worst outcome and for these patients immediate
RCs should be considered.

T1e disease was associated with the presence of
VH and TILs. T1e disease is more invasive than
T1m disease, which may clarify the association with
VH that is frequently found in advanced disease.28

In contrast to T1e tumors, T1m disease rarely shows
inflammatory features such as TILs.20 In line with
recent findings, we found that TILs were not asso-
ciated with clinical outcome, possibly because not
the overall presence, but specific T cell subsets
predict BCG failure.29

The main limitation of this study is its retro-
spective design, which led to missing data on tumor
size and therefore we had to exclude this parameter
from our analyses. Nonetheless, in a multivariate
analysis of 110 patients for whom tumor size was
available, T1 substaging was predictive of HG-RFS,
PFS and DSS (data not shown). Moreover, it is un-
likely that highest risk patients were misclassified
as high risk due to missing tumor size, as 51/110
(46%) of the patients with a reported size had a
large tumor (�3 cm), which far exceeds the expected
18% patients with large tumors in European Orga-
nization for Research and Treatment of Cancer
(EORTC) studies (ie reporting bias in favor of large

tumors).3 The prevalence of LVI varies considerably
in literature, yet our cohort showed a relatively low
prevalence (5%).30 LVI scoring was based on he-
matoxylin and eosin slides, without the use of
endothelial markers to facilitate diagnosis.30 VH
pointed towards a nonsignificant favorable outcome,
yet results should be treated with caution due to a
low number of cases, heterogeneity in variant types
and selection bias, as T1 tumors with aggressive VH
may have been treated with immediate RC instead
of BCG therapy.4,8 We selected T1 HPF substaging
as it was shown that T1 metric substaging (using
micrometers) is time-consuming and T1 MM-VP
substaging is more difficult and less predictive
than T1 HPF substaging.10,12,21 Additionally, a low
interobserver variability has been reported for T1
HPF substaging.10 T1 HPF substaging is easy to
use, can be implemented in every clinical practice
without additional costs, is reproducible with a
proven prognostic value and has a 100% evaluation
rate.9,10,12,15,21

CONCLUSIONS
T1 HR-NMIBC patients with T1e tumors were at
higher risk of BCG failure compared to both T1m
and TaHG tumors, while T1m and TaHG tumors
have a similar risk of BCG failure. T1 substaging
has potential to guide treatment decisions on BCG
vs alternative treatments. A prospective trial is
needed to investigate whether bladder-sparing ap-
proaches are safe in patients with highest risk/T1m
disease. In contrast, for patients with the highest
risk/T1e disease early RC should be considered.
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